User login

Navigation

You are here

blogs

SIMULIA's picture

Paper Flow Simulation Using Abaqus

Paper transport is one of the areas under media handling methods where papers are transported by rollers through different path ways. The challenge in media handling is to transport the paper smoothly with out jam or in-plane deviation (paper skew). The smooth flow of paper is influenced by grade of paper, complexity of flow path, roller speed, roller pre-loads and significantly the roller material. It is also costly and difficult to develop a physical flow path testing.

SIMULIA's picture

MODELLING SOLDER JOINT RELIABILITY OF BGA PACKAGES SUBJECT TO DROP IMPACT LOADING USING SUBMODELLING

With the trend towards miniaturization and multi-functionality in products such as mobile electronic devices, miniature IC packaging such as fine pitch Ball Grid Array (BGA) package and Chip Size Package (CSP) are increasingly being used. However, the inherent vulnerability of these miniature IC packagings has brought along new reliability problems. Among them, the drop/impact robustness is the most challenging in terms of testing and designing.

SIMULIA's picture

Lowest cost printer chassis design that would pass a series of transportation drop tests

A printer chassis provides an important function of locating and securing the relative position of all the sub-systems that makeup a printer. The customer location could be thousands of miles away from the factory and many modes of transportation are required from ship, train, trucks, forklift, to pushing across corridors, stairs and elevators. The transportation loads are the most sever the printer would see in its life time. These include impacts on all sides at 3 MPH to an 8 inch vertical drop.

SIMULIA's picture

Fatigue life estimation of a non-linear system due to random vibration

Random response analysis is a linear approach, while most real life random vibrations involve nonlinear components. It is challenge to analyze a nonlinear system subjected to random vibration. This paper presents an Abaqus FEA approach on the fatigue life calculation of an automobile assembly with rubber isolators subjected to random vibration. Random loading is categorized using Power Spectral Density (PSD). An equivalent dynamic analysis or a random response analysis was used to obtain the maximum stress level and location from random vibration.

SIMULIA's picture

Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus

Consumers demand smaller electronics devices with more features and capabilities. Making devices smaller provides challenges to engineers to maintain the acoustic performances as enclosed acoustic volume sizes are reduced. This paper discusses the requirements for coupled
structural-acoustic simulation and demonstrates the application of this technology to cell-phone

SIMULIA's picture

A numerical study on air squeeze-film damping based on structure-fluid co-simulation technique

CAE applications in dealing with multiphysics problems have been drawing much attention in product development in recent years. In particular, structure-fluid interaction (FSI) problems are of major concern. In this article, a numerical simulation on air squeeze-film damping which is important in MEMS design is presented. The study employs Abaqus and STAR-CD to perform a structure-fluid co-simulation. The squeeze-film damping phenomenon of a simple plate structure is demonstrated and its mechanism investigated.

SIMULIA's picture

User subroutine for compressive failure of composites

For high strength carbon fiber reinforced polymers, the design criteria are often specified by the compression strength of the composite materials component. This is due to the fact that the compression strength of unidirectional composites is as low as 50 to 60 percent of the tensile strength. One important compressive failure mode in composite is kink-band formation which for a great deal is governed by the waviness of the fibers and the yielding properties of the matrix material.

SIMULIA's picture

Threaded and Coupled Connector Analysis Using Abaqus CAXA

Analysis methodologies developed for evaluating three threaded and coupled connectors quantitatively are presented. Two new non-dimensional parameters for assessing the seal leakage and load shoulder separation are introduced for the purpose. Stress Amplification Factor (SAF), defined in API Specification 16R, is scrutinized for what type of stress is to be used and which reference point the alternating stress is measured from. As a result of it, loading sequence Mean Tension with Two Alternating Moments (MT2AM) is proposed for SAF calculation.

SIMULIA's picture

A Survey of ABAQUS Simulations in Technip USA Deepwater Pipeline Engineering

The production of hydrocarbons from deepwater reservoirs requires the fabrication and installation of massive infrastructure. As the global energy industry targets hydrocarbon reservoirs in ever deeper water, the use of remote subsea wells to access the reserves and deepwater flowlines to transport the produced hydrocarbons back to floating production platforms will increase.

SIMULIA's picture

Successful Development of Coiled-Tubing Connectors Using Virtual Testing

Since its introduction in the 1960s, coiled tubing (CT) has evolved from smaller sizes and a few cleanout jobs to larger diameters and heavier grades with higher flow rates. Some of the limiting factors, especially on offshore platforms, are limited crane-weight capability and poor weather conditions, which severely limit the size of the reel that can be lifted. With offshore crane capabilities as low as eight tons on some platforms, a CT reel is often transported in two or more sections, requiring offshore assembly.

SIMULIA's picture

Structural simulation of a Horizontal Pressure Vessel for predicting stress under extreme weather conditions

Offshore containers are exposed to the movement caused by wind, ocean currents, and unpredictable weather conditions so a good structural resistance is required for them. A dynamic analysis has been developed using Abaqus/Explicit to study the structural response of a horizontal pressure vessel mounted in Floating Production Storage and Offloading (FPSO) topsides in the Gulf of Mexico (GOM) coast. The model includes fluid behavior of crude oil inside the container for which the linear Us-Up Hugoniot equation of state is used. The viscosity of the oil was varied according to temperature.

SIMULIA's picture

Structural and motion system dynamic analysis of a two-axes solar tracker under wind action

Solar trackers are being increasingly used within the industry in order to improve the amount of power produced by photovoltaic systems. The design of these devices must pay special attention to wind action as the most relevant load seen by the generally flexible structure supporting the panels. However, standard building codes may not be particularly suitable for  this sort of very flexible, extremely wind-exposed and not very critical-from-a-safety-point-of-view structures.

