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Abstract:


The mobility of charge carriers in silicon can be significantly increased when silicon is subject to a field of strain.  In a microelectronic device, however, the strain field may be intensified at a sharp feature, such as an edge or a corner, injecting dislocations into silicon and ultimately failing the device.  The strain field at an edge is singular, and is often a linear superposition of two modes of different exponents. We characterize the relative contribution of the two modes by a mode angle, and determine the critical slip systems as the amplitude of the load increases.  We calculate the critical residual stress in a thin-film stripe bonded on a silicon substrate. 
a)  email:  suo@deas.harvard.edu

I. Introduction


In microelectronic devices, strains are deliberately introduced into silicon to increase the mobility of electrons or holes; see Ref. [1] for a review.  The strains, however, may cause mechanical failure.  In particular, the devices usually contain sharp features like edges and corners, which may intensify strains and emit dislocations into silicon, failing the devices. 2,3   We recently described a method to predict conditions under which such sharp features do not emit dislocations.4  The method is further developed in the present paper to account for split singularities. 5,6 

Fig. 1 illustrates the structure to be studied.  A blanket film, of thickness h and residual stress 
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, is grown on the (001) surface of a single-crystal silicon substrate.  The film is then patterned into a stripe of width L, with the side surfaces parallel to the 
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 plane of silicon.  When the film covers the entire surface of the substrate, the film is in a state of uniform stress, and the substrate is stress-free.  When the film is patterned into a stripe, a field of stress builds up in the substrate, and concentrates at the root of each edge. It is this concentrated stress that injects dislocations into silicon. 
The structure in Fig.1 is similar to those studied in Refs. [4, 7-12], but this paper will examine a specific aspect:  split singularities.  It is well known that, at the tip of a crack in a homogeneous elastic material, under the plane strain conditions, the singular stress field is a linear superposition of two modes, the tensile mode and the shearing mode, both modes having the exponent of ½.  More generally, at the tip of bonded wedges of dissimilar materials, the singular stress field may still consist of two modes, but usually of unequal exponents, either a pair of complex conjugates, or two unequal real numbers.6,13-16  The case of complex-conjugate exponents has been extensively discussed within the context of a crack lying on a bimaterial interface. 17  The present paper will focus on the case that the two modes have unequal real exponents.  That is, a stronger and a weaker singularity coexist.  It has been shown that both singularities can be important in causing failure. 5,6,16   Section II will describe the linear superposition of two modes of singular stress fields.  Section III will investigate which slip systems will be activated.  Section IV will calculate the critical residual stress in the thin-film stripe for injecting dislocations into the silicon substrate. 
II. A linear superposition of two modes of singular stress fields

The inset of Fig.2 illustrates an edge of the thin film bonded on the substrate, along with a system of polar coordinates 
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.  The two materials are bonded along the interface, 
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.  Both materials are taken to be elastic and isotropic.  For problems of this type Dundurs18 showed that the stress field depends on elastic constants through two dimensionless parameters: 
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where 
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 is the shear modulus, and 
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 Poisson’s ratio.  The subscripts f and s refer to the film and the silicon substrate, respectively.  By requiring 
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, the Dundurs parameters are confined within a parallelogram in the 
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For a singular field around the root of the edge, each component of the stress tensor, say 
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, takes the form of 
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.  This singular stress field is determined by an eigenvalue problem, resulting in a transcendental equation that determines the exponent 
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. 19,20,21  The exponent is restricted as 
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, a restriction commonly adopted, with justifications critiqued in Refs. [22,23].  For the specific geometry illustrated in the inset, Fig. 2 plots the contours of the exponents on the 
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 plane.  The parallelogram is divided into two regions by a dark curve.  In the lower-left region, the exponents are two unequal real numbers, one stronger (
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As noted in Ref. [5], when the two materials have similar elastic constants, i.e., when 
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, the two modes of singular fields can be interpreted readily.  In this case, the line bisecting the angle of the wedge is a line of symmetry.  The stronger mode corresponds to a stress field symmetric about this line (i.e., the tensile mode).  The weaker mode corresponds to a stress field anti-symmetric about this line (i.e., the shearing mode).  When the two materials have dissimilar elastic constants, however, the symmetry is broken, and the two modes may not be interpreted in such a simple way.


