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 PDEs and Complex Analysis 
 
On 26 October 2007, Albert Tsou sent in the following Q & A. 
 
 Q:  Why did the mathematician name his dog "Cauchy"? 
 A:  Because the dog left a residue at every pole. 
 
 As you know, certain sections in Saff and Snider upset me, 
and I have deviated from the book.  We all agree that no text 
should be held as an authority.  But now, both you and I are 
paying for the deviation. 
 The notes here follow closely my lectures.  Several 
students have mentioned that their own notes may reproduce 
what was written on the blackboards, but not what I said in class, 
so that they found it hard to reproduce the ideas. 
 The notes, as well as the corresponding lectures, attempt 
to teach a particular application of complex analysis:  using an 
analytic function to solve a partial differential equation.  The 
primary example used here is electrostatics.  I have several 
objects in mind: 

• Link math to a physical problem.  To make this link, you 
need to review the basics of electrostatics, to the extent 
that you can make physical sense of the mathematical 
results. 

• Link PDE to analytic function.  I use an approach to show 
that this link can be made for PDEs other than the Laplace 
equation.  I learned the approach from technical papers 
when I was a graduate student here in late 80s, and used 
it in my papers on interfacial fracture mechanics.  I have 
never seen this approach in any standard textbooks. 

• Show techniques of using complex analysis to solve a 
PDE.   

 Thus, the “applied” content of these notes is somewhat 
more than the corresponding sections in Saff and Snider.  One 
way to learn this material is to work through these notes, adding 
your own notes and inventing your own exercises along the way.  
For example, I don’t have time to draw figures using WORD.  
Please sketch your own figures from the notes you took in class.  
Fill the 3 inch margin on the right side. 
   
 Laws of electrostatics.  This review reminds you of the 
basics of electrostatics.  If you feel uncomfortable with this review, 
please look at your physics textbook.   
 As an idealization, in this review we consider an ideal 
world composed of only two kinds of things:  conductors and 
insulators.  For example, metals are conductors, and air is an 
insulator.  When a quantity of electric charge is injected into this 
world, the charge can flow in the conductors, but not in the 
insulators.  In equilibrium, when all the electric charge stops 
flowing, the charge is trapped either in the interior of the insulators, 
or on the interfaces between the insulators and conductors; no 
electric charge remains in the interior of the conductors.   
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 The world is three dimensional.  We set up a system of 
coordinates, and write the coordinates of each point in the world 
as zyx ,, .   
 Electric potential.  The electric potential is a scalar, whose 
value may vary from one point in the world to another point.  That 
is, the electric potential is a scalar field, written as a function 
( zyx ,, )φ .  In equilibrium, the electric potential is uniform in a 

conductor, but is non-uniform in an insulator. 
 Electric field.  The gradient of the electric potential in an 
insulator gives the electric field: 
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The electric field in the insulator is a vector field.  In equilibrium, 
the electric field in a conductor vanishes. 
 Electric displacement.  Consider an arbitrary part of the 
world.   This part has some shape and volume, and may contain 
both conductors and insulators.  Let the net charge in this part of 
the world be Q .  The electric displacement ( )zyx ,,D  is a vector 
that satisfies Gauss’s law: 
 , QdA =⋅∫ nD
where the integral extends over the surface that encloses the part, 
and n is the unit vector normal to the surface. 
 Material law.  In an insulator, the electric displacement is 
linear in the electric field, namely,  

ED ε= ,   
where ε   is the permittivity, a constant specific to a given insulator. 
 
 Action items for exercise.  The above basic laws lead to 
the following items, which are essential for the understanding of 
electrostatics.  Even if you do not wish to go through the 
derivations, you should try to understand the conclusions. 
(a)  The insulator can trap electric charge. Let ( )zyxq ,,  be the net 
electric charge per unit volume in the insulator.  Use the 
divergence theorem to show that Gauss’s law implies that  
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(b)  Consider two insulators meeting at an interface.  Label one 
insulator by + and the other by -, and let the unit vector normal to 
the interface point to the insulator +.  The electric displacement is 
discontinuous across the interface.  Denote the component of the 
electric displacement normal to the interface in the two insulators  
by  and .  Let +

nD −
nD ω  be the electric charge per unit area of the 

interface.   Show that Gauss’s law implies that 
 . ω=− −+

nn DD
(c)  As an important special case of (b), consider an interface 
between an insulator and a conductor.  In equilibrium, the electric 
displacement vanishes in the conductor, but not in the insulator.  
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Let  be the component of the electric displacement in the 
insulator normal to the interface, taking  to be positive when it 
points toward the conductor.  Let 

nD

nD
ω  be the electric charge per unit 

area of the interface.   Show that Gauss’s law implies that 
 . ω=nD
(d)  An insulator has a dielectric constant ε , and a distribution of 
electric charge .  Show that the electric potential ( zyxq ,, )

)( zyx ,,φ  satisfies Poisson’s equation: 
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 Parallel-plate capacitor.  A parallel-plate capacitor is a 
layer of an insulator sandwiched between two conductors.  The 
two conductors, known as the electrodes, are connected to a 
battery through an external circuit.  The battery supplies a voltage 

 between the two electrodes, and pumps electric charge from 
one electrode to the other.  The electric charge resides at the 
interfaces between the insulator and the two electrodes.  In 
equilibrium, the electric charge is  at one interface is, and is 

 at the other interface.   

V

Q+
Q−

 When the thickness of the insulator is small compared to 
its length and width, the electric field is uniform in the insulator, 
except in the small regions near the edges of the insulator.  Let us 
ignore these edges and focus on the interior of the insulator.  Let 
A  be the area of each electrode, and L  be the thickness of the 
insulator.  Let y  be the coordinate in the direction through the 
thickness of the insulator.  The electric potential in the insulator is 
linear in y , given by 
 LVy /=φ . 
The electric field in the insulator is 
 . LVE /=
The electric displacement is 
 . AQD /=
Both the electric field and the electric displacement are uniform 
fields in the insulator, pointing in the direction of – . y
 

 

V

L
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y
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   Action items for exercise.  The following items ask you to 
think physically about electrostatics.   
(a)  The capacitance C of a capacitor is defined by the magnitude 
of the electric charge on one electrode divided by the voltage 
applied by the battery, namely, VQC /= .  Show that the 
capacitance of the parallel-plate capacitor is 
  LAC /ε= , 
(b) Describe an experimental procedure to measure permittivity of 
an insulator.   
(c)  Find values for the permittivity of water and glass in the 
literature.  Why is the permittivity of water so much larger than 
glass?  Give a molecular description. 
 
 Electrostatics in two dimensions.  Consider a situation 
that can be modeled by a two-dimensional field of electric 
potential ( yx, )φ .  When the insulator does not have any net 
electric charge in its interior, show that the field of electric potential 
is governed by the Laplace equation: 
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,    for ( )yx,  inside insulator. 

We will assume that the surface of the insulator is covered with 
conductors, so that the electric potential on the surface of the 
insulator is held at prescribed values: 
 ( ) valueprescribed, =yxφ ,for (  on the surface of the insulator. )

)

yx,
The Laplace equation and the boundary condition together 
constitute a boundary value problem, whose solution gives the 
electric potential field ( yx,φ  in the insulator.   
 Once the electric potential is solved, the electric field is 
give by the gradient: 
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. 

 The electric displacement is given by 
 yyxx EDED εε == , . 
The electric charge density on the surface of the insulator is 
 yyxx nDnD +=ω , 

where  and  are the components of the unit vector normal to 
the surface. 

xn yn

pyx +=

 
 Represent electrostatics using a complex potential.  
This problem guides you through the steps that link electrostatics 
to functions of a complex variable.   
(a)  Let  
 ξ ,  
where  is a number to be determined.  Write the field of electric 
potential as a function of a single variable,  

p

( ) ( )ξφ fyx =, .   
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Show that, provided ip =  or ip −= , any differentiable function 
( )ξf  satisfies the Laplace equation.  

(b)  The Laplace equation is a linear, homogenous PDE.  
Consequently, the general solution is a linear superposition of the 
two solutions: 
 ( ) ( ) ( )zgzfyx +=,φ , 
where is a differentiable function of f iyxz += , and g  is a 
differentiable function of iyxz −= .   
(c) The electric potential is real-valued.  Show that the electric 
potential is represented as 
 ( ) ( )[ ]zGyx Re, =φ , 
where  is an analytic function of z .  The function ( )zG ( )zG  is 
called the complex potential.   
 Proof.  Let us introduce some notation using an example, 

.  Then, ( ) ( )2azzf −= ( ) ( )2azzf −= , ( ) ( )2azzf −= , and 

( ) ( 2azzf −= ) )  Because the electric potential is real-valued, 
φφ = , and therefore 

 ( ) ( ) ( ) ( )zgzfzgzf +=+  
Using this relation, we rewrite ( ) ( ) ( )zgzfyx +=,φ  as 

( ) ( ) ( ) ( ) ( )
22

, zgzfzgzfyx +
+

+
=φ  

Introduce a new function 
 ( ) ( ) ( )zgzfzG += . 
Note that this new function  is an analytic function of z.  Thus, ( )zG

 ( ) ( ) ( ) ( )[ zGzGzGyx Re
2

, =
+

=φ ].  

(d)  Show that 
( )

dz
zdGiEE yx =+− .  

 Proof.  Note that 
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A combination of the above two equations give the desired proof. 
(e) For a given boundary value problem, what determines the 
function ?   
 Answer:  The boundary condition: 

( ) Re, =yxφ , for ( )yx,  on the 
surface of the insulator. 
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 The above approach to express the solution of a PDE in 
terms of an analytic function of a complex variable is applicable to 
any PDE with the following attributes: 

• The PDE is homogenous. 
• The PDE is linear. 
• Each term in the PDE contains the same order of 

differentiation. 
Two examples follow. 
 
 Exercise:  use an analytic function to represent the 
solution of a partial differential equation.  A real-valued 
function, , satisfies a partial differential equation (PDE): ( yxV , )

 02
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Let pyx +=ξ , where is a complex number to be determined.  
Show that the solution to this PDE can be represented as 

p

 ( ) ([ ])ξGyxV Re, = , 
where ( )ξG  is an analytic function of ξ .  Determine the value of 

. p
 Exercise:  use an analytic function to represent the 
solution of a partial differential equation.  A real-valued 
function, , satisfies a partial differential equation (PDE): ( yxV , )
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Show that the solution to this PDE can be represented as 
 ( ) ( ) ( )[ ]ηξ HGyxV += Re, , 
where ( )ξG  is any differentiable function of the variable 

pyx +=ξ , and ( )ηH  is any differentiable function of the variable 
qyx +=η .  Determine the values of  and q . p

 
 Read Section 2.5 of Saff and Snider, Harmonic 
Functions. 
 
 A uniform electric field.  Consider a uniform electric field 

E pointing in the x-direction.  Using 
( )

dz
zdGiEyx =+

( )

E− , we 

obtain that 

EzdG
−=

( ) ( )[ ] constantrealRe, +−== ExzGyx

dz
.    

Integrating, we obtain that 
  ( ) constantcomplex+−= EzzG
The electric potential is 
 φ . 
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 Exercise.  A uniform electric field points in the direction at 
an angle γ   from the x-axis.  Determine the complex potential and 
the electric potential. 
 
