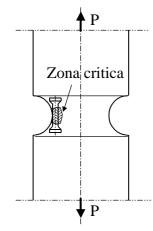


Fatica in ε - Local strain approach – Low Cycle Fatigue (LCF)

"filosofia" del metodo



Innesco cricca di fatica = cedimento della provetta

Alla radice dell'intaglio sono presenti deformazioni plastiche.

Il materiale circostante la zona critica è in campo elastico \Rightarrow controllo in deformazione.

Studio del comportamento ciclico del materiale

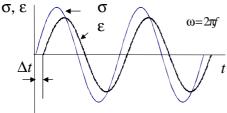
Diagrammi Δε-N

Fatica in &

Cenni sul comportamento meccanico dei materiali sotto carichi ciclici

 $\varepsilon < \varepsilon_{\rm sn}$

Campo elastico



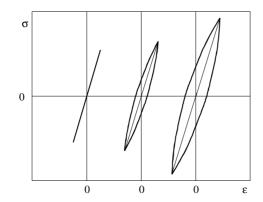
 Δt dovuto al comportamento viscoelastico dei materiali

$$\sigma = \sigma_{\max} sen(\omega t)$$

$$\varepsilon = \varepsilon_{\max} sen(\omega t - \omega \Delta t) = \varepsilon_{\max} sen(\omega t - \Phi)$$

Area = energia dissipata $(per dV) \Rightarrow calore \Rightarrow \Delta T$ (cicli di isteresi)

ε



$$\sigma = \sigma_{\max} sen(\omega t)$$

$$\varepsilon = \varepsilon_{\max} sen(\omega t - \Phi)$$

$$\sigma_{max} \cong \textit{E}\epsilon_{max}$$

Energia elastica massima

$$T = \frac{1}{2} \sigma_{\max} \varepsilon_{\max} \cong \frac{1}{2} E \varepsilon_{\max}^2$$

Importante per lo studio delle vibrazioni

Fatica in &

Energia dissipata

$$D = \oint \sigma d\varepsilon = \int_0^{2\pi} \sigma \frac{d\varepsilon}{d(\omega t)} d(\omega t) = \sigma_{\max} \varepsilon_{\max} \pi sen\Phi \cong \pi E \varepsilon_{\max}^2 sen\Phi$$

Smorzamento relativo

$$\Psi = \frac{D}{T} = 2\pi sen\Phi \approx 2\pi\Phi$$

Decremento logaritmico

$$\delta = \Delta \ln(\varepsilon_{\text{max}}) = d \ln(\varepsilon_{\text{max}}) = \frac{d\varepsilon_{\text{max}}}{\varepsilon_{\text{max}}} = \frac{\Phi}{2}$$

Fattore di smorzamento

$$\eta = \tan \Phi \cong \Phi \cong \frac{\Psi}{2\pi} \cong \frac{\delta}{\pi}$$

Lo smorzamento interno non dipende dalla frequenza

Non deve essere modellato come smorzamento viscoso

Il modulo elastico non è più definibile ($\sigma/\epsilon = 0 \div \infty$)

Si definisce un modulo complesso di cui è facile calcolare le componenti in fase e in quadratura

$$E^* = E' + iE''$$
 Modulo complesso

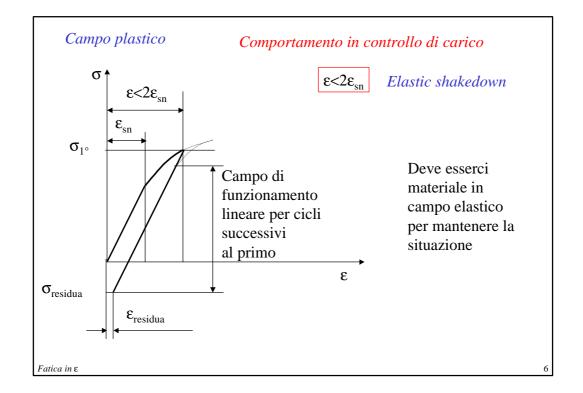
$$E' = \frac{\sigma'}{\varepsilon} = E * \cos \delta$$
 Modulo conservativo

$$E'' = \frac{\sigma''}{\varepsilon} = E * \cdot \text{sen } \delta \quad \text{Modulo dissipativo}$$

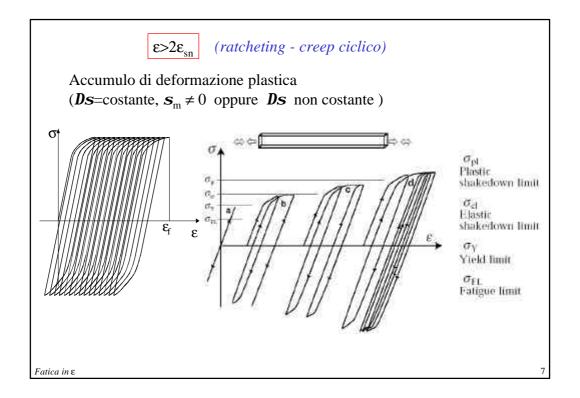
$$\tan \delta = \frac{E''}{E'}$$

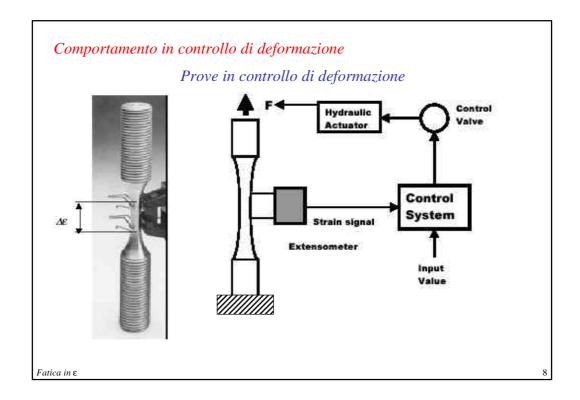
Ricavabili sperimentalmente (ASTM 2236)

Dipendono fortemente dal materiale e dalla frequenza

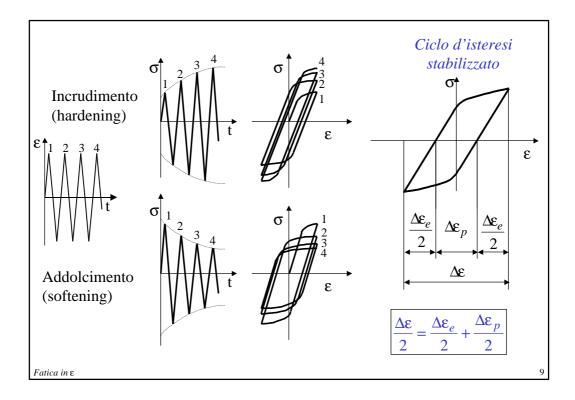


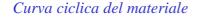
di Meccanica Politecnico di Torino

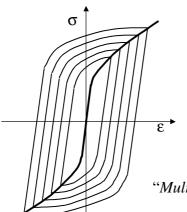




Massimo Rossetto







$$\frac{\Delta\sigma}{2} = K' \left(\frac{\Delta\varepsilon_p}{2}\right)^{n'} \qquad \frac{\Delta\varepsilon_p}{2} = \left(\frac{\Delta\sigma}{2K'}\right)^{1/n'}$$

$$\frac{\Delta \varepsilon}{2} = \frac{\Delta \varepsilon_e}{2} + \frac{\Delta \varepsilon_p}{2} = \frac{\Delta \sigma}{2E} + \left(\frac{\Delta \sigma}{2K'}\right)^{1/n'}$$

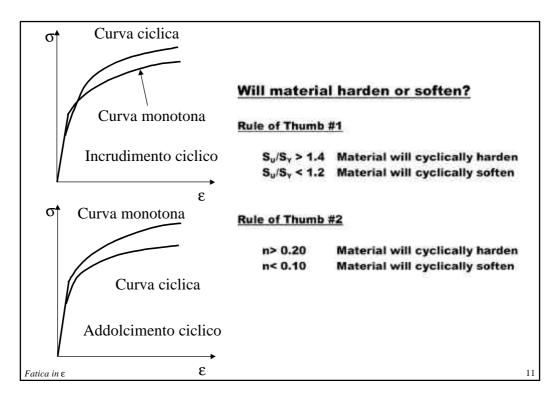
K' = coefficiente di resistenza ciclico n' = esponente di incrudimento ciclico

" $Multiple\ step\ test$ " : una provetta per ogni livello

"Incrementai step test" una sola provetta soggetta a blocchi di $\Delta \epsilon$ crescenti o decrescenti

Fatica in ε

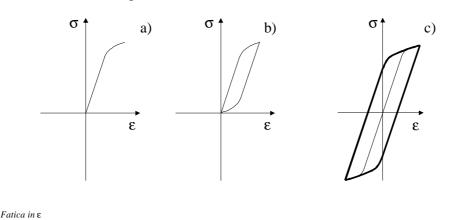
10

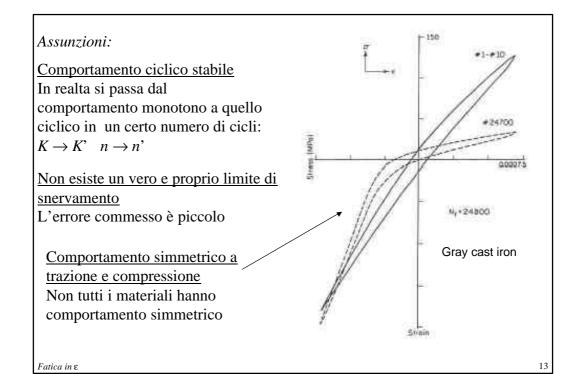


Ipotesi di Massing

(definizione del ciclo di isteresi a partire dalla curva ciclica della curva):

