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IN-PLANE VIBRATIONS OF ANNULAR RINGS 
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The in-plane vibrations of thin disks and narrow thin rings which already have been 
completely analysed are the two extremes of the annulus configuration. The general case 
of the annulus has now been analysed and the results confirmed by experiment. 

The modes of disks are characterized by two integers giving the number of nodal circles 
-including a possible central nodal point-and the number of nodal diameters. In the 
absence of nodal diameters two series of pure radial and pure tangential modes are possible. 
These have the characteristics of plate and shear waves respectively. Compound modes 
which have both radial and tangential components of displacement have been found to 
fall into four modal series. 

There are six series of narrow ring counterparts of these disk resonances, every disk 
mode moving to a particular ring mode as the hole is developed in the centre. Flexural modes 
approach zero frequency, the extensional series have finite frequencies and there is one 
series of compound shear modes and one of compound plate modes both of which approach 
infinite frequency as do the two pure modes. The eigenvalues, in the form of a dimensionless 
frequency constant, have been evaluated for steps of hole size from the disk case to that 
of an indefinitely narrow ring and for a wide range of values of Poisson’s ratio. The theoretic- 
al results have been supported by measurements of the spectra of a range of annuli and by 
exploring the pattern of vibrations with a probe pick-up. 

A feature of the change from disk to thin ring is the disappearance of one or more nodal 
circles in certain cases. Typically all modes with one nodal circle and two or more nodal 
diameters lose the nodal circle to become the finite frequency extensional ring series. 
Compound modes having 2,4, . . . circles as disks have 1,2, . . . circles as shear ring modes 
andthe3,5,. . . series become 1,2, . . . plate ring modes. This creates the apparent paradox 
that the inner free boundary of an annulus can be a node. In fact the force at the edge 
arising from a radial strain is balanced by the hoop stress arising from a tangential strain. 

The parallel between the modes of resonance of thin rings and infinite tubes is drawn. 

1. INTRODUCTION 

The vibrations of solid bodies have been solved for only a few simple geometries and modes. 
In the cases where a single wave equation is involved straightforward algebraic solutions for 
the resonant frequencies were obtained in the nineteenth century. Typically, for thin narrow 
annular rings Hoppe [l] in 1871 established the frequency spectrum of flexural vibrations in 
which flexural waves travel round the ring and later, in 1889, Rayleigh [2] found the finite 
frequency spectrum involving extensional (rod) waves. In the case of thin disks the in-plane 
vibrations are compounded of radial and torsional waves and each problem, separately, can 
be readily solved. When these two types of vibration occur together the simultaneous solution 
of both wave equations is necessary and the results, which in the decoupled state are reason- 
ably simple functions of plate and shear velocities, respectively, now have an additional 
dependence on Poisson’s ratio which varies from mode to mode. In 1966 Holland [31, making 
extensive use of digital computation, obtained accurate numerical solutions for a compre- 
hensive range of compound modes, and Poisson’s ratio values ranging from @25 to O-50, 
covering the commoner engineering materials. 
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In parallel with this development the study of the propagation of waves in infinite cylindri- 
cal rods, initiated by Pochammer and Chree, was proceeding. Where in the case of the disk 
the thin condition simplifies the vibrations because of the direct relationship between radial 
and thickness strain, in the case of the cylinder the infinite condition simplifies the axial 
movement to plane strain propagation. In both cases only the boundary conditions at the 
cylindrical surface are necessary. Where the equations for disks involve shear and plate 
waves in cylinders the corresponding waves are those of shear and bulk. 

A study of the work of Holland indicated that the general case of a thin annular ring, an 
important engineering component introducing a second boundary condition, while increasing 
the number of equations from four to sixteen, would yield a usefully large number of solutions 
at reasonable cost in computer time. To include the graphites and ceramics as well as the 
glasses, metals and alloys, the mode frequencies were calculated for Poisson’s ratio ranging 
from 0 to O-5 in steps of 0.01. 