 Section 3.4 of Saff and Snider:  Washers, Wedges and 
Walls.  This section uses the function  to solve a few types 
of boundary value problems.  Recall that  is a multi-valued 
function, with a branch point at .  Once you have selected a 
branch cut, you can write  

zlog
zlog

0=z

 ( ) θirzizz +=+= logargloglog . 
The function  has the real part  and the imaginary part zlog rlog
θ . 
 Washers.  An insulator takes the shape of a cylindrical 
shell.  The electric potentials are prescribed at constant levels in 
the inner and outer surfaces of the shell. On a perimeter of a circle, 
r is a constant, namely,  is constant.  Consequently, the 
complex potential for the cylindrical shell is 

[ zlogRe ]

 , ( ) BzAzG += log
where A  and B  are real-valued constants.  The electric potential 
is 
 ( ) ( )[ ] BrAzGyx +== logRe,φ  
The constants A  and B are selected to give the prescribed 
electric potentials on the inner and outer surfaces of the cylindrical 
shell. 
 Wedges.  An insulator takes the shape of a wedge.  The 
electric potential is prescribed at a constant level at each edge of 
the wedge.  At a fixed θ ,   is constant.  Consequently, 
the electric potential for the wedge is 

[ zlogIm ]

 , ( ) BziAzG +−= log
where A  and B  are real-valued constants.  The electric potential 
is 

( ) ( )[ ] BAzGyx +== θφ Re,  
The constants A  and B  are selected to give the prescribed 
electric potentials on the two edges of the wedge. 
 Walls.  An insulator occupies a half space, y .  The 
surface of the insulator, , is divided into segments by a set 
of points .  Each segment is prescribed with a constant 
level of electric potential.  What is the field of electric potential 
inside the insulator.  The complex potential takes the form  

0≥
0=y

...,, 321 xxx

( ) ) ( )( ( ) BxziAxziAzG xziA +−−−−−= ...loglog 33221

B

−− log1 , 
where  are real-valued constants selected to give 
the electric potentials prescribed on all the segments.  The electric 
potential is 

BAAA ,...,,, 321

( ) ( )[ ] AAAzGyx ++++== Re, 332211 ...θθθφ ,  
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where 321 ,, θθθ ,… are polar angles centered at  the points 
  The electric field in the insulator is given by ...,, 321 xxx
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dz
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 A uniform electric field perturbed by a cylindrical 
conductor of circular cross-section.  We have outlined the 
solution to this problem in class.  
(a)  Use words, pictures and equations to state the problem clearly. 
(b)  Trace the steps that lead to the solution 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∞ z

azEzG
2

. 

 Solution.  At a point far from the cylinder, the electric field 
is uniform, so that 
 ( ) ∞→−→ ∞ zaszEzG . 

We need to find an function analytic outside the circle az = , 

such that  for z on the circle (i.e., ).  By 
inspection, the function is 

( )[ ] 0Re =zG θiaez =

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∞ z

azEzG
2

. 

(c)  Sketch the contours of constant potential. 
(d)  Sketch the lines of electric field. 
(e)  Let θ  be the polar angle.  Determine the electric field in the 
insulator, around the surface of the conductor, as a function of θ . 
(f)  How is the electric charge distributed on the surface of the 
cylindrical conductor? 
 
 A uniform electric field perturbed by a strip of 
conductor.  A strip of conductor lies in a vacuum; see a figure 
below.  The width of the strip is 2a.   The length of the strip is 
much larger than the width, and the thickness of the strip is 
negligible compared to the width.  Remote from the strip, the 
electric field is uniform, of magnitude E , directed parallel to the 
width of the strip.  Let x axis be along the width of the strip, and 
the origin of the axis coincide with the center of the strip. 

