User login

Navigation

You are here

Wei Hong's blog

Wei Hong's picture

Faculty position in computational mechanics engineering science and mechanics department, Penn State University

The Engineering Science and Mechanics Department at The Pennsylvania State University invites applications for a tenure-track faculty position in computational mechanics at the assistant professor level. Exceptional candidates at the associate or full professor level will also be considered. Candidates are sought with a foundation and research interests in mechanics across all scales from the molecular to the macroscopic, including expertise in: efficient massive and nonlinear computations; molecular and multiscale simulations; innovative and efficient approaches to nonlinear FEM for large deformations, inhomogeneities, and/or inclusions; problems with evolving microstructure such as phase transitions and damage evolution; massively parallel simulations of large systems of equations; novel numerical/empirical approaches to modeling multiscale constitutive behavior of composite, biological or otherwise novel material systems.

Wei Hong's picture

Persistent step-flow growth of strained films on vicinal substrates

We propose a model of persistent step flow, emphasizing dominant kinetic processes and strain effects. Within this model, we construct a morphological phase diagram, delineating a regime of step flow from regimes of step bunching and island formation. In particular, we predict the existence of concurrent step bunching and island formation, a new growth mode that competes with step flow for phase space, and show that the deposition flux and temperature must be chosen within a window in order to achieve persistent step flow. The model rationalizes the diverse growth modes observed in pulsed laser deposition of SrRuO3 on SrTiO3

 Physical Review Letters 95, 095501 (2005)

Wei Hong's picture

Interplay between elastic interactions and kinetic processes in stepped Si (001) homoepitaxy

A vicinal Si (001) surface may form stripes of terraces, separated by monatomic-layer-high steps of two kinds, SA and SB. As adatoms diffuse on the terraces and attach to or detach from the steps, the steps move. In equilibrium, the steps are equally spaced due to elastic interaction. During deposition, however, SA is less mobile than SB. We model the interplay between the elastic and kinetic effects that drives step motion, and show that during homoepitaxy all the steps may move in a steady state, such that alternating terraces have time-independent, but unequal, widths. The ratio between the widths of neighboring terraces is tunable by the deposition flux and substrate temperature. We study the stability of the steady state mode of growth using both linear perturbation analysis and numerical simulations. We elucidate the delicate roles played by the standard Ehrlich-Schwoebel (ES) barriers and inverse ES barriers in influencing growth stability in the complex system containing (SA+SB) step pairs.

Preprint available in the attachment.

Pages

Subscribe to RSS - Wei Hong's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate