User login

You are here

Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque

nicfang's picture

This paper aims to maximize optical force or torque on arbitrary micro- and nanoscale objects using numerically optimized structured illumination. By developing a numerical framework for computer-automated design of 3d vector-field illumination, we demonstrate a 20-fold enhancement in optical torque per intensity over circularly polarized plane wave on a model plasmonic particle. The nonconvex optimization is efficiently performed by combining a compact cylindrical Bessel basis representation with a fast boundary element method and a standard derivative-free, local optimization algorithm. We analyze the optimization results for 2000 random initial configurations, discuss the tradeoff between robustness and enhancement, and compare the different effects of multipolar plasmon resonances on enhancing force or torque. All results are obtained using open-source computational software available online.

Reference: Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque

YE Lee, OD Miller, MTH Reid, SG Johnson, NX FangOptics Express 25 (6), 6757-6766;arxiv.org/abs/1701.07891

Comments

nicfang's picture

We are interested in generalization of this approach to efficient all- optical manipulation of soft and flexible nanostructures. Look forward to inputs and related literature!

Subscribe to Comments for "Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque"

Recent comments

More comments

Syndicate

Subscribe to Syndicate