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Abstract

Equations modeling the shape of the Eiffel Tower are investigated. One model, based on equilibrium of moments,
gives the wrong tower curvature. A second model, based on constancy of vertical axial stress, does provide a
fair approximation to the tower’s skyline profile of twenty-nine contiguous panels. However, neither model can
be traced back to Eiffel’s writings. Reported here is a new model embodying Eiffel’s concern for wind loads on
the tower, as documented in his communication to the French Civil Engineering Society on March 30, 1885. The
result is a nonlinear, integro-differential equation solved to yield an exponential profile. An analysis of actual
panel coordinates reveals a profile closely approximated by two piecewise continuous exponentials with different
growth rates. This is explained by specific safety factors for wind loading that Eiffel & Company incorporated in
the design of the free-standing tower. To cite this article: P. Weidman, I. Pinelis, C. R. Mecanique 831 (2003).

Résumé

Equations modeling the shape of the Eiffel Tower are investigated. One model, based on equilibrium of moments,
gives the wrong tower curvature. A second model, based on constancy of vertical axial stress, does provide a
fair approximation to the tower’s skyline profile of twenty-nine contiguous panels. However, neither model can
be traced back to Eiffel’s writings. Reported here is a new model embodying Eiffel’s concern for wind loads on
the tower, as documented in his communication to the French Civil Engineering Society on March 30, 1885. The
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1. Introduction

It is well known that the Eiffel Tower was not designed according to a mathematical formula. It was
designed using graphical methods to construct a tower of sufficient strength to support its immense weight
and empirical results garnered from past experience to account for wind loading. This notwithstanding,
the Eiffel Tower is thought by many to be of exponential form.

The present investigation into model equations for the shape of the Eiffel Tower commenced in Novem-
ber 2001 when the lead author received a complimentary copy of the second edition of Advanced Engi-
neering Mathematics [1]. On its cover are photographs of various stages of construction of the Eiffel Tower
and the fronticepiece presents a nonlinear integral equation for the tower shape, advertised as the “Eiffel
Tower Equation” on a website [2] run by Christophe and Geraldine Chouard. The equation had not been
solved in closed form, and the Chouards offered a challenge to find the solution “written as a combination
of usual functions” and report it to them. Though we found one solution, it does not conform to the
shape of the Eiffel Tower. Following our failure to find any solution of the “Eiffel Tower Equation” having
proper tower curvature, we questioned whether the assumptions on which the equation was formulated
could be attributed to Eiffel, as claimed. Our expanded study lead to another popular model, but neither
of the two models could be traced to the writings of Eiffel. Eventually, after translating some of Gustave
Eiffel’s orginal documents, we learned the basis for tower construction and developed a new equation for
the skyline profile, one that embraces Eiffel’s deep concern for the effects of wind loading on the tower.

This article documents our discovery with an historical perspective. Circumstances leading to the
proposition of erecting a 300 m tower for the 1889 Exposition in Paris is given in Section 2 along with
pertinent facts about the tower. In Section 3 two existing model equations, one linear and the other
nonlinear, are reviewed and analyzed. In Section 4 an integro-differential equation is derived based on a
communication by Eiffel to the French Society of Civil Engineers on March 30, 1885. The only relevant
solution is exponential, justifying the lore promulgated by both lay and scientific persons. The work in
the Abstract and Sections 1-4 is due to P. D. Weidman while the theorem in the Appendix is due to I.
Pinelis.

