
This document is updated at http://imechanica.org/node/10179   Z. Suo 

April 28, 2011 Poroelasticity, or diffusion in elastic solids - 1   

  Elastomer in equilibrium with forces and solvent 

 A long polymer consists of many monomers.  The monomers are 

covalently bonded, and two bonded monomers may rotate relative to each other.  

Consequently, the polymer may be modeled as a chain of many links, each link 

representing a monomer.  At a finite temperature, the polymer rapidly changes 

from one configuration to another.   

 A large number of long, flexible polymers can be crosslinked by covalent 

bonds to form a three-dimensional network.  Subject to forces, the network 

undergoes large elastic deformation.  The network is commonly called an 

elastomer. 

 Now immerse the network in an aqueous environment, such as pure 

liquid water, a moist gas, and aqueous solutions.  If the polymers of the network 

are hydrophilic, the network may imbibe a large quantity of water, and swell 

greatly.  The network and water molecules form an aggregate known as a 

hydrogel.   

 The time-dependent process of water migrating in the network is 

considered in notes on poroelasticity (http://imechanica.org/node/987).  We 

now focus on the conditions of equilibrium of the network, the forces, and the 

aqueous environment.   

 Condition of equilibrium.  Consider a block of an elastomer.  In the 

reference state, the block is a dry network, of dimensions 1L , 2L  and 3L .  In the 

current state, the block is a swollen gel, subject to forces 1P , 2P  and 3P , 

submerged in an aqueous solution.  We arrange the experiment such that, of all 
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molecular species, only water molecules will exchange between the gel and the 

aqueous solution.  Let the chemical potential of water in the aqueous solution be 

 .  See notes on chemical potential (http://imechanica.org/node/911).  By 

convention, the chemical potential of water in pure liquid water is set to be zero.  

In the current state, the block absorbs M number of water molecules, and 

dimensions of the block become 1l , 2l  and 3l .    

 When the block changes the dimensions by small amounts 1l , 2l  and 3l , 

the potential energy of the forces reduces by 332211 lPlPlP   ; we also say that 

the forces do work 332211 lPlPlP   .  When the number of water molecules in 

the block increases by M , the Helmholtz free energy of the surrounding 

aqueous solution reduces by M ; we also say that the chemical potential of 

water in the surrounding aqueous solution does work M .  That is, the applied 

forces are work-conjugate to the displacements, and the chemical potential of 

water in the surrounding aqueous solution is work-conjugate to the number of 

water molecules.   

 Swelling is a highly entropic process.  The Helmholtz free energy of the 

block in the current state is denoted as F.  We will consider isothermal process, 

and will not discuss temperature.  At a constant temperature, when the hydrogel 

equilibrates with the applied forces and the surrounding aqueous solution, the 

change in the Helmholtz free energy of the block equals the sum of the work done 

by the applied forces and the work done by the chemical potential of water: 

  MlPlPlPF   332211 . 

The dimensions of the block, 1l , 2l  and 3l , can vary independently from the 

number of water molecules in the hydrogel, M.  The above condition of 

equilibrium holds for arbitrary and independent small variations of the four 

independent quantities: 1l , 2l , 3l  and M. 

 This condition of equilibrium can also be interpreted in a different way.  

The gel, the forces and the surrounding solution together can be viewed as a 

composite system.  The composite is held at a fixed temperature, and receives no 

work or matter from the rest of the world.  The Helmholtz free energy of the 

composite is the sum of the Helmholtz free energy of the gel, the potential energy 

of the forces, and the Helmholtz free energy of the surrounding solution.  The 

parameters 1l , 2l , 3l  and M are internal variables of the composite system.  The 

condition for the composite to equilibrate is that variation of the Helmholtz free 

energy of the composite vanishes for arbitrary and independent variations of the 

internal variables. 

http://imechanica.org/node/911
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 We can experimentally measure forces acting on the gel, 1P , 2P  and 3P , 

the chemical potential of water in the surrounding solution,  ,  the increments 

of the dimensions, 1l , 2l  and 3l , and the increment of the number of water 

molecules in the gel, M .  The above condition of equilibrium enables us to 

determine incrementally the Helmholtz free energy of the gel, F.  

 

 Homogeneous field.  Assume that, in the current state, the distribution 

of water in the gel and the deformation of the network is homogeneous. Define 

the nominal density of the Helmholtz free energy by  321 LLLFW  , the 

nominal concentration of water by 321 LLLMC  , the stretches by 111 Ll , 

222 Ll  and 333 Ll , and the true stresses by  3211 / llP ,  3122 / llP  and 

 2133 / llP .   

 Dividing both sides of the condition of equilibrium by the volume of the 

dry elastomer, 321 LLL , we obtain that 

  CW   321323121321 . 

This condition of equilibrium holds for arbitrary and independent variations 1 , 

2  , 3 , and C . 

 As a material model, the nominal density of the free energy is taken to be 

a function of the four independent variables: 

   CWW ,,, 321  . 

According to the differential calculus, associated with the small changes, 1 , 2 , 

3  and C , the free energy varies by 
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 A comparison of the two expressions for W  gives that 
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When the gel equilibrates with the external solution and the applied forces, the 

above equation holds for arbitrary and independent variations 1 , 2 , 3  and 

C .  Consequently, the coefficient in front of each of the four variations must 

vanish, leading to four independent equations: 

  
 

132

321

1

,,,











CW
, 



This document is updated at http://imechanica.org/node/10179   Z. Suo 

April 28, 2011 Poroelasticity, or diffusion in elastic solids - 4   

  
 

231

321

2

,,,











CW
, 

  
 

321

321

3

,,,











CW
, 

  
 

C

CW






,,, 321 
 .   

When the function  CW ,,, 321   is specified for a hydrogel, the above equations 

constitute the equations of state.  The four equations of state relate eight 

variables:  ,,,,,,, 321321 C . 

 

 Nominal stresses.  Instead of the true stresses, we can also use the 

nominal stresses.  Define the nominal stresses by  3211 / LLPs  ,  3122 / LLPs   

and  2133 / LLPs  .   

 Dividing both sides of the condition of equilibrium by the volume of the 

dry elastomer, 321 LLL , we obtain that 

  CsssW   332211 . 

This condition of equilibrium holds for arbitrary and independent variations 1 , 

2  , 3 , and C . 
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 Additive volumes (molecular incompressibility).  In the above, we 

have assumed that 1l , 2l , 3l  and M vary independently.  In practice, however, the 

four quantities are connected by the following considerations.  Upon imbibing 

water, the network swells.  The two processes—imbibing and swelling—are 

connected.  The volume of the block in the current state 321 lll , to a good 

approximation, equals the sum of the volume of the dry network 321 LLL  and the 
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volume of the absorbed water vM , where v is the volume per water molecule. 

Write 

  vMLLLlll  321321 , 

where v is the volume per water molecule.   

 This approximation is commonly adopted in analyzing the swelling 

process of gels.  The approximation generalizes the condition of 

incompressibility of elastomers, and is called molecular incompressibility (Hong, 

Zhao, Zhou and Suo, J. Mech. Phys. Solids 56, 1779, 2008).  The approximation 

may be justified by the following considerations.   

 The network consists of long and flexible polymer chains, which interact 

among themselves and with water molecules by weak intermolecular forces.  

When water molecules enter the block, the polymer chains stretch and move 

apart to accommodate the water molecules.  When water molecules migrate out 

the gel, the polymer chains coil back and move together, leaving no voids behind.  

In this regard, a gel differs from a sponge.  When water leaves a sponge, pores in 

the sponge remain open and are filled by air.   

 The forces applied to the hydrogel are typically small, and do not 

appreciably change the volumes of individual polymer chains or water molecules. 

 When two species of molecules mix, the volume of the mixture usually 

differs from the sum of the volumes of the two pure components.  This change in 

volume, however, is typically small compared to the change in volume during 

swelling.   

 Dividing both sides of the above equation by the volume of the dry 

elastomer, 321 LLL , we obtain that  

  vC 1321  . 

This expression places a constraint among the four variables:  1 , 2 , 3  and C.  

We regard 1 , 2  and 3  as independent variables.  In terms of the stretches, the 

variation of the concentration is 
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 Equations of state consistent with molecular incompressibility.  

Inserting this expression into the condition of equilibrium, we obtain that 
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This condition of equilibrium holds for arbitrary and independent variations 1 , 

2  and 3 . 



This document is updated at http://imechanica.org/node/10179   Z. Suo 

April 28, 2011 Poroelasticity, or diffusion in elastic solids - 6   

 As a material model, the nominal density of the free energy is taken to be 

a function of four independent variables: 

   321 ,, WW  .   

Due to the constraint vC 1321  , the concentration of water is excluded from 

the list of the independent variables.  According to the differential calculus, when 

the block deforms by small amounts, 1 , 2  and 3 , the free energy varies by 
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 A comparison of the two expressions for W  gives that  
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When the hydrogel equilibrates with the surrounding aqueous solution and the 

applied forces, this equation holds for arbitrary and independent variations 1 , 

2  and 3 .  Consequently, the coefficient in front of each of the three variations 

must vanish, leading to three independent equations: 
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These equations, along with vC 1321  , constitute the equations of state.  

The four equations of state relate eight variables:  ,,,,,,, 321321 C .    

 The equations of state describe the mechanochemical interaction of the 

hydrogels. In particular, the term v/  has the dimension of stress, and is known 

as the pore pressure in poroelasticity, and as the water potential in plant 

physiology.  The effect of v/  is readily understood by considering a block of a 

hydrogel confined in a rigid and porous box.  The box constrains the hydrogel to 

fixed dimensions, but the box is permeable to water.  When the chemical 

potential of water in the surrounding aqueous solution is increased, to keep the 

dimensions of the gel fixed, the gel develops an additional pressure.   

 

 Superposing models of elasticity and models of solutions.  We 

now discuss a particular way to specify the nominal density of the Helmholtz free 



This document is updated at http://imechanica.org/node/10179   Z. Suo 

April 28, 2011 Poroelasticity, or diffusion in elastic solids - 7   

energy as a function of stretches,  321 ,, W .  When the polymers are not 

crosslinked, individual polymeric molecules may dissolve in water.  A large 

number of models of polymer-solvent solutions exist.  When the polymers are 

crosslinked, the network acquires entropic elasticity.  A large number of models 

of elasticity exist. 

 In many gels, the density of the crosslinks is very low.  For example, each 

polymer chain may consist of over a thousand monomers.  Consequently, to the 

first approximation, we may neglect the effect of the crosslinks on solution, and 

simply write the free energy of the gel as the sum:   

  mixstretch WWW  ,  

where stretchW  is the free energy due to the stretching of the network, and mixW  is 

the free energy due to the mixing of the polymers and the solvent. 

 

 Flory-Rehner model.  The best known model of this kind is due to 

Flory and Rehner (J. Chem. Phys. 11, 521-526, 1943).  In this model, the free 

energy due to the stretching of the network of polymers is taken to be 
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where N is the number of polymer chains in the gel divided by the volume of the 

dry polymers, and kT  is the temperature in the unit of energy.  

 When the long polymers are not cross-linked, the long polymers and the 

small molecules form a liquid solution.  The free energy of mixing is taken to be 

(Flory, 1942; Huggins, 1941)  
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The first term in the bracket comes from the entropy of mixing, and the second 

from the energy of mixing, where   is a dimensionless parameter.  The energy of 

mixing motivates the small molecules to enter the gel if 0 , but motivates the 

small molecules to leave the gel if 0 . 

 Using the nominal density of free energy of the Flory-Rehner model, we 

obtain that    
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Expressions for the other two components of stress can be obtained by 

permutation.  Within the Flory-Rehner model, each term in the above equation 

has a clear molecular interpretation.  We have already discussed the last term. 
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The term scaling with NkT comes from stretching the network. The term scaling 

with kT/v comes from mixing the network and the solvent.  The entropy of 

mixing motivates water to migrate into the network.  The energy of mixing either 

motivates water to migrate wither into or out of the network, depending on the 

sign of  . 