Following a common practice, in this paper we will use 
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 to represent the elastic mismatch, and neglect the effect of 
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 by setting 
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, the exponents are two unequal real numbers, regardless the values of 
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We next paraphrase several fundamental ideas in fracture mechanics.25  Once we retain the two unequal exponents, the stress field around the root of the edge is a linear superposition of the two modes:
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The angular functions 
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, and their full expressions are listed in Appendix A.  The stress intensity factors, 
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, are determined by the external boundary conditions, as described in Section IV.  

The singular stress field (3) is obtained by assuming that the materials are elastic, and the edge is perfectly sharp.  Such assumptions are invalid in a process zone around the root of the edge.  Let 
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 be the size of the process zone, within which the singular stress field (3) is invalid.  Also, the singular stress field (3) is invalid at size scale 
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, where the external boundary conditions will change the stress distribution.  However, provided the process zone is significantly smaller than the macroscopic length, 
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, the singular stress field (3) prevails within an annulus, known as the k-annulus, of some radii bounded between 
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The two parameters, 
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This convention is illustrated in Fig. 3.  Here 
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 and 
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 characterizes the stress field at length scale 
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, with S characterizing the amplitude of the stress field, and 
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 characterizing the relative contribution of the two modes.  Since both 
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The microscopic process of dislocation emission occurs within the process zone, but is driven by the stress field (3) in the k-annulus. Dislocations emit from the root when the amplitude 
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  reaches a critical value 
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The amplitude 
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 and the mode angle 
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 are determined by the external boundary conditions, by solving a boundary value problem of linear elasticity.  The critical condition 
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 is determined either by experimental measurement or by computation from a microscopic model of the emission process.

III. Selection of critical slip system

Table I lists the twelve slip systems in silicon.  Given a mode angle, 
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, as the amplitude 
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 increases, some slip systems will activate earlier than others.  We select the critical slip systems by the following procedure.  For each slip system, we use the stress field (3) to calculate the resolved shear stress at distance 
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.  The slip system with the maximum resultant shear stress is taken to be the critical slip system. 

For a given slip system, let 
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 be the unit vector normal to the slip plane, and 
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 be the Burgers vector.  Under a general state of stress 
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A combination of (3), (4) and (6) gives the resolved shear stress at the distance 
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Because this procedure only invokes the magnitude, not the direction, of the resolved shear stress, a simultaneous change in the sign of the two stress intensity factors 
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 will not change the condition of dislocation emission.  Consequently, we can restrict the range of the mode angle to 
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An inspection of Fig. 1 shows that the slip systems 
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. Other similar pairs of slip systems are listed in Table I.  By contrast, the resolved shear stress for slip systems 
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.  As an example, in Fig. 4(a), the resolved shear stress is plotted as a function of θ for 
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 corresponding to the maximum resolved shear stress is selected as the critical angle where the potential dislocation is nucleated.  In Fig. 4(b), the critical polar angle 
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For 
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, Fig. 5 (a) plots the resolved shear stresses as a function of the mode angle 
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 for all twelve slip systems.  The slip system with largest resolved shear stress is the potential slip system on which dislocations are firstly injected.  The slip systems so selected are marked as the critical slip system for the whole range value of 
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IV.  The critical condition for dislocation emission


The stress field around the root of the edge is described by Eq.(3). Linearity and dimensional consideration dictate that the stress intensity factors 
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 should take the form 
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where the dimensionless functions 
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 are determined as follows.  We calculate the full stress field in the structure by using the finite element package ABAQUS, then fit the interfacial shear stress close to the root, say 
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with 
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 and 
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 as fitting parameters.  The two functions so calculated are plotted in Fig. 6.  The trend is understood as follows.  Although the stress field intensifies at the root, the side surface of the stripe is traction-free.  When the stripe is very narrow, 
[image: image111.wmf]0

/

®

h

L

, the stress in the stripe is almost fully relaxed.  When the stripe is very wide, 
[image: image112.wmf]¥

®

h

L

/

, the stress field near one edge of the stripe no longer feels the presence of the other edge, so 
[image: image113.wmf]1

f

 and 
[image: image114.wmf]2

f

 attain plateaus.

A combination of (4) and (8) gives the mode angle 
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Take the typical value of film thickness 
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nm, and take the process zone size 
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 to be the Burgers vector in silicon 
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, and the weaker singular term in Eq.(3) is negligible, so that the singular stress field (3) can be simplified to the single mode.  However, for positive values of 
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, i.e., when the film is stiffer than the substrate, the mode angle 
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 increases very fast, and both singular terms in (3) should be taken into account.