2. Prelude and Facts

In a notice published in the government’s Journal Officiel of May 2, 1886, French architects and
engineers were invited to bid on plans to construct semi-permanent buildings for the 1889 exposition and,
in particular, to consider “the possibility of erecting on the Champ de Mars an iron tower with a base of
125 meters square and 300 meters high,” this height being the nearest round metric equivalent to 1000
feet. Ultimately, Gustave Eiffel’s proposal for a tower of wrought iron weighing approximately 7000 tons,
costing $1.6 million, was selected and the contract was signed on January 18, 1887. Eiffel & Company had
already conceived and advertised the idea of constructing a 300 meter tower beginning with an original
conceptual drawing by the company’s engineers Emile Nouguier and Maurice Koechlin in 1884 shown in
Fig. 1a; for comparison beside the tower are sketches of the Notre Dame, the Statue of Liberty, the Arc de
Triomphe, three columns the height of the column in Place Vendome, and a six-story apartment building.
The shape and structure underwent numerous modifications by Gustave Eiffel and architect Stephane
Sauvestre toward the final design shown in Fig. 1b. In particular, the 40 panels exhibited in Fig. 1a were
pared down to the 29 panels seen in Fig. 1b. The construction lasting two years, two months and five
days was completed on March 31, 1889 — only a month before the May 5 opening of the Exposition.

Email addresses: weidmanQcolorado.edu (Patrick Weidman), ipinelis@mtu.edu (Iosif Pinelis).
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Figure 1. (a) Pylon 300 meters high for the city of Paris, 1889, a preliminary concept by Mssrs. E. Nouguier and M. Koechlin,
June 6, 1884 and (b) final design of the 300 meter tower sketched by G. Eiffel given as an attachment to the contract signed
on January 18, 1887. Taken from Heinle [3].

An engraving by Deroy [4] published in 1889 juxtaposes the 300 m tower with thirty-four other high
towers in existence at the time. The dominance of the Eiffel Tower over all structures including its nearest
rival, the all masonry 169 m Washington Monument, is remarkable. Apart from the viewing platforms,
Eiffel’s study at the top, the summit dome and various antennae for civil and national communication,
the skyline profile is determined by the location of four sets of 29 panels symmetrically placed on each
side of the tower. The panels are numbered from bottom to top, with heights, inclinations, and profile
coordinates given in Table 1.

Table 1. Panel heights, inclinations, and profile coordinates derived therefrom.

Panel Angle

29 90° 00’ 00"
28 87°12'31”
27 87°12' 31"
26 87°12' 31"
25 87°12'31”
24 87°12' 31"
23 87°12' 31"
22 87°12' 31"
21 87°12' 31"
20 87°12'31”
19 87°12'31”
18 86°51’ 24"
17 85°41' 18"
16  85°41’ 18"
15 84° 35 02"

h (m)

11.280
5.833
6.165
6.517
6.888
7.280
7.695
8.133
8.596
9.086
9.603
10.000
10.000
10.500
10.500

z (m)

0.000
11.280
17.113
23.278
29.795
36.683
43.963
51.658
59.791
68.387
77.473
87.076
97.076

107.076
117.576

w (m)

5.000
5.000
5.284
5.585
5.903
6.239
6.594
6.969
7.365
7.784
8.227
8.696
9.245
9.999
10.790

Panel

OHNWHR U N ®E

Angle

84° 06’ 24"
82° 25’ 29"
82° 25" 29"
77° 07’ 52"
77° 07’ 52
76° 54’ 10"
75° 48’ 33"
74° 30" 10"
72°19' 36"
68° 21/ 27"
65° 48’ 48"
65° 48’ 48"
65° 48’ 48"
65° 48’ 48"

h (m)

10.600
10.700
11.300

4.900
10.000
10.200
11.000
11.000
11.000

7.000
11.000
11.000
11.000
11.000

z (m)

128.076
138.676
149.376
160.676
165.576
175.576
185.776
196.776
207.776
218.776
225.776
236.776
247.776
258.776
269.776

w (m)

11.786
12.880
14.303
15.806
16.925
19.210
21.583
24.365
27.415
30.919
33.697
38.637
43.578
48.519
53.459



In this study,  in Table 1 is taken as the downward coordinate from the top of the 29** panel and w
is the local tower half width. Note there are five sections of the tower having two or more consecutive
panels of equal inclination, so that the entire polygon contains only fourteen sections differently inclined.
The legs of the free-standing tower are supported from below by four huge caissons and the tower is held
in place by four ceintures, or structural belts, at various heights. The first ceinture is the large restaurant
and viewing platform at 91 m above ground; the second is the mid-level viewing platform at 149 m; the
third is an intermediate platform at 228 m, and the fourth is the top viewing platform at 309 m.