These results identify the disk counterparts of the ring modes and vice versa. Typically the 
finite frequency extensional ring mode series must go to a disk series of which the pure radial 
mode is the first but the counterparts of the higher modes are not self-evident. The results 
also provide practically useful data on the effect of a small hole in a disk or on a finite width 
ring, hitherto only available as approximations. 

TABLE 1 
Classification of disk modes 

m I 2 3 4 
” Circular nodes 

0 l,T 2,f 3.T 4,T 
Pure towon 

Table 1 shows a classification of disk modes defined by (m, n) where m is the number of 
nodal circles-a centre nodal point being included-and n is the number of nodal diameters. 
There are two series with no nodal diameters, the tangential modes where the first (1, T) 
has one nodal circle and the movement is purely rotational, and the radial modes where the 
first (1, R) has a node at the centre and the movement is purely radial. Thus (1, T) and (2, R) 
are equivalents, there being no tangential equivalent to (1, R). 

Resonant frequencies are expressed as a dimensionless scaling constant K where 

K = o x (a dimension)/(a velocity). (1) 

This follows Rayleigh’s Principle of Similitude, as a scale increase by a factor will decrease 
the frequency by the same factor. In thin rings and disks the frequency is independent of 
thickness and consequently the radius is normally taken as the dimension. In the case of 
annular rings, by taking the width as the dimension the modes which move to infinite narrow 
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TABLE 2 
Characteristics of disk resonances 

Mode series Typical nodal patterns Remarks Source of frequency term 

Pure torsional Drive 

(II 

The dynamic balance con- Solution of equation 
disk z 

I’&\ dition requires at least KJoW/JI Wd = 2, 
I \ 
: \ one nodal circle. The where K, = ma/C,. For- 
\ : centre is always an anti- ma1 solution by Love 
‘\.__/’ node. This series consists 

Mode (1.T) 
of(l,T);(2,T);(3,T);... 

Pure radial 
disk 

Compound 
disk 

Mode (2.R) 

The dynamic balance con- Solution of equation 
dition does not require a ~JoKNJI W = I- 6, 
nodal circle. The centre is where KP = ma/C,,. 
always a node. This Normally attributed to 
series consists of (1, R); S. E. Poisson. Formal 
(2, R); (3, R); 1 . . . solution by Love 

This series consists of (1, 1) Solution of equation (16) 
and higher order modes where KS = ma/C,, KP = 

ma/C,,, K,= ma/Co. M. 
Onoe and R. Holland 

- 
Mode (3.2) 

TABLE 3 
Characteristics of narrow ring resonances 

Mode series Typical nodal pattern Remarks Source of frequency term 

Extensional 

0 

T 1 

Mode S=2 

Flexural 

0 
Mode n=2 

Compound 

This is the tinite frequency K. = (S2 + 1)r12, K,, = 
series. The energy is ma/Co, S=O, 1, 2, , . . . 
mainly in hoop strain Lord Rayleigh 

The frequencies approach K = Z_ I - 4 
zero. The energy is flex- O 
ural and the ring length 

I13WX 

is unchanged 
n(n’ - 1) 

x (n2 + 1)1,29 ko = WG, 

n=2,3,.... 
R. Hoppe 

The frequencies approach K(1 - I$) +pz, K = oa/CS, 
infinity as plate or shear or K=wa/C,,,p = 1, 2, 
waves. The disk counter- 3 , . . . . This paper 
parts are S(3,2) P(4,2) 

Modep= I 
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ring frequency approach a constant K value. Similarly for the modes which move to zero 
frequency the simplest presentation of results is obtained by taking (mean radius)‘/width. 
The theoretical results usually appear in terms of plate or shear velocities. By choosing an 
appropriate velocity the K value can be made independent of Poisson’s ratio for a particular 
series of modes as the thin ring condition is approached. Rod, plate and shear velocities are 
appropriate for extensional, radial and tangential modes respectively. 