We now comment on the case studied in Ref. [4].  The film stripe is SiN with shear modulus 54.3GPa and Poisson’s ratio 0.27.  The silicon substrate is of shear modulus 68.1GPa and Poisson’s ratio 0.22.  The elastic mismatch is small, 
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.  Evidently in this case the weaker singularity makes negligible contribution.  From Fig. 5(b), we identify the critical slip systems are 
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We now calculate the critical residual stress in the thin-film stripe to inject dislocations into silicon.  We assume that the critical condition is reached when the the maximum resolved shear stress reaches the theoretical shear strength at distance 
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 is the shear modulus of silicon.26   Setting 
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, a combination of Eqs. (3), (6) and (8) gives a scaling relation between the critical residual stress and the feature sizes:
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Figures 5 and 7 show that the critical slip systems are 
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.  We plot in Fig. 8  the normalized critical stresses as a function of the aspect ratio L/h for Dundurs 
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, 0, -0.5.  A plateau is reached for large values of the aspect ratio L/h. When the aspect ratio is decreased, the critical stress will drastically improve, implying the fact that a narrow stripe might not inject dislocations into the silicon substrate, while a wide stripe could inject dislocations.  Also evident is that the critical stress increases as the film becomes stiffer.  This is because the same level of residual stress in a stiff film will induce a low level of stress if the substrate is relatively compliant.  
V. Concluding remarks


The singular stress field at a root of an edge is a linear superposition of two modes, with different exponents.  A mode angle 
[image: image146.wmf]y

 is introduced to measure the relative contribution of the two modes to the failure conditions.  Figure 2 shows that the two exponents are very different when the film is compliant relative to silicon, and are very similar when the film is stiff relative to silicon.  Consequently, as shown in Fig. 7, the weaker singular field is negligible when the film is compliant, but is significant when the film is stiff.  For the full range of the mode angle, we describe a procedure to select the critical slip systems.  On the basis of the criterion that dislocations nucleate when the resolved shear stress at distance b from the root of the thin-film edge reaches the theoretical strength, we calculate the critical residual stress in the stripe, and show that the critical stress is low when the stripe is wide or compliant.  
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Appendix A.  Stress components in polar coordinates and crystal coordinates


The singular stress field Eq.(3) is solved by the methods outlined in Ref. [10, 5]  The eigenfunctions 
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The eigenvalue 
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 and its associated coefficients A, B, C and D in the film and the substrate are solved by the boundary conditions.  In this paper, the singular stress field in the silicon substrate around the root of the edge causes dislocation to be emitted, so that the eigenvalues and the associated coefficients only in the substrate are listed in Table II (for 
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In calculating the resolved shear stress Eq.(6), the stress components in the crystal coordinates 
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Table I. The twelve slip systems and the corresponding critical polar angles are listed. 
	Slip plane, n
	Slip direction, b
	Critical polar angle, θ*
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, the critical polar angle, i.e. the polar angle for which the resolved shear stress has a maximum, depends on the mode angle. This dependence is depicted in Fig 4. 
	Table II. Singularity exponents and the associated coefficients in Eqs.(A.1)–(A.5) in silicon substrate for 
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[image: image199]Fig. 1.  A blanket thin film, of thickness h and residual stress
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, is grown on the (001) surface of a single-crystal silicon substrate.  The film is then patterned into a stripe of width L, with the side surfaces parallel to the 
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 plane of silicon. 
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Fig. 2.  The inset shows the root of an edge of a thin film bonded on a substrate.  Contours of the singular exponents are plotted on the plane of the Dundurs parameters (
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,
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).  The parallelogram is divided into two regions by a dark curve. In the lower-left region, the exponents are two unequal real numbers, with the larger one labeled horizontally and the smaller one labeled vertically. In the upper-right region, the exponents are a pair of complex conjugates, with real part depicted by solid lines and labeled horizontally, and the imaginary part depicted by dashed line and labeled vertically.
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Fig. 4.  The normalized resolved shear stress for slip systems 
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[image: image216]Fig. 5. Normalized resolved shear stresses are plotted as a function of mode angle for all of the twelve slip systems.  The slip system with largest resolved shear stress is the potential slip system on which the dislocation is firstly injected, so those slip systems are selected and marked for the whole range of the mode angle, 
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Fig. 6
The normalized stress intensity factors, f1 and f2, are plotted as a function of the aspect ratio, 
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Fig. 7
Mode angle 
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Fig. 8
Normalized critical stresses are plotted as a function of the aspect ratio L/h for Dundurs parameter 
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