3. Existing Mathematical Models

Clearly, any mathematical equation for the tower profile will necessarily be some approximation to its
true convex polygon shape. However, that does not prevent interested persons from seeking an analytical
model that might elucidate some basic physics of tower construction. Although the exterior profile is
relatively smooth and elegant, the internal tower structure consists of a three-level hierarchy of iron
girders, trusses and struts which many Parisians during the time of construction considered to be tres
tres gauche. The first approximation for any simple model is to assume that the tower is composed of
material of uniform density p. Lakes [6] has calculated this material would have a density p = 1.2x 103 pq,
where po is the density of iron. We estimate this to be about one-tenth the density of the lightest balsa
wood.

3.1. A Website Equation

Logging onto the Chouard’s website one finds the opening sentence [2]:

“Gustave Eiffel was proud of his good-looking Tower whose shape resulted from mathematical calcula-
tion, as he said. ‘At any height on the Tower, the moment of the weight of the higher part of the Tower,
up to the top, is equal to the moment of the strongest wind on this same part.” Writing the differential
equation of this equilibrium allows us to find the ‘harmonious equation’ that describes the shape of the
Tower.”

This is followed by a presentation of the nonlinear integral equation

af (2) / “Pydi=a2 / " ftydt / " if(t)dt W)

0

where f(z) is the tower half width, z the distance from the top, and a is a constant.
The derivation of Eq. (1) follows readily from the website sketch reproduced here in Fig. 2.

lt

dt |y

f(x) A
Figure 2. Schematic of gravitational and wind forces on the Eiffel Tower according to Chouard [2].

Fig. 2a shows the downward coordinate x to tower level A, the tower half width f(z), the weight P of
the tower above level A, and downward coordinate ¢ to a horizontal section of thickness dt. The tower is
assumed to be constructed of material of uniform specific weight k. The element of horizontal section in
Fig. 2b has weight dP(t) = 4k f2(t)dt and is acted upon by a horizontal wind force dV (t) = 2 K f(t)dt
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where K is a constant. Thus element contributions to the moment about point A are dP(t)f(x) counter-
clockwise and dV (t) (x — t) clockwise. Equating the resultant of these two moments for that part of the
tower above point A yields

@) /0 "k (Hdt = /0 9K f(t)(x — t)dt. @)

Definining a = 2k/K gives Eq. (1). Note the tacit assumption that the wind results in a uniform pressure
over the face of the tower, which therefore produces a force proportional to the area of that face projected
on a vertical plane.

We now seek solutions that yield the tower profile. Substituting power law solution Az® into Eq. (1)
shows that it may be satisfied for proper choice of A and «, the result being

J@) =\ 52 ©

This solution cannot describe the Eiffel Tower profile for the simple fact that it gives a concave shape,
while the tower is convex.

Since Eq. (1) is nonlinear, other solutions may exist. We explore this possibility by analyzing the differ-
ential analog of the integral equation. Since the constant a may be removed by an affine transformation,
we set a = 1 without loss of generality. Next, define the volume variable

T
vo) = [ P @
0
and insert into Eq. (1) twice differentiated to obtain
2yylylll _ yyll2 + 8y12yll — 4yl 2‘ (5)

A series of transformations are used to try to identify a special solution. Indeed,

v =y"?¢?P (), z=lny; ¢ =0(9);
reduces (5) to the nonlinear first-order equation for v(g), namely

13 _ 45
A (6)
The goal to see if a Bernoulli, Ricatti or other special nonlinear equation might appear was unsuccessful, so
we suspect there is no closed form solution of (6), other than that given by Eq. (3) which has the incorrect
curvature. An analysis given in the Appendix shows that no solution y(x) of the differential equation (5)
corresponds to a profile function f(z) which possesses the monotonicity and curvature properties of the
actual profile of the tower.
An extensive investigation by the lead author, many details of which will be provided in Section 4, has
failed to uncover any claim that Eiffel designed his tower based on an equilibrium of moments.