Tables 2 and 3 summarize the main features of disk and narrow ring modes and include 
the frequency equations. Where the motion is predominantly radial, a radial drive is used and 
tangential vibrations require an angled drive, The drive point normally becomes an antinode 
for the drive direction. Nodal lines refer to radial or tangential movements. In general a 
node for one component of motion is an antinode for its orthogonal counterpart. The phase 
of the various regions is indicated by arrows or polarity signs. 

2. THEORETICAL ANALYSIS 

In the analysis of a resonant system, differential equations for the various wave motions 
are first established in the appropriate co-ordinates, cylindrical in this case. A general solution 
of these wave equations must then be found. The boundary conditions for the system, in this 
case that the radial and tangential stresses must vanish at the inner and outer perimeters, 
are then used to obtain the specific solution. This will consist of simultaneous algebraic 
equations containing amplitude constants and the eigenvalue (K) giving the frequency in 
terms of the dimensions of the resonator and a wave velocity. There will be an infinite number 
of numerical solutions, each corresponding to a mode of vibration. If required, the amplitude 
constants can also be evaluated to obtain the eigenfunction of the mode expressing the 
components of stress or strain throughout the resonator. Aspects of the form of the function, 
in the disk case the numbers of nodal circles and diameters, m and n, are used to classify the 
modes. 

The wave equations are conveniently derived by Love [4], the strains being rotational, W, 
and dilatational, A, which are related to the tangential and radial displacements tB and r,, 
respectively, by (a list of symbols is given in the Appendix) 

20 = %#r + (1 /r) (5s + X,/8), (2) 

A = %,/ar + (l/r) (4, + at,/ao). (3) 

The wave equations are, for shear and plate waves, 

VZZ = (1/c:)a2ojat2, (4) 

v2 A = (1 /c;) a2 A/a?. (5) 

It is worthy of note here that the infinite shell wave equations have the same forms as 
equations (4) and (5) with the dilatational velocity replacing that of the plate. The Laplace 
expressions involve additional longitudinal terms associated with wave propagation. These 
are omitted for the cut-off frequency (no propagation) analysis. In this case the frequency 
equation is a 4 x 4 determinant similar to equation (12). Armenakas, Gazis and Herrmann 
[5] have given numerical solutions (restricted to a single value of Poisson’s ratio) and these 
are used below in comparing resonances of the two geometrical forms. 

The algebraic solutions of the wave equations are given by 

A = [A, J, (hr) + A, Y. (hr)] cos nc9 cos cut, (6) 

0 = [A, J, (kr) + A, Y, (kr)] sin n0 cos 02, (7) 
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where h = w/C,,, k = o/C, and Al, AZ, A, and A, are the amplitude constants. 
These equations can be rewritten to give expressions for. & and L : 

ASi J.(hr)+TJ”(kr)+ A, $Y.(hr)+ $ Y, (kr) 1 cos n0 sin or, W 
58 = qJ.(hr)+A 6iJn(8r)+!$Yn(hr)+As G Y, (kr) sin n9 sin ot, 1 (9) 

where A5, A6, A, and A8 are also amplitude constants. The two boundary conditions for the 
annulus are 

radial stress resultant = platemodulus[$+~(5r+$)], (10) 

tangential stress resultant = shear modulus [z-f(L-Z)]. (11) 

Modes of vibration can consist of purely torsional or purely radial vibrations in which cases 
the displacements are independent of 8 and n = 0, or compound modes in which both com- 
ponents are present and are dependent on 0, IZ being one or more. In the case of pure radial 
modes equation (8) is zero, the A6 and A8 terms of equation (8) are zero and the boundary 
condition given by equation (10) has no &, term. The torsional case involves equations (8) 
and (9) in a similar way. The frequency equations obtained for these two special cases, as for 
the annular ring, are the 2 x 2 determinants considered below. The general case is the com- 
pound mode for which the frequency equation is a 4 x 4 determinant and the computer pro- 
gram solving it numerically has been used for all calculations. Equation (12) gives the deter- 
minant and the expressions for its terms: 