 The volume of a water molecule is 329 m1 03 v . At room temperature, 

211 04 kT J and 81 03.1/ vkT Pa .  The Flory-Rehner free-energy function 

introduces two dimensionless material parameters:  Nv  and  .  In the absence 

of solvent molecules, the dry network have a shear modulus NkT under the 

small-strain conditions, with the representative values 74 1 0~1 0NkT  2N/m , 

which gives the range 14 1 0~1 0 Nv .  The parameter   is a dimensionless 

measure of the enthalpy of mixing, with representative values   = 0 ~ 1.2.  For 

applications that prefer gels with large swelling ratios, materials with low  

values are used. 

 

 Exercise.  Derive the above expression for stress. 
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 Free swelling.  The following two sections are taken from Hong, Liu 

and Suo (Int. J. Solids and Structure 46, 3282, 2009).  A cubic block of a gel is 

immersed in an aqueous solution.  The chemical potential of water in the 
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solution is 0 .  Relative to the dry network, the network in this state swells with 

isotropic stretches: 321   .  We denote this free-swelling stretch by 0 .  

Setting stress to be zero, we obtain that 
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This equation relates the free-swelling stretch to the chemical potential of water.  

In plotting the figure, we will the values 31 0Nv  and 1.0 . 

 

 Constrained swelling.  A layer of a gel is fabricated on a rigid substrate, 

with stress-free pre-swelling of isotropic stretch 5.10  .  Subsequently, the gel is 

brought into contact with a solvent with chemical potential  .  The gel swells 

further to a stretch   in the direction normal to the layer, and develops a state of 

equal-biaxial stress s .  The stress normal to the layer vanishes, so that 
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where the two in-plane stretches are constrained by rigid substrate to be the 

initial value 0 , but the out-of-plane stretch   can vary with the chemical 

potential.   
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 A spherical gel with a rigid core.  This section is taken from X.H. 

Zhao, W. Hong, Z.G. Suo, Inhomogeneous and anisotropic equilibrium state of a 

swollen hydrogel containing a hard core. Applied Physics Letters 92, 051904 

(2008). 

 Consider a core-shell structure.  A water-free and stress-free polymeric 

network is taken as the reference state, where the network is a hollow spherical 

shell, with inner radius A and outer radius B.  This reference state, however, is 

usually not the state in which the structure is prepared.  Here we assume that the 

structure is prepared by first coating a hard core, radius 0A , with a shell of a 

solution with a certain fraction of water, and then cross-linking the polymers in 

the solution.  The structure is then immersed in a solvent to imbibe more water.  

After some time, water molecules in the gel equilibrate those in the external 

solvent, and the gel swell to an inhomogeneous and anisotropic state.  This 

behavior is readily understood as follows.  The core is taken to be rigid and 

bonded to the network, so that near the interface the network cannot further 

stretch in the circumferential directions, and is constrained to swell only in the 

radial direction.  Away from the interface, the network can stretch in all three 

directions, but by different amounts.  The inhomogeneity in deformation 

corresponds to an inhomogeneous distribution of water in the gel:  the 

concentration of water is expected to be low near the interface, and increases in 

the gel away from the interface.  
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 This state of inhomogeneous and anisotropic deformation can be 

determined by solving and a boundary value problem.  Imagine an element of the 

network is labeled by the radius R in the reference state, and moves to a place of 

the radius r in the equilibrium state.  The deformed gel is taken to retain the 

spherical symmetry, so that the state of deformation is fully specified by the 

function  Rr .    
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 Markers on a spherical surface of radius R in the reference state move to a 

spherical surface of radius r in the equilibrium state.  Consequently, the stretch 

in each of the circumferential directions is 

  
R

r
  

Two nearby markers in the same radius direction, of positions R and dRR in 

the reference state, move to positions  Rr  and  dRRr   in the equilibrium 

state.  The distance between the two markers is dR  in the reference state, and is 

    drRrdRRr   in the equilibrium state, so that the stretch in the radial 

direction is 

  
dR

dr
r    

An element of the network, of unit volume in the reference state, swells to volume 

r
2  in the equilibrium state.  Both the polymers and water molecules are taken 

to be incompressible.  Consequently, the change in volume of the gel is due to 

imbibing water molecules:  

  12  rvC  , 

where v is the volume per solvent molecule, and C  is the concentration of water 

in the gel (i.e., the number of water molecules in an element of the gel in the 

equilibrium state divided by the volume of the element in the reference state). 