9
o' + 20 =39

3.2. A Popular Model

A model often cited to explain the shape of the Eiffel Tower is predicated on a uniform compressive
stress at every tower elevation. The derivation below follows the notation of Banks [7] wherein y is the
vertical coordinate from ground level, z the tower half width, A(y) the cross-sectional area of the tower,
o(y) the vertical compressive stress, p the uniform material density, and g is gravity. Wind loading is not
a component of this model. A balance of vertical forces in the free-body diagram for a horizontal section
dy of the tower yields

pgA = —%(M) )



as the condition for vertical equilibrium. At this juncture Banks [7] states: “For reasons of safety, it is
necessary to keep the compressive stress, o, a constant.”
Then, writing (7) as

dA
20A=—— 8
pa=- )
where 8 = pg/20, and integrating, one obtains the vertical distribution of cross-sectional area
A= Age . 9)
Since A = (2z)2, the tower profile is
z=mzge PY (10)

where xg = \/Ap/2 is the tower half-width at ground level.

Thus the tower is infinitely high and spraddles out exponentially from the top down. In contrast to
the result in Section 3.1, this solution exhibits proper tower curvature. A least-squares fit of exponential
form Ae? to the tower coordinates listed in Table 1 is provided in Fig. 3, with the values of A, v, and
the coefficient of determination R? given in Table 2 of §4.1. A generalization of this analysis is given by

0 50 100 150 200 250 300
z (m)

Figure 3. Least-squares exponential fit to the tower coordinates given in Table 1.

Puig-Adam [8] who considered the same problem with a weight placed on top of the tower; in this case
the uniform compressive stress is maintained for an exponential profile that has finite width at the top
where the weight is supported.

Although this solution gives a reasonable approximation to the tower shape, we are unable to find any
documentation showing that Eiffel & Company designed the tower to have a height-independent axial
compressive stress, with or without a fixed weight at the summit.

4. A New Model Equation

In his autobiography, Eiffel states the problems of wind resistance had been encountered for a long
time in the construction of large-scale metal structures [9]:

“In the design of these, through lack of sufficient knowledge of the complex forces exerted by the wind,
their builders were reduced to including in their calculations safety coeflicients which had no scientific
basis.”

At that time none of the great problems concerning wind loads on a tall structure were understood [10]:
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“Does the pressure increase or decrease with surface area? What is the pressure on oblique planes?
Where is the center of pressure and how is it displaced?”

Further concern for the effects of wind loading is found in an interview with the French newspaper Le
Temps on February 14, 1887 in which Eiffel was quoted as saying [11]:

“What is the main obstacle I had to overcome in designing the tower? Its resistance to wind. And I
submit that the curves of its four piers as produced by our calculations, rising from an enormous base
and narrowing toward the top, will give a great impression of strength and beauty.”

So what guided Eiffel & Company in the design of the free-standing tower? How much reliance was
given to their past experience in the fabrication of viaduct supports for constructing a 300 meter tower?
Was there some underlying physics that gave rise to the tower profile? Answers to these questions come
to light in the mémoire Eiffel communicated to the French Society of Civil Engineers on March 30, 1885
under the title [12]: Projet d’une Tour en Fer de 300 Metres de Hauteur Destinée o L’Exposition de 1889.

