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Abstract. Two cohesive-zone models, one developed by Valoroso & Champaney and
the other initially proposed by Crisfield and co-workers and later modified by Alfano &
Crisfield, are used for studying a set of delamination problems.

Both models consider irreversible damage of the interface and account for mixed-mode
debonding by satisfying a generalised ellipse-like interaction criterion.

In this paper a comparative analysis of the two models is carried out; results are pre-
sented and discussed for numerical simulations referring to both single-mode and mixed-
mode situations.
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1 INTRODUCTION

Cohesive-zone models have been extensively used for the non-linear incremental anal-
ysis of interface debonding in the last years [1–12].

Unlike other methods that are directly based on fracture mechanics, they do not require
the presence of an initial crack, can be more easily coupled with other material and
geometric nonlinearities and allow for efficient implementations in a finite element setting
via interface elements. Nevertheless, their use is often limited by the requirement for a very
refined mesh around the process zone and because of the strongly nonlinear structural
response, which might be difficult to follow even by using sophisticated path-following
techniques [13].

In this paper a comparison between two cohesive-zone models is presented. Both of
them consider irreversible damage and, for the mixed-mode case, satisfy a generalized
ellipse-like fracture criterion [14].

The first one, developed by Valoroso and Champaney in [15, 16], is derived within a
damage mechanics framework and is based upon a quite general formulation that allows
to recover several earlier interface models proposed in the literature. In particular, in
the present work two cases are considered that, for the pure-mode situation, result in a
polynomial [1,17] and in an exponential [15,16] traction-displacement jump relationship.

The second model studied, developed by Crisfield and his coworkers in [8] and later
modified by Alfano and Crisfield in [18], specialises to bilinear interface relationships
for pure-mode cases. The model was initially formulated in [8] by means of an explicit
mixed-mode relationship between the relative-dispalcement vector and the traction on the
interface, but it has then been derived in [18] in the framework of damage mechanics. It
is shown, briefly in the paper and more in detail in [16], that this model can be derived
as a specialization of the one described by Valoroso and Champaney.

The outline of the paper is as follows. In Section 2 a brief introduction of both cohesive-
zone models is given while Sections 2.1 and 2.2 describe the two models. In Section 3 the
results of the numerical simulations of four delamination problems are presented. The first
two cases involve mode-I crack propagation, while mixed-mode debonding is considered
in the third and fourth example. Some conclusions are finally drawn in Section 4.

2 INTERFACE MODEL

In the cohesive-zone approach the description of a state of damage along an interface
relies upon the definition of a traction-separation law incorporating the dependence of the
surface tractions on the corresponding displacement discontinuities [u] = u+−u− and the
damage criterion to be met for the cohesive process zone to grow and the crack to advance.
In the simplest one-dimensional case the damage onset and decohesion propagation con-
ditions only involve the single-mode displacement or energy release rate component; on
the contrary, when considering the mixed-mode case these conditions have to properly
account for the interaction of the pure-mode contributions.
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In this last case the work of separation per unit fracture surface area

GT = GI +GII (1)

does actually results from the interplay of the I and II pure-mode contributions, that are
not independent in that they evolve together as a consequence of the interaction of the
traction-displacement jump relationships in the two directions.

In what follows we shall briefly discuss the constituive relationships adopted in this
paper by directly considering the mixed-mode situation. A more exhaustive presentation
of the constitutive models can be found elsewhere [8, 15,16,18].

2.1 Model A (Valoroso & Champaney, 2004)

Consider the following form of the stored energy function [15,16]:

ψ([u], D) =
1

2
(1 −D)

[

k+
n 〈[un]〉2+ + ks[us]

2]+
1

2
k−n 〈[un]〉2− (2)

whereD ∈ [0, 1] is the scalar damage variable and [un] and [us] denote the normal and slid-
ing components of the displacement jump vector [u]. In the above relationship k+

n , k
−
n , ks

are the undamaged interface stiffnesses while the symbols 〈·〉+ and 〈·〉− stand for the
positive and negative part of the argument 〈·〉, defined as 〈x〉± = 1/2(x± |x|).