a11 al2 al3 aI4 

I 

a21 a2, az3 a24 

f(K)= asI as2 as3 as4 =O’ (12) 

where 

a41 a42 a43 a44 
I 

al, = -J,(K) [(I@)‘/2 - n(n + 1) + M,(K)], a,, = n J, (KO) [M, (KO) - (n + l)], 
a I3 = -Y,(K) [(KO)2/2 - n(n + 1) + N,(K)], al4 = n Y,, (KO) [N, (KO) - (n + l)], 

a21 = -J,(L) [(LO)‘/2 - n(n f 1) + M,(L)], a,, = n J, (LO) [M, (LO) - (n + l)], 
a 23 = -Yn@) KW2/2 - fi(n + 1) + N,, WI, a24 = n Y, (LO) [N, (LO) - (n + l)], 
a 31= -n J,(K) 1% WI - (n + l)l, a 32 = J, (I@) [(KG)‘/2 - n(n + 1) + M, (KO)], 
a 33 = -nYn WI IN, (K) - (n + 111, a34 = Y, (KO) [(KO)‘/2 - n(n + 1) + N, (KO)], 
a 41 =-nJn(L)[M,(L) - (n + 111, a 42 = J, (La) [@~@)~/2 - n(n + 1) + M, (Lo)], 
a 43=-nYnWNW-- (n + 1 )I, a44 = Y, (LO) [(LO)2/2 - n(n + 1) + N, (LO)]. 

K and L are expressed in terms of plate velocity and O2 = 2/(I - a). The various special 
solutions can, by making suitable approximations, be derived from equation (12). This is 
helpful in classifying the resonances. 
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Typically, if n = 0 the eigenfunctions are independent of angle and equation (12) degener- 
ates into the product of two 2 x 2 determinants: 

i(h)$ ;;jx~;~; ;I; I;o, (13) 

where 

61, = J, (K) [M, (K) - (1 - a)lt b,, = Y, (Q [N, WI - (1 - 41, 
&I = JI VI [MI VI - (1 - 41, b, = YI (0 [N, CL) - (1 - ~11, 
b,, = J1 (KO) [M, (KG) - 21, b,, = Y, (KO) [N, (KO) - 21, 

b,, = J, (LO) [M, (LO) - 21, b,, = Y, (LB) [N, (LO) - 21. 

The first determinant is for radial modes [6] and the other is for tangential modes [7]. 
All pure (other than (I, I?)) and certain compound mode frequencies go to very high values 

as the ring becomes narrow (4 + 1). By using the approximation that terms in K and L are 
large in comparison with all others, an equation which is the product of two 2 x 2 deter- 
minants, where the c terms are the approximation of the a equivalents, is obtained: 

Cl1 Cl3 c32 c34 

C21 c23 /I I 

X = 0, (14) 
c42 c44 

where 

Cl1 = J, WI, c13 = Y, WI, czl = J,!LL C23 = y,,(L) 

C 32 = Jn (K@), ~34 = Y, (KO), ~42 = J, (LO), ~44 = Y,(LO). 

One determinant is for shear waves and the other for plate waves. Using the trigonometric 
approximations valid for high argument values of Bessel functions gives 

sin K( 1 - fj) sin KO (1 - f$) = 0. (15) 

The elimination of n, the number of radial nodes, in the approximation means that the high 
frequency compound vibrations are effectively of pure plate or pure shear waves. This is 
understandable, as for large K values the nodal circles are much closer together than the 
nodal radii. It will be noticed that the disk mode counterparts of the resonances cannot be 
identified from equation (13) or (14) and must be traced by following the frequency through 
successive reductions in $, using equation (12). 