For three decades Eiffel & Company designed numerous bridges throughout greater Europe, in the
French colonies, and elsewhere. In spite of their lightweight appearance, they were known to withstand
large loads and experiments were performed to advertise their structural integrity. In an experiment
carried out by Baron Saladin on his estate at Bossancourt, a four ton single-axle cart crossed over his
bridge in the presence of the regional representative of the Highways Department when it was established
that the maximum bridge deflection was 18 mm [13].

Germane to our discussion is the fact that all pier supports for viaducts and bridges constructed by
Eiffel & Company had three elements in common: (i) the sides of the supports were for the most part
straight from foundation to the top; (ii) each face was composed of horizontal stiffeners for rigidity and
diagonal trellis bars to resist wind load forces; and (iii) the top was affixed to a horizontal bridge or
viaduct. Now for the second time, the first being the complex inner structure of the Statue of Liberty,
Eiffel & Company was faced with the construction of a free-standing tower which, because of its severe
height, would have to withstand unknown wind forces.

After introductory remarks and an acknowledment of his collaborators Nouguier, Koechlin and Sauvestre,
Eiffel states in §1 of his communication [14]:

“If, on the contrary, we are dealing with a very high pier such as our tower, where there is no longer
any horizontal wind stress on the deck at the top, but only wind stress on the pier itself, things are
different, and it is enough, in order to eliminate the use of the trellis members, to give the uprights a
curve such that the tangents to the uprights, brought to points located at the same height, always meet
at the crossing point of the resultant of the stress exerted by the wind on the section of the pier above
the points being discussed.”

This is sufficient, along with Eiffel’s assumption that the effect of the wind may be estimated as a
uniform pressure acting on the tower, to formulate a mathematical equation for the tower profile. But
what was the motivation for such a statement? The answer appears in §3 where Eiffel writes [15]:

“I arrive now at the conditions of resistance: ...

Let us suppose, for a moment, that now we have laid out on the faces of a simple truss forming a
resisting wall, the shearing forces of the wind, the horizontal components of which are:

Pl, P”, P”I7 Pi’v_

One knows that in order to calculate the forces acting on the three pieces cut by the plane M N, we
need to determine the resultant P of all exterior forces acting above the section, and to decompose this
resultant into three forces passing through the cut pieces.

If the shape of the system is such that, for each horizontal cut M N, the two extended truss frames
intersect on the exterior force P, the forces in the lattice bar will be zero and we will be able to exclude
this member.”



Figure 4. Original sketch (a) of a simple truss form by Eiffel [16]; our annotated sketch (b) of the free-body diagram showing
the resultant forces P1, P» and P3 acting along the structural elements cut by section M N.

Eiffel offered no equations to confirm that the force in the cut trellis bar in Fig. 4a is zero, probably
because it was self-evident to the civil engineers attending the presentation. Reference to the free-body
diagram in Figure 4b readily confirms the accuracy of his statement. Forces on the structure above section
M N are resolved into the resultant horizontal wind force P acting through the apex formed by the upward
extension (dashed lines) of opposing uprights, forces P; and P3 acting through those members, and the
force P, acting along the lattice bar. The condition for rotational equilibrium is that the sum of the
moments about any fixed point must vanish. Since P, P; and P; all pass through the apex, the moment
about that point has a contribution only from P,, which therefore must be zero. Thus Eiffel discovered a
method of construction which could withstand wind loads without the aid of lattice bars. This form has
the twofold benefit of reducing the tower weight and offering less surface area to the wind. Eiffel was very
proud of this fact for in §3 he continues [16]:

“It is the application of this principle which constitutes one of the particularities of our system, and
that we believe interesting to signal to the attention of the Society.

One arrives in this manner that the direction of each of the elements of the sides will result in a curve
following that traced on the sketch (figure 1, plate 91), and in reality the exterior curve of the tower
reproduces, at a determined scale, the same curve of the moments produced by the wind.”

The statement that the tower’s profile conforms to the moment distribution wrought by the wind was
given without justification; we will return to this point shortly. For now, however, the mathematical model
is determined with the aid of Fig. 5.