The constitutive equations for the interface traction vector and the work-conjugate of
the damage variable follow from the classical thermodynamic argument as [19]:

t =
∂ψ

∂[u]
= (1 −D)

[

k+
n 〈[un]〉+n + ks[us]s

]

+ k−n 〈[un]〉−n

Ym = −
∂ψ

∂D
= YI + YII

(3)

where n is the outward unit normal, s is the unit tangent vector to the interface, the
subscript m stands for mixed-mode and the pure-mode energy release rates YI and YII

are given by:

YI =
1

2
k+

n 〈[un]〉2+ ; YII =
1

2
ks[us]

2 (4)

Based on (3) the mixed-mode energy release rate Ym can be expressed as:

Ym =
1

2
k+

n δ
2 (5)

where δ is the equivalent opening displacement parameter:

δ =
(

〈[un]〉2+ + α2[us]
2)1/2

(6)

3



Giulio Alfano, Silvio de Barros, Laurent Champaney and Nunziante Valoroso

for

α =

√

ks

k+
n

(7)

A mode mixity parameter β can thus be defined as:

β = α tan(ϕ) (8)

ϕ being the loading angle:

ϕ = arctan

[

[us]

〈[un]〉+

]

∈ [0,+π/2] (9)

Accordingly, the pure-mode contributions (4) to the energy release rate (5) turn out
to be:

YI =
1

1 + β2Ym

YII =
β2

1 + β2Ym

(10)

By ruling out the penalty term accounting for non-interpenetration, the cohesive rela-
tionship (3)1 can be equivalently expressed as:

tδ = (1 −D)k+
n δ (11)

where tδ is the equivalent traction:

tδ =

(

t2n +
1

α2
t2s

)1/2

(12)

and

tn = 〈t · n〉+ =
1

(1 + β2)1/2
tδ; ts = t · s =

αβ

(1 + β2)1/2
tδ (13)

are the normal and sliding traction components.
By appealing to maximum damage dissipation we are lead to the normal evolution

equation:

Ḋ = γ̇
∂φm

∂Ym

(14)

for the damage criterion:
φm = Ym − Y ∗

m ≤ 0 (15)

where Y ∗
m represents the mixed-mode critical energy release rate.
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The damage model is characterized by the relationship between the critical damage
driving force Y ∗

m and D. For the case at hand this can be expressed in the form:















Y ∗
m = Ymo if D = 0

Y ∗
m = Fm(D) if D ∈]0, 1[

Y ∗
m = max

τ≤t
Ym(τ) if D = 1

(16)

where, owing to the irreversibility of damage, the function Fm has to be taken positive,
monotone non-decreasing and vanishing on <−

0 .
The damage model requires two parameters, Ymo and Ymf , which can be computed

based on single-mode parameters that enter the adopted criteria for damage onset and
decohesion propagation. In particular, assuming that initiation of damage can be pre-
dicted using an interaction criterion of the type:

(

YI

GoI

)α1

+

(

YII

GoII

)α2

− 1 = 0 (17)

where GoI and GoII are the initial pure-mode damage thresholds, for a given loading angle
(9) the initial mixed-mode threshold Ymo is computed from (17) that, on account of (10),
can be given the form:

cI (Ym)α1 + cII (Ym)α2 − 1 = 0 (18)

for

cI =

[

1

(1 + β2)GoI

]α1

; cII =

[

β2

(1 + β2)GoII

]α2

(19)

For α2 = α1 one has then from equation (18):

Ymo =
(1 + β2)GoIGoII

[

(GoII)α1 + (β2GoI)α1
]1/α1

(20)

whence the pure-mode threshold energies GoI and GoII are recovered in the limit as ϕ→ 0
and ϕ→ π/2 respectively.

Following reference [14], the adopted propagation condition, stemming from one of the
most widely used criteria to predict the propagation of delamination in composites, is a
generalized ellipse-like criterion

(

GI

GcI

)β1

+

(

GII

GcII

)β2

− 1 = 0 (21)

where the mode I and mode II released energies are given by:

Gi =

∫ +∞

0

YiḊdt ; i ∈ {I, II} (22)
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Figure 1: Pure-mode traction-separation relationships for model A.

From (10) it follows that, for proportional loading, the ratio between GII and GI is
constant and equals β2; accordingly, from (21) one has the nonlinear equation:

dI (GT )β1 + dII (GT )β2 − 1 = 0 (23)

where GT is defined by (1) and the coefficients dI and dII have the same expression as in
(19) except for GoI and GoII being replaced by GcI and GcII .