∞

2 )( azEzG −−= ∞

(a)  Confirm that 
  ( ) 2/12

satisfies all the boundary conditions.  Choose the strip as the 
branch cut of the function . ( )zG
(b)  Sketch the contours of constant potential. 
(c)  Sketch the lines of electric field. 
(d)  Determine the electric field on the top and bottom faces of the 
strip.  
(e)  Determine the distribution of electric charge on the strip. 
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(f)  What would the electric field in the vacuum be if the remote 
electric field were normal to the faces of the strip? 

strip 

∞E

x 
-a +a 

    
 
 Conformal mapping.  A function ( )zfw =  maps one 
complex number to another complex number.  The function is said 
to be conformal at a point  if  exists and 0z ( )0' zf ( ) 0' 0 ≠zf .   
 Here is a geometric interpretation of a conformal mapping.  
Write .  Let z  be another point on the z-plane, and 

 be the corresponding point on the w -plane.  Because 
the function is analytic, we can use the Taylor series: 

( )00 zfw =
( )zfw =

 , ( )( )000 ' zzzfww −=−

0zz −where high order terms have been neglected.  Observe that  
is a vector in the z-plane, and  is the corresponding vector 
in the w -plane.  The above relation linearly maps the vector 

 to the vector .   

0ww −

0zz − 0ww −

0 0z We now fix the point z .  As z  varies, the vector z −  
varies in length and direction.  The linear relation, 

, maps every vector z( )( )000 ' zzzfww −=− 0z−  by multiplying 
the same complex number ( )' zf

0zz −

0 , independent of z .  
Consequently, the linear relation magnifies the length of every 
vector  by the same factor ( )0' zf

0z−

, and rotates the direction 

of every vector z  by the same angle ( )[ ]0' zf
( ) 0' 0

arg .  That is, 
when a function is analytic and ≠zf

( 0z 0z

baz +=

, the function preserves 
the image locally.   
 In general, 'f  varies when  varies.  Consequently, 
the small vectors in different neighborhood magnify by different 
factors and rotate by different angle.   That is, the conformal 
mapping usually distort image globally.  The only exception is the 
linear map w , whose derivative is the constant a.  The 
linear map translates, magnifies and rotates; it preserves images 
globally.  It is boring. 

)
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 When a function is conformal, the function is a one-to-one 
map, and its inverse function exists.  We will write the function and 
its inverse as 
 ,   . ( )zfw = ( )wz Γ=
 
 Non-conformal mapping.  To appreciate the conformal 
mapping, we should talk about non-conformal mapping.  A 
function can be non-conformal in several ways.  For example, the 
following transformation 
  ( ) ( )yxvvyxuu ,,, ==
maps a point on the (  plane to a point on the )yx, ( )vu,  plane.  
Even if the two functions are differentiable, the transformation will 
usually be non-conformal, because the two functions may not be 
conjugate to each other. 
 As a second example, a function ( )zf  fails to be a 
conformal map at a point  because  is a pole or a branch 

point.  Examples are (  and 
0z 0z

) 1
0

−− zz ( )0log zz − . 
 As a third example, even when a function is analytic, the 
function may still fail to be a conformal map because ( ) 0' =zf .  If 
this equality holds in a domain, the function is a constant.  Such a 
function maps every point on the -plane to a constant on the w  
plane:  this trivial function distorts everywhere.   

z

( ) 0=z If 'f  only holds for an isolated point, the situation is 
more interesting.  Say a function ( )zf

( ) 0' 0 =zf ( ) 0
 is analytic at a point , 

and  .  We assume 
0z

'' 0 ≠zf .  An example of such a 

function is w  at .  We know this function is a 
two-to-one mapping, and has a branch point on the w -plane.  It 
turns out that this behavior is generic.  Once again use the Taylor 
series: 

( ) 2zzf == 00 =z

( ) ( )2
0

0
0 2

''
zz

zf
ww −=−

( ) 0' 0 =zf

.  

Because , the leading order term is quadratic.  The 
quadratic transformation doubles the angle. 
 
 Bilinear transformation (or Mobius transformation): 

d
b

cz
azw
+
+

=

bcad =

cd /

.  