For a smooth skyline profile, the resultant wind force P in Fig. 5 would act at the centroid T of the
covered surface above the tangency points C' projected on the vertical plane normal to a horizontal wind.
In one model (see §4.1), Eiffel assumed a uniform wind would impart a uniform stress loading on the face
exposed to the wind. We retain the notation of Section 3.1 that f(z) is the tower half-width and z is the
downward coordinate from the uppermost panel of half width f(zg) = 5 m. The centroid of the tower
rising above section C-C' is given by

“tf(t)dt
T = 7fzg @ . (11)
[ f(t)at
Eiffel’s statement that tangents at C' intersect at T yields the equation
f(@) = f'(z)(z - 7) (12)

for the right tangent line in Fig. 5.



Figure 5. Schematic of the coordinates f(x) used for the Eiffel Tower profile showing the initial coordinate zo and the
centroid of projected surface area T for that part of the tower above section C-C.

Combining (11) and (12) furnishes the nonlinear integro-differential equation
xz xz
f@ [ =@ [ @-os@a (13)
zo zo
which may be considered the continuous model for the skyline profile of the Eiffel Tower that embodies
Eiffel’s concern for wind resistance. To obtain the differential analog of (13) we introduce the area variable

) = [ " ft)de (14)

and differentiate (13) to obtain

fa' @) = 1"@) |su(a) - [ eroa). (15)
Zo
Elimination of the common integral appearing in (13) and (15) furnishes the nonlinear differential equation

1,11

yy"' =y'y" (16)
Dividing both sides by yy"”, assuming for the moment 3" is everywhere nonzero, and integrating yields
the second-order linear equation

y'£9°y =0 17)
for positive constant +.

For 72 = 0 the solution y = Az + B yields f(x) = A; this constant-width solution does not satisfy the
original integral equation (13) and is therefore discounted. The trigonometric solution for the positive
sign in (17) leads to f(z) = Asint where ¢ = ax + ¢; inserting this result into (13) reveals that the only
solution is the trivial solution f(z) = 0. Finally, for the positive sign in (17) one obtains the tower shape
f(z) = Ae™ + Be 7%; in this case it is readily shown that the only solution of (13) is the one for which
B =0 and 2y = — oo. Thus the only solution satisfying the nonlinear integral differential equation, based
on an analysis of its differential analogue, is

fz) = Ae™™. (18)

The solution is consistent with the assumption y" is nonzero for all finite values of z. Note that solution
(10) is identical to (18), but whereas the former models a tower with constant axial stress due to its
weight, the latter has nothing whatsoever to do with the tower weight.
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Of course the tower defined by the panels is not infinitely tall; as shown in Table 2, the panels terminate
at £ = 0 where the tower is 10 m wide. The top panel is not the true summit, however, although it
does support the fourth ceinture that serves as the uppermost viewing platform. A major justification for
building the iron structure was that its high elevation would provide an ideal location for a meteorological
laboratory to record wind speed and direction, air temperature and humidity, and rainfall accumulation.
In fact, the original design included provision for a comfortable room, centrally positioned on the top
platform, in which Eiffel could carry out his scientific observations.

We now turn our attention to Eiffel’s statement that the tower would take the same shape, within a
“determined scale” as the moment distribution wrought by the wind. For Eiffel’s assumed uniform wind
stress denoted here as pg, the wind moment at location z is given by

M(z) = /w@:—t)pm(t)dt

. 2p: [x / far- e [ ] +f (/ ey dt]

=2po/z:/;f(£)d£dt

where integration by parts has been used. Thus any tower shape f(t) that reproduces itself in two
integrations is a candidate for Eiffel’s claim. Indeed, for the exponential profile given in Eq. (18) valid for
To = —00, one finds

M(z) = (%) Aer® (19)

showing that the scale relating the wind moment distribution to the tower shape is exactly 2po/7>.
4.1. Analysis of the Tower Shape