For β2 = β1 the propagation of decohesion then takes place for:

GT =
(1 + β2)GcIGcII

[

(GcII)β1 + (β2GcI)β1
]1/β1

(24)

where GT is computed as the total work of separation:

GT =

∫ +∞

0

Y ∗
mḊ dt (25)

whose expression depends upon that of the function Fm defining the critical damage-
driving force in the range D ∈]0, 1[. Taking for Fm one of the forms [15,17]:

Fm(D) =

{

Ymo + (Ymf − Ymo)D
1/N

Ymo + (Ymf − Ymo)[− log(1 −D)]N
(26)

for N > 0 (not necessarily integer), upon comparison of (24) and (25) the expression of
the characteristic value of the mixed-mode energy release rate Ymf is then obtained as:

Ymf =















1

N
[(N + 1)GT − Ymo]

Ymo +
1

Γ (N + 1)
[GT − Ymo]

(27)

Γ being the Gamma function [20]. The pure-mode traction-separation laws corresponding
to (26)1 (Allix-Ladevèze model) and (26)2 (exponential model) are depicted in Figure 1.
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2.2 Model B (Crisfield et al., 1998; Alfano & Crisfield, 2001)

The cohesive-zone model initially proposed in [8] and later modified in [18] can be
formulated in an explicit way by directly defining the non-linear interface relationship
between the displacement jump [u] and the interface traction t. To this end, the following
parameter is introduced:

γ̃ =

[(

YI

GoI

)µ

+

(

YII

GoII

)µ] 1
µ

− 1 (28)

where the scalar µ is a material parameter and YI and YII are defined as in (4).
The existence of two initial, pure-mode damage thresholds GoI and GoII is again as-

sumed; furthermore, a parameter η is introduced in the model and the following hypothesis
is made [18]:

GoI

GcI

=
GoII

GcII

= 1 − η (29)

with GcI and GcII being the pure-mode fracture energies.
Denoting by γ the maximum value of γ̃ which has been attained over the previous

history at the point at hand
γ = max

τ≤t
γ̃, (30)

the explicit interface relationship is then written as follows:

t =

{

K[u] if γ ≤ 0

(I −DC)K[u] if γ > 0
(31)

where K = diag[kn, ks], with kn and ks representing the normal and tangential initial
stiffnesses, C = diag[ h ([un]), 1], with h (x) being the Heaviside function

h (x) = 1 if x ≥ 0 and h (x) = 0 if x < 0, (32)

I is the identity tensor and the damage parameter D is defined as:

D = min

{

1,
1

η

(

γ

1 + γ

)}

(33)

Notice that the matrix C plays a role when [un] < 0, in which case mode I does not
interact with mode II and the simple relationship tn = kn [un] is obtained for mode I,
whereby kn represents a penalty stiffness used to prevent material overlapping.

As shown in [18], for a fixed mode-ratio the fracture criterion (21) is fulfilled for the
present model by taking β1 = β2 = µ/2, where in this explicit formulaton the mode-I and
mode-II released energies are given by:

GI =

∫

0

+ ∞

tn ˙[un] d t GII =

∫

0

+ ∞

ts ˙[us] d t (34)
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The set of input parameters for the model, as described by equations (28)-(33), is
represented by the fracture energies GcI and GcII , the damage threshold energies GoI and
GoII and the stiffnesses kn and ks. In the pure-mode cases, the model specialises to the
piecewise linear, pure-mode laws depicted in figure 2. With reference to this figure, GoI

and GoII represent the specific work done by the tractions in modes I and II, respectively
corresponding to the relative displacements values [uno] and [uso] while tno and tso are the
values of the traction components at [uno] and [uso].

tn

Area = Gc I
tno

[u  ]n

Area = Gc II

[u   ]nc[u   ]no

[u  ]s

GoII

[u   ]so

[u   ]so[u   ]sc

[u   ]sc

GoI ts

t   so

t   so

(a) (b)

Figure 2: Bilinear pure-mode interface laws for Crisfield model: (a) mode I; (b) mode II.

The following relationships clearly hold:

GoI =
1

2
tno [uno]; GoII =

1

2
tso [uso]; kn =

tno

[uno]
; ks =

tso
[uso]

(35)

whereby the model can equivalently be described in terms of another set of input param-
eters, namely {GcI , GcII , tno, tco, [uno], [uso]}.

The values of the relative-displacement components at which damage has fully devel-
oped in the pure-mode cases have been denoted by [unc] and [usc] in figure 2 and are related
to the other parameters by the relationships [unc] = 2GcI/tno and [usc] = 2GcII/tso.