 Due to constraint, the gel develops a field of stress in the equilibrium 

state.  Let s  be the nominal stress in each of the circumferential directions, and 

rs  be the nominal stress in the radial direction.  The stresses are functions of the 

position R.  Mechanical equilibrium requires that  

  02 



R

ss

dR

ds rr  .  

Denote the chemical potential of water in the environment by  , which is held 

constant as the gel imbibes water.  When water molecules in the environment 

equilibrates with those in the gel, the chemical potential of water in the gel is also 

 .  Both the chemical potential and the stretches cause stresses in the gel 

    rg
kT

vN
kT

vs



 

 







 1 , 

    21




 







  g

kT
vN

kT

vs
rr

r , 

where N is the number of polymeric chains in the gel divided by the volume of 

the dry polymers, kT  is the temperature in the unit of energy, and 
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1
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vC
g


,  

with   being a dimensionless measure of the enthalpy of mixing. 

 In the numerical results, we set 31 0vN , 

2.0 , 2/ AB , and 07 7.10  .  As show in 

the figure, the concentration of water in the gel 

(i.e., the ratio of the volume of water to that of 

the dry network, vC ) increases from ~12 at the 

interface to ~28 at the outer surface.  The 

concentration of water near the outer surface is 

close to that in a free-swelling gel, a level that is 

marked as the dashed line.  Evidently the effect 

of the constraint on the gel is localized within a 

radius only slightly larger than the radius of the 

core.  Near the interface, the stretch   is 

constrained by the core and does not change 

during swelling, but r  increases substantially.  

Near the outer surface, both stretches approach 

that of a free-swelling gel.  Near the interface, s  

is compressive, but rs  is tensile.  Both stresses 

diminish near the outer surface.  The tensile 

radial stress may cause the gel to debond from 

the core. 

 

 Exercise.  Formulate a similar problem of cylindrical symmetry.  This 

problem has been considered as a model for swellable packers for oilfield 

management.  See Cai, Lou, Ganguly, Robisson, Suo, J. Appl. Phys. 107, 103535 

(2010). 

 

 Inhomogeneous deformation of a gel in equilibrium with 

external forces and solution.  The above example illustrates inhomogeneous 

deformation in the gel.  Now we consider a general formulation of 

inhomogeneous deformation.  A network imbibes water from a field of pumps.  

To attain a state of equilibrium, the chemical potential of water in all the pumps 

must be equal, and is denoted by  .  We also hang a field of weights on the 

network.  After some time, the network is saturated with water, in equilibrium 

with the pumps and the weights.  In this state of equilibrium, the deformation of 
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the network can be inhomogeneous.  We formulate a theory to determine the 

field of inhomogeneous deformation.       

 Kinematics of the network.  We take any state of the network as a 

reference state, and name a material particle in the network using its coordinates 

X in the reference state.  In the current state at time t, the material particle X is 

at a place with coordinate x.  The function  Xx  describes the deformation of the 

network.   

 For inhomogeneous deformation in three dimensions, the stretch is 

generalized to the deformation gradient 

     

K

i
iK

X

x
F






X
X . 

 Conservation of the number of water molecules.  Consider a block of the 

network around X, of volume  XdV .  Let     XX dVC  be the number of water 

molecules in block when the gel is in the current state.  That is,   XC  is the 

nominal concentration of water in the gel in the current state.   

 Associated with a small change in the concentration,  XC , the pumps 

inject into the gel the following number of water molecules: 

    CdV .   

 Free energy of the gel.  Let W  be the nominal density of free energy of 

the gel, namely, the free energy in a block in the current state divided by the 

volume of the block in the reference state.  Thus, the free energy of the gel is 

   WdV . 

 As a material model, we assume that the nominal density of the free 

energy is a function of the deformation gradient and the concentration,  

   CWW ,F .   