We have seen in Fig. 3 that an exponential fit to the tower’s skyline profile is not especially good. The
origin of this discrepancy lies in the liberal safety factors built into the lower part of the tower. Eiffel &
Company were well aware that the wind load on a viaduct proper was much larger than on its supporting
piers and, by analogy, the dense metalwork of the expansive first and second level observation decks would
present a large resistance to the wind. The solution to this problem is found near the end of §3 of the
mémoire where Eiffel writes [17]:

“As for the intensity, we have admitted two hypotheses: the first supposes that the wind over the whole
height of the tower results in a constant force of 300 kilograms per meter squared; the other is that this
intensity grows from the base, where it is 200 kilograms, to the summit, where it attains 400 kilograms.

As for the exposed surfaces, we have not hesitated, in spite of its apparent exaggeration, to admit the
hypothesis that, on the upper half of the tower, the entire trellis structure was replaced by plain walls;
that on the intermediate part, where the voids take on more importance, each original face was taken to
be four times the surface of real iron; below (the first stage gallery and parts above the arcs), we have
taken the exterior surface as uniform walls; finally, at the base of the tower, we have taken the uprights
as uniform surfaces hit two times by the wind.

These hypotheses are more favorable compared to those that are generally adopted for viaducts.”

Clearly, the lower tower section was handled with special care, since it supports the largest wind load
moments. Concern for wind loads on the upper tower section was taken into account by assuming the
surface to be uniformly covered, thereby taking the full force of the wind. This being the condition for our
continuous model, solution (18) should provide the correct upper half tower profile for fitted values of A
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and ~. The caveat, of course, is that panels 19-28 are all precisely slanted to the same 87° 12’ 31”. Eiffel &
Company seems to have balanced simplicity of construction with aesthetics: there is little discernable loss
of beauty, in the eyes of a beholder at ground level, in viewing a section of ten uniform, steeply-inclined
panels near the top.

50+ (a) 4
10} ,
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z (m) = (m)

Figure 6. Composite (a) linear-log and (b) linear-linear fits to the Tower coordinates.

An analysis of the linear-log plot of panel coordinates in Fig. 6a reveals two exponentials. The solid
lines are fits of the form (18) to overlapping lower (panels 1-13) and upper (panels 12-29) tower sections;
the values A, ~y, and coefficients of determination R? are given in Table 2.

Table 2. Constants A, exponents v and coefficients of determination R? for least-squares exponential
fits of the form (18) to the entire tower and overlapping portions of the upper and lower halves.
Figure No. Tower Section A ¥ R?
Fig. 3 entire (panels 1-29) 4.2547 0.00892 0.9932

Fig. 6  upper (panels 1-13) 4.7439  0.00721  0.9978
Fig. 6  lower (panels 12-29)  2.6958  0.01117  0.9996

The fitted curves intersect at x = 142.7 m, near the mid-point of panel 13 just above the second
observation deck. This is very close to the position z = 140.4 m shown in figure 1 on Plate 91 of Eiffel’s
mémoire where the tower surface area first becomes exaggerated for reasons of safety.

In spite of the straight section composed of ten contiguous panels, the upper half of the tower is
approximately exponential in agreement with our model. The appearance of a second exponential for the
lower half of the tower, however, must be considered fortuitous. The agreement between fitted shapes and
the actual tower coordinates plotted on a linear scale in Fig. 6b is remarkably good. We therefore cannot
refrain from making the following observation: While events of the French Revolution are captured by
Charles Dickens in his poignant novel A Tale of Two Clties, the centennial of the French Revolution is
commemorated by Eiffel’s graceful tower, the skyline profile of which is A Tail of Two Ezponentials.