It is worth noticing that, in terms of relative-displacement components, the assumption
(29) is equivalent to:

[uno]

[unc]
=

[uso]

[usc]
= 1 − η (36)

while variable γ̃ introduced in equation (28) can be given the expression:

γ̃ =

[(

〈[un]〉+
[uno]

)µ

+

(

|[us]|

[uso]

)µ] 1
µ

− 1 (37)
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2.2.1 Damage-mechanics formulation

The Crisfield model has been briefly described so far by means of an explicit approach
analogous to that initially proposed in [8]. The same model has then been reformulated
in [18] within the more general framework of damage mechanics starting from the following
expression of the free energy potential:

ψ̃([u], Dn, Ds) =
1

2
(1 −Dn)kn〈[un]〉2+ +

1

2
(1 −Ds)ks[us]

2 +
1

2
kn〈[un]〉2− (38)

Having introduced, at least initially, two damage parameters Dn and Ds, differentiation
of the free energy leads to the definition of two damage-driving forces YI and YII , respec-
tively conjugate to Dn and Ds, instead of the variable Ym defined as in (3), see Section
2.1. Accordingly, the damage function introduced in [18] separately depends upon YI and
YII and, in order to ultimately have only one damage parameter, a damage evolution law
of non-associative type was used.

However, it is possible to show that an equivalent damage-mechanics formulation of
Crisfield model can also be obtained as a specialization of the model described in Section
2.1 model by setting k+

n = k−n = kn in (2), α1 = µ/2 in equation (20) and by making the
following choice for the damage function Fm:

Fm(D) =
(1 + β2) (1 − η)

(1 − η D)2

[

(

1

GcI

)µ/2

+

(

β2

GcII

)µ/2
]2/µ

(39)

see also [16] for further details.

3 NUMERICAL EXAMPLES

The interface models briefly described in the previous sections have been implemented
as a part of the finite element codes CAST3M [21], developed by the CEA (Commisariat
à l’Energie Atomique), and LUSAS [22]. For the numerical examples described in this
section use has been made of 8-noded plane strain quadrilaterals for the bulk material and
6-noded interface elements for which Newton-Cotes integration is adopted. Computations
have been carried out by using a varying step size and a local-control-based arc-length
algorithm as discussed in [13].

In order to make possible a comparison of the different models, we consider for all
of them the same initial (undamaged) interface stiffnesses while the remaining material
parameters are tuned in a way to obtain equal values for the fracture energy and the local
peak stress. In particular, since the peak stress is only indirectly defined in the Allix-
Ladevèze and exponential models discussed in Section 2.1, for these models the exponents
N have been adjusted in order to get a value of the maximum traction approximately
equal to the one corresponding to the beginning of the softening branch of the bi-linear
traction-relative displacement relationship referred to in Section 2.2.
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3.1 DCB test

As a first example we consider the Double Cantilever Beam (DCB) test. Loading is
simulated via displacement control and the dimensions of the specimen are similar to those
adopted for typycal experimental tests used for measuring the mode-I fracture energy, see
Figure 3. The material data set for this problem is given in Table 1.

Figure 3: DCB test. Model problem.

Bulk material E = 70 (GPa) ν = 0.3

Interface parameters kn (N/mm3) Go (N/mm) Gc (N/mm) to (N/mm3) N

Allix-Ladevèze model 1.000E+04 1.125E-02 5.000E-01 3.002E+01 1.980E-01

Exponential model 1.000E+04 1.125E-02 5.000E-01 3.004E+01 1.720E+00

Crisfield model 1.000E+04 4.500E-02 5.000E-01 3.000E+01 -

Table 1: DCB test. Material data.

The computed load-deflection curves, all referring to a regular mesh made of 284 × 4
continuum elements and 280 interface elements, are depicted in Figure 4. No substantial
difference appears between the responses obtained with the three different models, that
are practically coincident owing to the very refined mesh used for the simulation and to
the relatively small stiffness of the sample.

3.2 Compact specimen test

The second example concerns a compact specimen obtained by increasing the thickness
of the arms of the DCB from 1.5mm to 50mm.

10



Giulio Alfano, Silvio de Barros, Laurent Champaney and Nunziante Valoroso

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

 Displacement (mm)

 R
ea

ct
io

n 
(N

)

Allix−Ladevèze model
Exponential model
Crisfield model

Figure 4: DCB test. Computed load-deflection curves.

0 0.05 0.1 0.15 0.2 0.25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 Displacement (mm)

 R
ea

ct
io

n 
(N

)

Allix−Ladevèze model
Exponential model
Crisfield model

Figure 5: Compact specimen test. Computed load-deflection curves.
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The material data set for this example is the same as in Table 1 except for the elastic
moduli of the bulk material that have been changed to E = 210GPa and ν = 0.2. The
computed results have been obtained using a regular mesh made of 78 × 16 continuum
elements and 70 interface elements.