Holland’s disk equation [3] is obtained by equating 6, the hole radius, to zero. Equation 
(12) then simplifies to 

a11 a12 

= 0. (16) 
a31 a32 

Numerical solutions were obtained by evaluating equation (12) for fixed values of n, 4 
and 0 with successive steps of K. This method was used to identify and follow the frequency 
variation of various modes as 4 and d values were changed. The precise values shown in the 
various tables were obtained by interpolating between positive and negative values about the 
zero value off(K) by the Newton-Raphson method. As many hundred solutions were 
required, considerable effort was devoted to improving the calculation time. An average of 
about 5 second per solution was achieved with an ICL 1905E computer. Solutions were 
obtained for values of c from 0 to O-5 in steps of O-01. C$ values from 0 to O-9 in steps of 0.1 
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together with 4 = 0.99 were used. The latter value was used in specific cases to establish the 
narrow ring asymptotic frequencies. Selected values are given in the various tables. 

3. EXPERIMENT 

Measurements by Onoe [8] and Holland [3] were restricted to piezoceramic materials only. 
The authors have made use of a method [9] applicable to any material [IO]. Basically the reso- 
nant spectrum is obtained by driving the ring with a long thin wire fixed radially or at an angle 
to the periphery. A burst of longitudinal oscillations is transmitted up the wire, which must 
introduce sufficient delay to separate the signal returned from that transmitted. Under these 
conditions-the absence of standing waves-the wire presents a purely resistive load to the 
resonator which, while limiting the sharpness of resonance, has no effect on the resonant 
frequencies. The structure of the signal returned enables the resonant condition to be identified 
very precisely. The degree of coupling to a particular resonance depends on the direction of 
vibration at the point of drive, a radial drive giving good coupling when the radial component 
is large and an angled drive favouring shear modes. Where two frequencies are close together 
a double drive at different points can, by phasing, suppress one mode in favour of the other. 
The detailed vibration pattern across the face of a resonator was explored by a probe of fine 
wire used as a receiver. As a node is traversed the amplitude falls to zero and then rises with 
reverse phase. 

Six resonators, progressing in form from a disk to a narrow ring, were cat from steel and 
aluminium rods about 2 inches in diameter. By using the drive techniques described, all the 
low order resonances could be obtained and, by the use of the probe and extrapolation from 
known frequency constants, identified. The lower of the high frequency modes such as (2, 1) 
and (3,2) could be obtained for the disk and low C$ value rings but became increasingly difficult 
to excite and identify with increase in hole size. 

Selected resonances of the disks and annular rings for aluminium are shown in Table 4. 
By using the (1, R) and (1, 3) disk frequencies the plate velocity and Poisson’s ratio were 
calculated [lo]. The Kvalues of the modes are available in steps of 0.01 and the series nearest 
the value calculated-in this case 0*33-were used in the table. A value of plate velocity can 
be obtained from each frequency and the corresponding K value. The constancy of the values 
shows the agreement between experiment and theory. A variety of lines and drive configura- 
tions was needed to obtain the full spectrum, the frequencies ranging from less than 10 kHz 
to over 150 kHz. Departures from nominal velocity values are in most cases well under 1% 
and are attributed to the accumulated experimental errors arising from using different line 
drives, the tuning of the magnetostrictive launchers and ambient temperatures changes over 
the period of the experiments. 

TABLE 5 

Correspondence of disk and ring modes 

Torsion (shear) Radial (plate) 
Disk (I, T) (2, T) (3, T) . . * (2, R) (3, R) (4, R> . . . 
Ring p=l 2 3 p=l 2 3 

Flexural Finite frequency 
Disk (1,2)(1,3)(1,4)... (I, R) (I, I) (2,2) (2,3) . . . 
Ring n=2 3 4 S=O 1 2 3 

Compound shear 
Disk (2, I) (392) (393) . 9 . (4, I) (5,2) (5,3) . . * 
Ring p=l p=2 

Compound plate 
Disk (3, I) (492) (4, 3) . . . (5, 1) (6, 2) (6, 3) 
Ring p=l p=2 
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The experiments are considered to confirm the flexural and finite frequency modes over the 
whole range of hole size. In the case of other resonance series the agreement covered a 
sufficient range of hole size to give complete confidence in the theoretical results beyond the 
range of direct experiment. 