When , this function reduces to a constant, and is 
therefore non-conformal everywhere.  Except this trivial case, the 
bilinear transformation maps the entire plane to another entire 
plane. This transformation has a pole at z −= .  The bilinear 
transformation maps a circle to another circle.  If the circle on the 
z-plane passes the point z , the corresponding image on 
the w-plane is a straight line, which is taken to be a circle of 
infinite radius. 

cd /−=
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 A circle is determined by three points.  A bilinear 
transformation that maps the three points   to the three 
points  takes the form: 

321 ,, zzz

321 ,, www

 
( )( )
( )( )

( )(
( )(

)
)123

321

123

321

zzzz
zzzz

wwww
wwww

−−
−−

=
−−
−−

. 

 
 Mapping the exterior of a unit circle to the exterior of 
some other curve.  Consider a unit circle on the w-plane.  An 
analytic function outside this circle can be represented by the 
Laurent series.  Consider a particular Laurent series: 

 ...2
21

01 ++++= −−

w
a

w
aawaz  

Here we have dropped high order positive powers.  This way, 
when w >>1, the function is a linear map.   The coefficients can 
be selected to fit the curve on the z-plane.  Consider a very 
special case: 

 
w

awaz 1
1

−+=

1a 1−a
γiew = z

( )

, 

where  and  are real-valued.  When w is on a unit circle, 
, the corresponding curve on the  plane is give by 

( ) γγγγ sincos 11111 −−
−

− −++=+ aaiaaeax ii

( ) )

1=+ eaiy  
Comparing the real and imaginary parts, we obtain that 

( γγ sin,cos1 −− 111 −=+= aayaax

a =−1 baa

 
That is, the corresponding curve on the z-plane is an ellipse, 
provided we identify a  and a+1 =− −11

( )

, with a and b 
being the semi-axes of the ellipse. 
 Show that the transformation 

w
wwz

22
+=Γ=

baba −+

( ) ( )[ ]zGyx Re, =

  

is conformal for w  outside the unit circle.  What happens at the 
limiting case ? 0=b
  
 Mapping a boundary value problem.  Recall the 
boundary value problem on the z-plane.  An insulator occupies a 
domain  in the z-plane. The electric potential is given by zD
 φ , 
where  is an analytic function in the domain, and is 
determined by the boundary condition 

( )zG

( ) ( )[ ] valueprescribedRe, == zGyxφ , for ( )yx,

( )wz Γ=

 on the 
surface of the insulator. 
 Now consider a conformal transformation  
 , 
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Which maps domain  in the w-plane to the domain  in the 
z-plane.  The electric potential is given by 

wD zD

 ( ) ( )( )[ ]wGyx Γ= Re,φ . 
The composite function ( ) ( )( wGwH Γ= )  is an analytic function in 
the domain , and is determined by the boundary condition wD
 ( ) ( )[ ] valueprescribedRe, == wHyxφ ,   for w on the 
boundary of the domain . wD
 Once the two functions  and ( )wΓ ( )wH  are determined, 
the electric field is given by  

 
( ) ( ) ( ) 1−

⎟
⎠
⎞

⎜
⎝
⎛ Γ

===+−
dw
d

dw
wdH

dz
dw

dw
wdH

dz
zdGiEE yx . 

 
 A uniform electric field perturbed by a cylindrical 
conductor of an elliptic cross section.  We have outlined the 
solution to this problem in class.  
(a)  Use words, pictures and equations to state the problem clearly. 
(b)  Find a conformal transformation that maps a unit circle on the 
w-plane to an ellipse on the z-plane.   
 Answer:  

( ) 
w

ww baba
22
−

+
+

=Γ=

( )wH

( )

z     

(c)  Find the analytic function .   
 Solution.  At a point far from the cylinder, the electric field 
is uniform, so that 

∞−→ ∞ zEzG →zas .  

wbaz +
→Because  as 

2
∞→z

( ) ( )
, we obtain that 

∞→
+

−→ ∞ waswbaEwH
2

  

( )wH  outside the circle We need to find an function analytic 
0=w ( )[ ] 0=wH
γiew =

( ) ( )

, such that Re  for w on the unit circle (i.e., 

).  By inspection, the function is 

 ⎟
⎠
⎞

⎜
⎝
⎛ −

+
−= ∞

w
w

baE 1
2

a

wH . 