SIMULIA's picture

Sloshing of Cylindrical Tank due to Seismic Acceleration

Cylindrical tanks are subjected to the seismic loads in certain countries, for example in Japan. The sloshing of these tanks is very important to consider the integrity of the containers. This phenomenon, however, is an interaction of structure and the fluid, namely oil, and is difficult to be analyzed using computer simulation codes. Owing to the FSI capability of Abaqus and Fluent via MpCCI, the phenomenon has been within the range of simulation. Authors tried to analyze the sloshing using the real seismic acceleration at Hachinohe earthquake in Japan and report the result.

SIMULIA's picture

Shape Memory Material Manufacturing Design Optimization and Stress Analysis

A recent breakthrough in the development of shape memory materials has demonstrated promising applications for completion products in the oil and gas industry. In one of the targeted applications, shape modification is a major step toward commercialization of this technology. Efficiently and effectively reshaping the material is a key element for final production. The goal of our technical team is to design and optimize the reshaping equipment so as to enable production quantities of tools while maintaining material properties.

SIMULIA's picture

Seismic Response of Floating Roof Storage Tanks Contact Pressure Analysis

Seismic response of liquid storage tank floating roofs involve phenomena that require dynamic nonlinear geometric and material behavior as well as surface to surface contact. Good engineering practice requires a practical analytical approach that captures the essential ingredients of structural behavior under earthquake excitation by making reasonable, conservative, and manageable approximations to the actual conditions. This paper discusses an approach used in Abaqus to calculate the stresses and deformations of a liquid storage tank floating roof under seismic loading.

SIMULIA's picture

POST-CRACKING BEHAVIOUR OF A WIND TURBINE CONCRETE TOWER

The paper deals with the dynamic performance of a simply reinforced concrete tower built using prefabricated elements. The main uncertainty of this strategy stems from the possible cracking of the concrete and its implications on the stiffness, natural frequency and dynamic amplification of the tower.

SIMULIA's picture

Onset of levitation in thrust bearing: FSI study using Abaqus-FlowVision coupling

Sliding bearing is widely used in machine building, power generation, automobile industry, mining industry. Characteristics of the bearing are defined by using several methods as theoretical calculations, engineering semi-empirical calculations or using numerical simulations (Petrushina, 2006). A calculation of sliding bearing parameters using direct coupling (Aksenov et al., 2004, Aksenov et al., 2006) between Abaqus finite-element code and FlowVision finite-volume code is described in this paper.

SIMULIA's picture

Numerical Analysis of Punching Shear Failure of Reinforced Concrete Slabs

Nearly no load bearing behaviour of reinforced concrete members allows such varied interpretations and complex discussions as the shear behaviour. Especially the three-dimensional problem of the punching shear failure of reinforced concrete members is internationally discussed. Nevertheless up to now, there is no unified design approach or even an overall accepted design model. Especially for large structural members, as they are commonly used in industrial structures and high-rise structures, the experimental background is missing.

SIMULIA's picture

On Nonlinear Buckling and Collapse Analysis using Riks Method

Nonlinear analysis using Riks method is suitable for predicting buckling, post-buckling, or collapse of certain types of structures, materials, or loading conditions, where linear or eigenvalue method will become inadequate or incapable, especially when nonlinear material, such as plasticity, is present, or post-buckling behavior is of interest.

SIMULIA's picture

How Can We Make Best…Better: Using Abaqus and Isight to Optimize Tools for Downhole Expandable Tubulars

The use of expandable tubulars has emerged as a popular technology for drilling and completing wells. While expandable tubulars vary in type depending upon the application and specific well requirements, the most common approach is to actually form the metals downhole, which presents unprecedented challenges for tool designers. The costs and timelines to achieve a “workable” product can be tremendous.

SIMULIA's picture

Finite Element Modelling Of Blade Thermoelastic Stress Analysis Results

Thermoelastic stress analysis (TSA) is a non-destructive method that is used to assess structural stress. It is based on the ability to measure stress induced thermal emissions during cyclic loading with an infrared camera. It has potential applications for the monitoring of wind turbine blades certification tests. In this work, conducted as part of the UK SuperGen Wind consortium, finite element (FE) analyses are conducted to evaluate the potential correlation with TSA outputs.

SIMULIA's picture

Finite element modelling techniques and testing methods of submerged pipes

The purpose of the present work is to discuss some FEM procedures and experimental methods that are currently used in the pipeline industry and open the way to the possibility of developing new experimental apparatuses which can provide much more economical alternatives to traditional design codes and tests.

SIMULIA's picture

FEA Modelling of Expandable Sand Screens

Expandable sand screens are a relatively novel sand control system, which are used to control the ingress of solids in oil and gas reservoirs with weak and unconsolidated formations. They combine the ease of installation of conventional screens with the borehole support of a gravel pack.
There are two different variations of expandable screens; a system based on a slotted basepipe which are easy to expand but relatively low in strength and a system based on a drilled basepipe which are very strong but difficult to expand.

SIMULIA's picture

FEA Modelling of Expandable Sand Screens Interactions with Rock Formations

Expandable sand screens are a sand control system, which is used to control the ingress of solids in oil and gas reservoirs with weak and unconsolidated formations. There are two different variations of expandable screens; a system based on a slotted basepipe which are easy to expand compliant to the formation but is relatively low in strength and a system based on a drilled basepipe which is very strong but is more difficult to expand compliantly. FEA has been used to model the slotted basepipe type to better understand the interaction of the expanded screen with the rock formations.

Pages

Subscribe to RSS - blogs

Recent comments

More comments

Syndicate

Subscribe to Syndicate