4. DISCUSSION OF RESULTS 
A complete picture summarized in Table 5 is now available of the ways in which disk and 

ring resonances constitute the limiting cases of annular ring resonances. 
The pure torsion and pure radial modes are solutions of wave equations (10) and (1 l), 

respectively, where the associated velocities are those of shear and plate waves. The frequency 
increases rapidly with hole size, the nodal circles are crowded together, and the energy arising 
from the curvature becomes less and less. As a result the edges of the ring become antinodes 
and the width of the ring, a(1 - +), an integral number of half wavelengths, the integer being 
the number of nodal circles. Putting a( 1 - 4) = pA/2 gives equation (17) expressing the phase 
velocity Cphase in terms of C, the velocity associated with the particular K term which is shear 
for torsion and plate for radial modes: 

C,,i,aselC = K(l - 4Ypn. (17) 

(1, T) and (2, R), each having one nodal circle, are the lowest modes of their respective series. 
Figures 1 and 2, giving Cphase/C, h s ow the ways in which the shear and plate velocities are 
approached as Q increases. 

r I I I I I 

I I I I I 
0.2 0.4 0.6 0.6 I.0 

9 
Figure 1. In pure torsional modes the wave velocity approaches that of shear waves for the narrow ring. 

This velocity has no dependence on 0 other than as a shear velocity. 

I I / I / I 
0.2 0.4 0.6 Ofl I.0 

+ 
Figure 2. The first two pure radial modes for steel (u = 0.3). p = 1 and 2 respectively. The velocity has a 

small dependence on u outside the plate velocity term. 
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It will be seen that in both cases C ,,,&C goes to unity for all modes, establishing that the 
waves travel with the velocities appropriate to the wave equations and are not dispersive. 
The curves are not of a particularly regular form and the plateau which occurs in Figure 1 
is a feature of similar perturbations in other modes. In the case of the velocity ratios, for 
torsional modes there is no dependence on Q but this is not true for radial waves (Figures 1 
and 2 and Table 6). 

The compound modes of disks which have nodal diameters but no nodal circles (1, n) are 
the direct counterpart of the flexural modes of rings. Figure 3 shows the progression for 
steel from the finite frequency disk resonances to those of the zero frequency thin ring. Table 
7 gives the K, values for the full range of G and 4. As the narrow ring region is approached 
the frequency becomes less dependent on Poisson’s ratio and the slope finally follows the 
Hoppe equation [ 1 I] of Table 3. 

0 0.2 0.4 0.6 0.8 I.0 

Figure 3. The flexural modes for steel (CT = 0.3), showing the approaches to zero frequency for 
These modes have no nodal circles. 

narrow rings. 

The finite frequency ring modes and their disk counterparts are of particular interest. It is 
reasonably evident that the (1, I?) disk mode becomes the S = 0 ring mode but the disk counter- 
parts of the higher S value modes are not self-evident. In early experiments using radial drive 
the transformations from S = 0 to (1, R) and S = 1 to (1, 1) were readily followed. Higher 
modes required drives with a tangential component. This extensional character of the strain 
results in large hoop stresses whereas in the distortion modes the stress is mainly flexural. 
The eigenfunctions of the ring [2] show S to be the ratio of tangential to radial displacement 
and in disks a similar feature appears. The experiments established that the S = 2, 3, . , ., S 
ring modes have the disk counterparts of (2,2), (2,3), . . ., (2, n). For disks there is one nodal 
circle, but as the hole size increases it remains in the same position. Consequently, as the 
inner boundary pierces the node the vibrational amplitude goes to zero, reverses in phase 
and the inner and outer boundary amplitudes finally become equal as the extensional ring 
condition is reached. The results for steel are shown in Figure 4 and the complete data in 
Table 8. With the exception of that for (1, R) the curves have similar undulations which are 
thought to arise from the nodal circle effect described above. The (1, R) disk frequency is 
greater than that of the (1, 1) mode and the curves cross at a low $I value as the frequencies 
move to the K0 = 1 and K,, = 1/2 ring values. The cross-over occurs for all values of 0, the 
positions being 4 = 0.372 and 0.143 for (T = 0.5 and 0.0, respectively. 
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I I I I I I 
0 0.2 0.4 0.6 0*8 I.0 