To ensure that the free energy is unchanged when the body undergoes a rigid-

body rotation, we requires that W depends on F through the Green deformation 

tensor iLiK FF . 

 Associated with any virtual changes, iKF  and C , the nominal density of 

free energy changes by 

  
   

C
C

CW
F

F

CW
W iK

iK












,, FF
. 

 Work done by a field of weights.  Consider a block of the network around 

X, of volume  XdV .  Let  XdA  be the area of an element of the surface of the 

gel, and  XKN  be the unit vector normal to the element.  We hang weights on to 
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the network.  Let    XXB dVt,  be the force due to the weights on a material 

element of volume, and    XXT dAt,  be the force due to the weights on a 

material element of interface.  Associated with a deformation of the network, 

 Xx , the weights do work 

    dAxTdVxB iiii  . 

The free energy of the weights reduces by this amount. 

 Work done by a field of pumps.  Associated with a small change in the 

concentration,  XC , the field of pumps do work 

   CdV . 

 The gel in equilibrium with the weights and the pumps.  When the gel 

equilibrates with the weights and the pumps, the change in the free energy in the 

gel equals the sum of the work done by the weights and the pumps, namely, 

      CdVdAxTdVxBWdV iiii  . 

 Inserting the expression for W  into the above, and applying the 

divergence theorem, we obtain that 

 0
















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
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













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
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







 CdV

C

W
dVxB

F

W

X
dAxTN

F

W
ii

iKK

iiK

iK

 . 

In equilibrium, this equation holds for arbitrary small changes in the 

deformation and the concentration.  Thus, we obtain the equilibrium conditions: 

  
 
C

CW






,F
  

in the volume,  

  0

















i

iKK

B
F

W

X
 

in the volume, and 

  iK

iK

TN
F

W





, 

on the surface.  These equations express momentum balance in every current 

state in terms of the nominal fields, and is well known in continuum mechanics. 

 

 Exercise.  Write the free energy in the Flory-Rehner model as a function 

 CW ,F . 

 

 Chemical potential as an independent variable.  Because the 
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chemical potential of water in the pumps is prescribed, it will be convenient to 

regard   as an independent variable.  Take the Lagendre transformation: 

  CWW ˆ , 

In equilibrium, the new free energy is a function of the deformation gradient and 

chemical potential, namely, 

   ,ˆˆ FWW  . 

The differential form of the function is 

   CFsW iKiK ˆ , 

so that 

  
 

iK

iK
F

W
s






,ˆ F
,   

  
 









,ˆ FW
C . 

 

 Summary of equations.  Let us summarize the basic equations 

suitable for solving boundary-value problems.  The deformation gradient is 

defined as 

  
 

K

i
iK

X

x
F






X
. 

The thermodynamic model of the gel is prescribed by the function 

   ,ˆˆ FWW  . 

The stress relates to the partial derivative 

  
 

iK

iK
F

W
s






,ˆ F
. 

The conditions for mechanical equilibrium become   

  0



i

K

iK B
X

s
 

in the volume, and 

  iKiK TNs   

on the surface.   

 In equilibrium, the chemical potential of water in the gel is uniform, and 

equals the chemical potential of water in the external solution.  The stress in the 

gel, however, is usually nonuniform.  The above equations specify a boundary-

value problem that determines  Xix .  This boundary-value problem of the gel 

looks identical to that of an elastic body. 
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 Once the deformation field  Xix  is determined, the concentration field is 

determined by 

  
 









,ˆ FW
C . 

     

 Additive volumes (molecular incompressibility).  Under most 

types of load, the polymers and the water molecules can undergo large 

configurational change without appreciable volumetric change.  Following a 

common practice, we assume that the individual polymers and the individual 

water molecules are incompressible.  Furthermore, the gel is a condensed matter 

with negligible void space, so that we express the condition of molecular 

incompressibility as 

   Fdet1 vC , 

where v  is the volume per water molecule, and vC  is the volume of the water 

molecules in the gel divided by the volume of the dry network. 