(d)  Sketch the contours of constant potential on the z-plane. 
(e)  Sketch the lines of electric field on the z-plane. 

z = . (f)  Determine the electric field at point 
 Solution.  The electric field is given by 

( )
( )

( )

2

2

22

11
2

/
/

w
baba
w

baE

dwwd
dwwdH

y −
−

+

⎟
⎠
⎞

⎜
⎝
⎛ +

+
−

=
Γ

=

∞

iEEx +− .  

 12  



AM 105a Complex and Fourier Analysis Zhigang Suo 
 

Using the mapping , the point ( )wz Γ= az =  corresponds to 
.  Thus, 1=w

 ⎟
⎠
⎞

⎜
⎝
⎛ +−=+− ∞ b

aEiEE yx 1 . 

Consequently, the electric field at the tip of an ellipse is 

 ⎟
⎠
⎞

⎜
⎝
⎛ += ∞ b

aEE 1  

The electric field is in the direction normal to the conductor.  When 
the ellipse is very long and thin, a >> b, the electric field at the tip 
of the ellipse can be many times the applied electric field.  This 
effect is called field concentration. 
 
 Example 1 in Section 7.1 of the Saff and Snider.  We 
have gone over this example in class.  Our approach attempts to 
describe the generic steps. 
(a)  State the problem clearly.  Sketch the constant potential lines 
and the electric field lines. 
(b)  Find a conformal transformation that maps the circle to the 
straight line in Fig. 7.4. 
 Solution.  A bilinear map will do.  We choose three points: 

( ) ( ) ( ) ∞===− 1,,01 fiiff

( )( )

.  
Using the general rule: 

( )( ) ( )( )
( ) ( ) 12

32

123

321

zz
zzzz

wwww
wwww

−
−−

=
−−
−−

3

1

zz −
 

We find that 
( )( )
( )( )

( )(
( )(

)
)11

11
0

0
+−
−+

=
−∞−
∞−−

iz
iz

iw
iw

 . 

Solving for w, we obtain that 

( )
z

zfw
−

==
1

z+1

( )

.  

The inverse function is 

 
1+w
1−

=Γ=
wwz

( )wH

1

. 

(c)  Find the complex potential .   
 Solution.  On the w-plane, this problem becomes a wall 
problem, with the boundary conditions =φ  when y > 0, and 

1−=φ  when y < 0.  The solution is 

( ) wiwH log2
π

−= . 

On the w-plane, we choose the branch cut along the negative u 
axis, such that the argument of w is restricted as 

( ) ππ <warg<−

( ) ( )[ ]
.  Note that 

( )wwHyx arg2Re,
π

φ == . 

This function does satisfy the boundary condition for φ . 
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(d)  Determine electric field at . 0=z
 Solution:  The electric field is given by 

 
( )
( )

( )21
2

2

/
/

+

−
=

Γ
=+−

w

w
i

dwwd
dwwdHiEE yx

π . 

Using the mapping z , the point ( )wΓ= 0=z  corresponds to 
.  Thus, 1=w

π
4iiEE yx −=+− . 

Consequently, the electric field at the center of the insulator is 

 
π
4,0 −== yx EE

( )tzyxT ,,,

. 

(e)  Interpret this result in physical terms. 
 
 Earlier notes on Thermal Conduction 
 
1.  Thermal conduction.  This problem guides you through the 
elements of thermal conduction.  (a)  Explain in physical terms the 
basic modes of heat transfer:  Conduction, convection and 
radiation. 
(b) Let (  be a system of coordinates, and t be time.  The 
temperature in the conductor is a function of position and time, 

.  That is, the temperature in the conductor is a scalar 
field.  What is a scalar?  Give three more examples of scalars 
among commonly used physical quantities.  