- -si considera il tratto di curva fra lo zero e la tensione massima;
- -la curva viene copiata e ribaltata;
- -gli estremi delle due curve vengono fatti coincidere;
- -la curva viene espansa per un fattore 2 e si sposta l'origine al centro della figura ottenuta.





FATICA IN e

$$\frac{\Delta \varepsilon}{2} = \frac{\Delta \varepsilon_{el}}{2} + \frac{\Delta \varepsilon_{pl}}{2}$$

Basquin (1910)

$$\sigma_a = AN^b$$

$$\frac{\Delta\sigma}{2} = \sigma'_f (2N)^b$$

$$\frac{\Delta \varepsilon_{pl}}{2} = \varepsilon'_f (2N)^c$$

$$\frac{\Delta \varepsilon_{el}}{2} = \frac{\sigma'_f}{E} (2N)^b$$

Alternanze

Notazione tradizionale,dovuta ad un modo errato di conteggio dei cicli nei primi lavori

$$\frac{\Delta \varepsilon}{2} = \frac{\Delta \varepsilon_{el}}{2} + \frac{\Delta \varepsilon_{pl}}{2} = \frac{\sigma'_{f}}{E} (2N)^{b} + \varepsilon'_{f} (2N)^{c}$$

 $\mathbf{e'}_f = duttilità$ alla frattura $\mathbf{s'}_f = resistenza$ alla frattura

b = esponente di resistenza a fatica c = esponente di duttilità a fatica

Fatica in ε



NB: non è previsto un limite di fatica

La curva è ottenuta con metodi statistici non rigorosi

NB: il cedimento è spesso determinato considerando la variazione di rigidezza in trazione ($\approx 20\%$), oppure alla formazione di una crica $a \approx 1$ mm (ASTM E606) SAE 8160-440 HB Remaining Ligament Fatica in ε

TYPICAL STRAIN-LIFE PROPERTIES

(S=steel, A=aluminum)

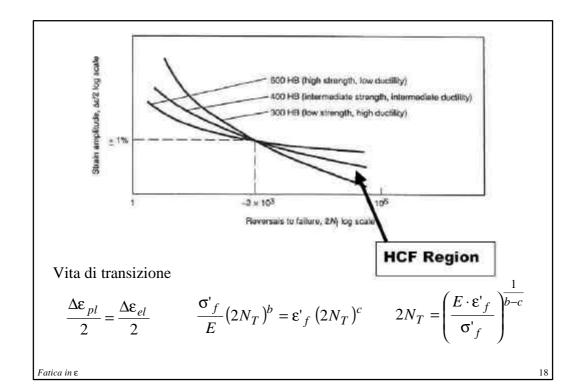
Alloy	Condition	E (ksi)	σ', (ksi)	b	ε',	С
S 1006	HR 85 HB	30000	116.3	-0.12	0.48	-0.52
5 1020	Annealed	30000	123.3	-0.12	0.44	-0.51
S 1045	225 HB	29000	139.2	-0.08	0.44	-0.51
S 1045	Q&T 390 HB	29000	204.2	-0.07	1.51	-0.85
S 1045	Q&T 500 HB	29000	418.9	-0.09	0.23	-0.56
S 1045	Q&T 705 HB	29000	350.4	-0.07	0.002	-0.47
S 4340	Q&T 350 HB	29000	282.0	-0.10	1.22	-0.73
A 2014	T6	10600	114.0	-0.08	0.85	-0.86
A 5454	0	10000	82.0	-0.12	1.78	-0.85
A 5454	10% CW	10000	82.0	-0.10	0.48	-0.67
A 6061	T651	10000	92.0	-0.10	0.92	-0.78
A 7075	T6	10400	116.0	-0.10	0.19	-0.52