#J 

Figure 4. In the finite frequency modes the dependence of frequency on Poisson’s ratio falls to zero in the 
narrow ring condition, the values being in the ratios 1 : fi: ~6: m. The movement is purely radial for the 
first mode and becomes increasing tangential for higher modes. 

There remain those compound modes which, like pure torsional and plate modes, approach 
infinite frequency as 4 -+ 1, the asymptotic values being the solutions of equation (13). 
These solutions, where K refers to plate or shear waves and p is the number of nodal circles, 
are given by 

K(l - 4) = rrp. 

2.0 - 

I I I 1 I 

0.2 0.4 0.6 0.8 

9 

I.C 

Figure 5. The &(I - 4) values for the (3, 1) and (4, 2) plate modes and the (2, 1) and (3, 2) shear modes 
plotted as a function of (. The asymptotic values rue n and rrC’,/zC, establishing the compound shear and 
plate mode series. 
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TABLE 10 
Wave velocity ratios for compound shear and plate modes for a 

narrow ring (4 = 0.99) 

:; 

SI.O00003( I ) PO.999998( I ) S1.00000007(2) PI.000004 (2) S 

2 PO.999984 ( I ) 

PO.999970 ( I ) 

The way in which this limit is approached is shown for two plate modes-(3, 1) and (4,2)- 
and for two shear modes-(2,l) and (3,2)-in Figure 5. Values of K,, were obtained by solving 
equation (12) for (T = 0.25 for all four modes and K,( 1 - #J) is plotted against 4. For the two 
plate modes the asymptotic value is rc and for the shear modes rc/l*633. The ratio of C,/C, 
is l-633 for (T = 0.25 giving a KS( 1 - 4) value of rr. p, the number of nodal circles, is therefore 
unity for all four modes. The eigenvalues for these four modes are given in Table 9. 

Other modes were investigated for $ = 0.99 and r~ = O-25, and the results are summarized 
in Table 10, which gives the CDhase/C va ues of equation (17). The original disk modes are I 
identified by the (m, n) values. The lowest mode is the (2, 1) which heads the series (2, I), 
(3, 2), (3, 3), * . ., and higher series are (3, 1), (4, 2), (4, 3), . . ., and so on. The prefix letter 
gives the wave type and the suffix number thep value. Thus the (5,l) disk mode with four nodal 
circles becomes the p = 2 narrow plate mode, two circles having been lost. The departure of 
the wave velocity ratio from unity is very small. It changes slightly with the number of nodal 
diameters and was found to have a similar small dependence on Poisson’s ratio. Table 11 
shows the actual progression of K,(l - 4) solutions of equation (12). The disk solutions are 
in the sequence (2, l), (3, I), (4, I), . . ., but, because of the difference between shear and plate 
wave velocities, the sequence is different for narrow rings. For example the (5,1), a plate mode, 
has a higher frequency than the (6, 1), a shear mode. 

The disappearance of nodal circles as the hole is developed in the disk occurs in the cases 
of the (2,l) and higher finite frequency modes and the higher compound modes. The phenom- 
enon was observed in detail for the (2,l) mode by using rings of increasing hole size and investi- 
gating the phase and amplitude at the ring boundaries with a pick-up probe. The nodal circle 

TABLE 11 

K,, = oa/C, for the lower order compound modes. Narrow 
ring; K,(l - @), 4 = 0.99 

Nodal circles 

(P) 
I 4 

Plate 

Shear 
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did not change position significantly with hole size and disappeared as already described in 
the discussion of Figure 4 and Table 8. There is an apparent paradox, as for a particular hole 
size the inner boundary can be a node, meaning in this case that there is no radial movement 
(5, = 0). In terms of the boundary condition given in equation (lo), the radial stress associated 
with the a<,/& term is cancelled out by the (o/r) a&,/% term which produces the hoop stress. 
There is thus no net radial force and therefore no radial movement. 