Owing to the increased stiffness of the specimen the difference between the load-
deflection curves obtained for the different interface models, see Figure 5, becomes here
more apparent. In particular, for this problem the Allix-Ladevèze model yields an increase
in the peak load of about 20% compared to the exponential and bi-linear models.

As alredy pointed out in [23], this fact shows that, for a very stiff sample, the shape of
the traction-separation law may significantly influence the size of the process zone that
in this case can have a length comparable to the dimensions of the sample itself.

3.3 Mixed-mode flexure test (MMF)

The third example refers to the mixed-mode flexure test originally proposed in [24].
The geometry of the specimen is depicted in Figure 6 and the material data set is given
in Table 2. In particular, the parameters α1 and β1 governing the shape of the damage
onset and failure loci have both been taken equal to 2.0.

Figure 6: MMF test. Model problem.

Figure 7: MMF test. FE mesh.
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Bulk material E = 70 (GPa) ν = 0.3

Interface parameters kn (N/mm3) GoI (N/mm) GcI (N/mm) tno (N/mm3) N

Allix-Ladevèze model 1.000E+04 2.813E-03 1.250E-01 1.501E+01 1.975E-01

Exponential model 1.000E+04 2.813E-03 1.250E-01 1.502E+01 1.696E+00

Crisfield model 1.000E+04 1.125E-02 1.250E-01 1.500E+01 -

ks (N/mm3) GoII (N/mm) GcII (N/mm) tso (N/mm3) α1, β1

Allix-Ladevèze model 1.000E+04 1.125E-02 5.000E-01 3.002E+01 2.000E+00

Exponential model 1.000E+04 1.125E-02 5.000E-01 3.004E+01 2.000E+00

Crisfield model 1.000E+04 4.500E-02 5.000E-01 3.000E+01 2.000E+00

Table 2: MMF test. Material data.
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Figure 8: MMF test. Computed load-deflection curves.

The load-deflection curves, computed by using the FE mesh given in Figure 7, are
shown in figure 8. It can be observed that the three solution are in fairly good agreement.

This substantially confirms what is found for the DCB test, i.e. that for a relatively
flexible specimen use of a sufficiently fine mesh and of an adequate time increment size
gives results that are quite insensitive with respect to the detail of the different traction-
separation laws.
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3.4 Mixed-mode thick specimen test (MMT)

The fourth problem analyzed is that of a thick specimen under mixed-mode loading,
see Figure 9, for which the material data set is the same as in the previous example.

Figure 9: MMT test. Model problem.

Figure 10: MMT test. FE mesh.
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Loading is simulated via a point load applied to the upper arm of the sample; stress
transfer to the lower arm then takes place through normal (mode I) and sliding (mode II)
tractions along the interface.

The load-deflection curves shown in Figure 11 have been obtained using the FE mesh
sketched in Figure 10, consisting of 78×16 continuum elements and 70 interface elements.
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Figure 11: MMT test. Computed load-deflection curves.

As for the compact specimen examined in the second example, a small though appre-
ciable difference is obtained in the computed response for the three models; in particular,
the Allix-Ladevèze and exponential models exhibit a slightly stiffer response.

This can again be attributed to the fact that the stiffness of the sample is high enough
to put forward the differences between the three interface models, and in particular the
differences in the location of the local peak stress, which is indeed attained for a lower
value of the relative-displacement for the bi-linear model with respect to the other ones.
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4 CLOSURE

It has been presented a comparison between two cohesive-zone models for the analysis
of debonding problems.

The first one, developed by Valoroso and Champaney, relies upon a formulation that
allows to recover several earlier interface models, and in this work has been implemented
with both polynomial and exponential damage laws; the second model studied, origi-
nally developed by Crisfield and co-workers and later modified by Alfano and Crisfield,
specialises to bi-linear interface relationships for pure-mode cases.

In order to compare the different models, the interface parameters have been chosen
in a way to have the same pure-mode undamaged stiffnesses, fracture energy and peak
stress for all of them; furthermore, for the mixed-mode case use has been made of two
generalized ellipse-like criteria determining damage onset and decohesion propagation.

Numerical simulations have been carried out for several examples referring to both
single-mode and mixed-mode situations.

The presented results show that for certain problems the shape of the traction-separation
law does produce appreciable differences in the computed global response; in particular,
the differences between the load-deflection curves obtained for the three models considered
become more evident by increasing the stiffness of the specimen.

Future work will concern a more deep comparison also in terms of stress and strain
fields predicted in the vicinity of the process zone, traction profiles along the interface and
computational cost of the different models with reference to both 2D and 3D problems.
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