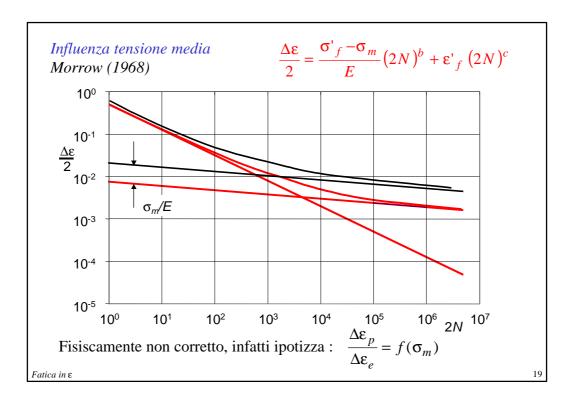
$$\frac{\Delta \varepsilon}{2} = 1.9 \frac{R_m}{E} (2N)^{-0.12} + 0.76 \cdot \varepsilon_f^{0.6} \cdot (2N)^{-0.6}$$

$$\Delta \varepsilon = 3.5 \frac{R_m}{E} (N)^{-0.12} + \varepsilon_f^{0.6} \cdot (N)^{-0.6}$$

Fatica in ε

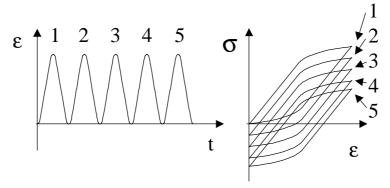
17



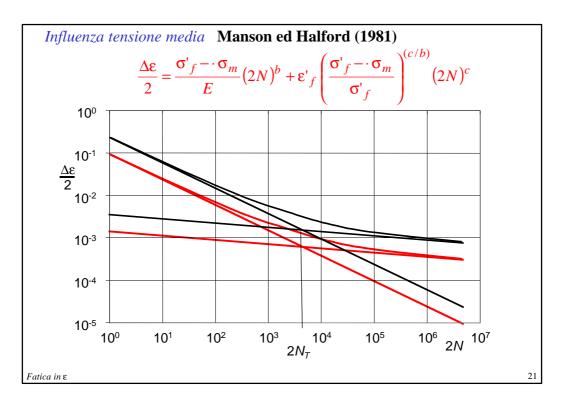


Coerente con l'osservazione della scarsa influenza delle tensioni medie nel campo oligocilico

Rilassamento tensioni medie ($\Delta \varepsilon \ge 0.5\% \div 1\%$)



Fenomeno diverso da addolcimento ciclico



Influenza della tensione media

Smith, Topper e Watson

$$P_{STW} = \sqrt{\sigma_{\text{max}} \frac{\Delta \varepsilon}{2} E} = \text{Cost}$$

Deve valere anche per $\sigma_m = 0$

$$\sigma_{\text{max}} = \frac{\Delta \sigma}{2} = \sigma'_f (2N)^b \qquad (\sigma_m = 0)$$

$$(\sigma_m = 0)$$

Basquin

$$E\sigma_{\text{max}} = E \frac{\Delta \sigma}{2} = E\sigma'_f (2N)^b$$

$$P_{STW}^{2} = E\sigma_{\text{max}} \frac{\Delta \varepsilon}{2} = E\sigma'_{f} (2N)^{b} \left(\frac{\sigma'_{f}}{E} (2N)^{b} + \varepsilon'_{f} (2N)^{c} \right)$$
$$\sigma_{\text{max}} \frac{\Delta \varepsilon}{2} = \frac{\sigma'_{f}^{2}}{E} (2N)^{2b} + \sigma'_{f} \cdot \varepsilon'_{f} (2N)^{(b+c)}$$

$$\sigma_{\text{max}} \frac{\Delta \varepsilon}{2} = \frac{\sigma_f'^2}{E} (2N)^{2b} + \sigma_f' \cdot \varepsilon_f' (2N)^{(b+c)}$$

Parametri del ciclo ⇒ Durata

 P_{STW} non è applicabile con $\sigma_{max} < 0$, coerentemente con l'osservazione che in questi casi non vi può essere propagazione di fatica

Applicazione a componenti intagliati – local strain approach

- Rilievo sperimentale diretto
- Calcoli elastoplastici
- Rilievi indiretti o calcoli lineari elastici + regola di trasferimento:

Regola di Neuber per carichi ciclici:

Assunzioni: comportamento ciclico stabile – comportmento simmetrico

$$\begin{cases} \frac{\Delta\sigma}{2} \cdot \frac{\Delta\varepsilon}{2} = K_t^2 \cdot \frac{\Delta S_{\text{nom}}}{2} \cdot \frac{\Delta e_{\text{nom}}}{2} = K_t^2 \frac{(\Delta S_{\text{nom}})^2}{4E} = \frac{(\Delta S_{\text{FEM}})^2}{4E} \\ \frac{\Delta\varepsilon}{2} = \frac{\Delta\sigma}{2E} + \left(\frac{\Delta\sigma}{2K'}\right)^{1/n'} \end{cases}$$

Topper: sostituire K_t con K_f , o meglio $K_f/\Pi C_i$: non molto realistico

Fatica in ϵ

23