There is a close relationship between the thin ring modes and those of infinite hollow 
cylinders for the non-propagating case (the cut-off frequency condition). All thin ring modes 
have their counterparts in cylinders which have two additional series, shear modes where 
the shear is in the longitudinal direction and longitudinal rod modes. The numerical results 
obtained by Armenakas ef al. [5] for (r = 0.3 are given in ascending order of frequency for 
successive orders (n) of the Bessel function. Six values (Q, to s2,) are given for the first five 
n values. Table 12 relates the (52, n) values to the disk classifications of Table 1. The torsional 
and radial modes above the first radial are omitted. 

TABLE 12 

Identification of infinite shell modes by (~2, n). The 
frequencies are in ascending order of Qfor agiven n. 
Thus, the third shear z overtone is at a lower 
frequency than the seconds of shear 8 and bulk r 

Mode type (52, n) values 

Flexural 
Finite f 
Shear 01 
Shear z 1 
Shear 22 
Shear 23 
Bulkrl 
Rod zn 

1, 2 1, 3 1,4 . . . 
2,0 3,1 3,2 . . . 
5, 1 5, 2 5,3 . . . 
3,0 4, 1 4,2 . . . 
5,0 . . . . . . . . . 
690 
4,0 6,‘; kj 1:: 
2, 1 2, 2 2, 3 . . . 

The pure torsional modes (Figure 1) have the same frequencies and these are independent 
of Poisson’s ratio except insofar as it appears in the expression for the shear velocity. For 
zero Poisson’s ratio the rod, plate and dilatational (bulk) velocities are equal and all the ring 
and shell frequencies are equal. With increase in Poisson’s ratio the frequencies diverge and 
for some modes reach infinity at (T = 0.5 where the dilatational velocity is infinite. For the 
thin shell and narrow ring the Rayleigh and Hoppe mode (see Table 3) frequencies are in the 
ratio of plate to rod velocities and those of the cylinder and disk radial modes are in the ratios 
of dilatational to plate velocities. 

To summarize, every disk mode has been followed to its narrow ring counterpart, which 
can approach zero, finite or infinite frequency. The general solution of the annulus given in 
equation (12) contains the Rayleigh [2] and Hoppe [I] ring resonances and the Poisson [ll], 
Love [4] and Holland [3] disk resonances. Five figure tables of frequency eigenvalues for a 
full range of annulus geometry and Poisson’s ratio are available. 
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APPENDIX : LIST OF SYMBOLS 

: 
disk radius (m) 
hole radius (m) 

afj, bi,, c~ terms in determinant 
A, amplitude coefficients 
C a velocity of sound (m/s) 
4 UP, rod (m/s)’ 
C,” C,‘/(l - c?), plate (m/s)z 
C,” C,2/2(1 + o), shear/torsion (m/s)’ 
E Young’s modulus (N/m’) 
M”(x), N,(x) x J,,_i (x)/J”(x), etc., Onoe’s modified Bessel quotients 
Jn, Yn Bessel functions of I st and 2nd kind 
L hb 
h w/C, plate wave number (m-i) 
k w/C, shear wave number (m-l) 
K ma/C, a dimensionless frequency constant 
(m, n) integers defining a disk mode 
n integers defining ring distortional mode 
P integer (equation (17)) 
r, 8 cylindrical co-ordinates 
S integer defining ring extensional mode 
S strain 

T 
stress (N/m’) 
a displacement (m) 

A dilational strain 
4 b/a 
P density (kg/m3) 
cr Poisson’s ratio 
(r, rotational strain 
0 angular frequency (s-l) 
@ 2/(1 - 0) 