In conclusion, our study reveals that the tower design was not predicated on an equilibrium of moments
nor the constancy of axial stress. It evolved out of Eiffel’s respect for wind loading which could be reduced
through a structural design eliminating the trellis bars previously used on straight-sided piers supporting
large viaducts. Indeed, Eiffel infers that his design is a product of Nature when in §10 of his meémoire
he sates [18]: “Before they meet at such an impressive height, the uprights appear to spring out of the
ground, molded in a way by the action of the wind itself.”
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Appendix: A proof concerning the curvature of f(x)

Assume that zg € [—00,00), f(z) > 0 and y(z) = fzzo f(u)?du < oo for all z > z¢, and y satisfies the
differential equation (equivalent to (5))

11

y-(2'y" —y"") =4y (1 - 2") (A1)
on the interval (zg, 00).

Theorem 1. Suppose that the half-width f(x) of the tower monotonically increases from the top to the
bottom, that is, when x increases from xo to co. Then f" < 0 on (xg,00), so that the function f is

everywhere concave, which is the shape opposite to the actual shape of the tower.

Proof. Note that y > 0 and ¢’ = f2 > 0 on (z9, 00). Also, y' = f2 implies f = (y')'/2, and so,

4" = W) 'y "), (A2)
Comparing equations (A.1) and (A.2), we see for any z € (zg, 00) that f"'(z) < 0if and only if y"(z) > 1/2,
and f"(z) =0 if and only if y"(z) = 1/2.

We claim that, if f”(c) < 0 for some ¢ € (zg, ), then f” < 0 on [c, 00). Indeed, by the just mentioned
relation between the signs of f" and y" —1/2, if f"(c) < 0 for some ¢ € (zg, c0) then y"(c) > 1/2, and
then it suffices to check that y"” > 1/2 on [¢, 00). But otherwise there would exist some z € [¢,00) such
that y"(z) < 1/2, whence

a:=inf{z € [¢,0): y"(z) <1/2} < .

Moreover, then a > ¢, y" > 1/2 on [¢,a) and, by continuity, y”(a) = 1/2, so that y"(z) — y"(a) > 0 for all
x € [c,a). Also, the equality y"”(a) = 1/2 and the conditions y"(¢) > 1/2 and a > ¢ imply a > c. Hence,

y"'(a) — lim y"(z) —y"(a) <0.

zta r—a
It follows that
2/(@)y"(a) ~y"(0)’ < —y"(a)" = ~1/4 <0,

whence, by (A.1), one has 1 — 2y"(a) < 0, which contradicts the condition y"”(a) = 1/2. Thus, the claim
is true.

Let now

co = inf{c € (zg,0): f"(c) < 0}.
Then, by the above claim, f” < 0 on (¢g,00). Moreover, f” > 0 on (zg, co).

Assume that Theorem 1 does not hold. Then ¢y > g, for otherwise one would have " < 0 on (zg, 00).
It follows by (A.1) and (A.2) that on (g, co) one has y” < 1/2 and also 2y'y" > y"> > 0, whence "' > 0,
so that y" is nondecreasing. Note also that y” = 2ff’ > 0. Thus, there exists

B :=y"(z0+) € [0,1/2].
Moreover, it follows that 8 = 1/2 if and only if y"” = 1/2 (and hence y" = 0) in a right neighborhood
(r.n.) of zo; but this would contradict equation (A.1). Hence, 8 € [0,1/2).

Take now any 81 € (8,1/2) and let v := 1 — 234, so that v > 0. Then, in a r.n. of xg, one has y" < fy,
whence 1 — 2y” >~ and, by (A.1),

2 2
1o o2 yl n yl
2y'y" =y +4—(1—2y)247-7,

<

yl
y" > 2y Y 2y - (Iny)’,

00 >y" —f>2y-(Iny —In(0+)) = oo,
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which is a contradiction (here we used the fact that y(zo+) = 0).
This concludes the proof of Theorem 1.
Thus, we have proved that Eq. (1) cannot model the true shape of the Eiffel Tower.
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