)zyx ,,

(c) What is heat capacity?  Outline an experimental method to 
measure heat capacity.  Find the value of heat capacity of a 
window glass in the literature.  Cite the reference.  How much 
energy is needed to increase the glass window of your room by 10 
K?  Give rough dimensions of your window.     
(d) Use words, figures and symbols to define the quantity heat 
flux.  Why is heat flux a vector? 
(e) Fourier’s law states that the heat flux is proportional to the 
temperature gradient.  Paraphrase this law into equations.  When 
was Fourier born and when did he die?   
(f)  Outline a procedure to experimentally determine thermal 
conductivity.  Find the value of heat conductivity of a glass in the 
literature.  Cite the reference.  How much energy goes through the 
glass of your window?  Assume the temperature difference 
between inside and outside is 5 K. 
(g)  Apply the law of conservation of energy to a volume element 
for a time increment.  Use words, draw figures, and derive the 
equation 

 0=
∂∂∂∂

z
JJJ z

∂
+

∂
+

∂
+

∂ yxt
Tc yxρ . 

(h)  Show that a combination of Fourier’s law and the law of 
conservation of energy leads to 
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 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

2

2

z
T

y
T

x
TD

t
T

 

(i) What is the dimension of D?  How is D related to density, heat 
capacity, and conductivity? 
 
2.  Evolving temperature field in a sphere of glass.   A sphere 
of glass, radius R, is held at temperature  for a while, so that 
this temperature is established uniformly inside the sphere.  The 
sphere is then thrown into a pool of hot water, of temperature T .  
Let r be the distance from the center to a point in the sphere.  The 
temperature field inside the sphere is a function of position and 
time, T .   

0T

w

,

( )

( )tr
(a)  Show that the temperature field inside the sphere evolves 
according to the form 

⎟
⎠
⎞

⎜
⎝
⎛−+=

DR
t

R
rfTTTT w /

, 200 ,  

where f is a function of two dimensionless variables as indicated.   
(b)  Sketch this evolving temperature field. 
(c)  Estimate the time needed for the sphere to equilibrate with the 
temperature of the water.  Assume that the radius of the sphere is 
1 cm. 
 
3.  Steady-state temperature field in two dimensions.  This 
problem guides you through the steps that link the physical 
problem to complex analysis.   
(a)  What is an equilibrium temperature field?  What is a steady-
state temperature field? 
(b)  Show that a steady-state temperature field in two dimensions 
is governed by the Laplace equation 

02

2

2

2

=
∂
∂

+
∂
∂

y
T

x
T

pyx +=

.  

(c)  Let ξ , where  is a number to be determined.  Write 
the temperature field as a function of a single variable, 

p

( ) ( )ξfyxT =,
i

.  Show that the Laplace equation is satisfied by 
either p = i or p −=

( ) ( )

.  
(d)  The Laplace equation is a linear, homogenous PDE.  
Consequently, the general solution is a linear superposition of the 
two solutions: 

( )zgzfyxT +=,

( )yxT ,
( )zF z

( )zF

,  
where f and g are functions of the variables as indicated.  Recall 
that the temperature is real-valued.  Show that the steady-state 
field can be represented as 
 , ( )[ ]zFRe=
where  is an analytic function of . 
(e) For a given boundary value problem, what determines the 
function ? 
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4.  A boundary value problem.  This problem confirms our 
everyday experience that spatial variation of temperature in a 
small region does not affect the temperature remote from this 
region.  Imagine that a thermal conductor occupies a half space 

.  The temperature on the surface of the conductor is 
prescribed as 

0>y

( ) ⎟
⎠
⎞

⎜
⎝
⎛+=

L
xATxT av
π2cos0,

avT

avT

   

where  is the average temperature on the surface, A is the 
amplitude of the variation, and L is the period of variation.  In the 
conductor, very remote from the surface, the temperature is also 

. 
(a) Sketch the steady-state isotherms inside the conductor. 
(b) Solve for the steady-state temperature field inside the 
conductor using the complex variable method. 
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