 

 Exercise.  Write the free energy in the Flory-Rehner model as a function 

 ,ˆ FW .  Assume molecular incompressibility. 

 

 Exercise.  Continue the above exercise, and express stresses in terms of 

the deformation gradient and the chemical potential of water.  First use the 

nominal stress, and then use the true stress. 

 

 Finite element method to study large inhomogeneous 

deformation in gels.  Let us summarize the basic equations in a way suitable 

for finite element analysis.  The deformation gradient is defined as 

  
 

K

i
iK

X

x
F






X
. 

 The thermodynamic model of the gel is prescribed by the function 

   CWW ,F . 

Introduce a new function: 

  CWW ˆ . 

The new function is regarded as  ,ˆ FW . 

 Recall the condition of equilibrium:   

     CdVdAxTdVxBWdV iiii  . 
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In terms of the function Ŵ , the condition of equilibrium becomes that the 

following equation  

    dAxTdVxBdVW iiii  ˆ  

holds for arbitrary small change ix . 

 A finite element method has been implemented in ABAQUS by Hong, Liu 

and Suo (Int. J. Solids and Structure 46, 3282, 2009).  The computer code is 

posted online, http://imechanica.org/node/3163. 

   

 Opportunities to study gels in equilibrium.  Despite a large number 

of commentaries in the literature to this day, the above theory has remained 

unchanged since the time of Gibbs (1878).  Given that the theory has been 

implemented within ABAQUS, the opportunities are of two kinds: 

 Construct material models by writing out the function  CW ,F  for a given 

gel, usually through a combination of experiments and microscopic 

modeling. 

 Apply the theory to important phenomena, by formulating and solving 

boundary-value problems. 

 Extend the theory to include variations other than the deformation of the 

network and the distribution of the solvent.  As example, see the theory of 

polyelectrolyte gels (http://imechanica.org/node/1690).  

   

 Appendix:  Is osmotic pressure a valid idea for gels?  Osmotic 
pressure is a measurable quantity in a liquid solution, but is not a measurable 
quantity in a gel.  Whether osmotic pressure is a valid idea for a gel depends how 
different the gel is from a liquid solution.  Here we outline the basic 
considerations. 
 In the above expression for stress, the term due to mixing is sometimes 
called osmotic pressure or swelling pressure.  Consider a special case where the 
gel is in contact with pure water and swells freely, namely, 0  and 

0321   .  In this case, the osmotic pressure is balanced by the tension due 

the stretching of the network. 
 In a liquid solution, osmosis occurs when is the solution is separated from 
a pure solvent by a semi-permeable membrane, which lets the solvent to go 
through, but not the solute.  Consequently, the solvent molecules from the pure 
solvent permeate through the membrane and go into the solution and dilute the 
solution.  The process will stop when a pressure builds up in the solution to 
counteract the driving force for dilution.   
 In a gel, polymers are crosslinked.  Consequently, even without a semi-
permeable membrane, the polymers cannot leave the gel, but the solvent can 
enter the gel.  That is, the crosslinks serve the function of semi-permeable 

http://imechanica.org/node/3163
http://imechanica.org/node/1690
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membrane.   
 While the notion of osmosis is intuitive for gels, the separation of the 
stress into a term due to elasticity and a term due to osmosis may cause 
confusion.  The separation is meaningful to idealized models that superpose the 
free energy of stretching the network and the free energy of mixing the network 
and the solvent.  Such separation, however, is impossible in more general models.   
 Experimentally, when the polymers are crosslinked, one can measure the 
chemical potential of water and the applied forces, but cannot measure anything 

like osmotic pressure.  For example, in the special case 0  and 0321   , 

we can measure how much the gel swells, but no experiment will tell us what 
osmotic pressure is.   
 When the polymers are not crosslinked, however, the polymers and the 

solvent molecules form a liquid solution, and we can measure osmotic pressure 

in the liquid solution separated from a pure solvent by a semi-permeable 

membrane.  Subsequently, if one assumes that crosslinks do not affect osmosis, 

but simply imparts elasticity to the network, one can superpose osmosis of the 

liquid solution and elasticity of the network, just as done in the Flory-Rehner 

model.  


