Compression-after-impact response of woven fiber-reinforced composites

Hao Yan, Caglar Oskay *, Arun Krishnan, Luoyu Roy Xu
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, USA

A R T I C L E I N F O
Article history:
Received 12 April 2010
Received in revised form 23 July 2010
Accepted 17 August 2010
Available online xxxx

Keywords:
B. Delamination
C. Multiscale modeling
C. Damage mechanics
C. Finite element analysis
Compression-after-impact

A B S T R A C T

This manuscript investigates compression-after-impact failure in woven fiber-reinforced composites. Compression failure of composite structures previously damaged by an impact event is due to the propagation of impact-induced damage mechanisms such as interlaminar debonding, constituent (i.e., matrix and fiber) microcracking, sublamine buckling, as well as the interactions between these mechanisms. The failure mechanisms within each ply are idealized based on a reduced order multiscale computational model, in which, the damage propagation in the matrix and fibers upon compression is explicitly modeled. Delamination along the ply interfaces is idealized using a cohesive surface model. The initial impact-induced damage within the microconstituents and interfaces are inferred from experimental observations. A suite of numerical simulations is conducted to understand the sublamine buckling, propagation of delamination and constituent damage upon compression loading. The numerical investigations suggest extensive propagation of delamination and mode transition preceding sublamine buckling. Initiation and propagation of matrix and fiber cracking, observed upon sublamine buckling, is the cause of ultimate shear failure.

1. Introduction

Fiber-reinforced composites have been gaining prominence as high performance structural materials in aerospace, naval and automotive industries due to their high specific strength and stiffness. One of the main difficulties with fiber-reinforced composite structures is that their performance degrades once subjected to impact of even modest magnitudes. It is well known that the compressive strength reduces after an impact event, such as tool drop, runway debris impact, bird strikes, and ballistic projectiles in the case of aerospace structures. The impact event typically causes matrix cracking, fiber breakage and delamination within the structure. Under compressive loads, these failure mechanisms interact and the impact-induced damage propagates to failure at significantly lower load levels compared to the undamaged state [1,2].

Considerable research has been devoted to the experimental analysis of compression-after-impact (CAI) behavior of fiber-reinforced composites (e.g., [3–9] among many others). The main foci of the experimental investigations have been (1) characterization of damage within the material due to impact and (2) phenomenological correlation of the reduction in the compressive strength to the impact-induced damage. The primary triggering mechanism of failure in impacted composites is the buckling of sublaminates formed due to the impact event [10]. Impact-induced delamination occurs at a roughly circular region around the impact site. The delaminated region cause local buckling of the sublaminates under compressive loads. The size of the delaminated zone increases with the energy of the impact event, reducing the CAI strength of the material [5,8,9,11]. In addition to the sublamine buckling, CAI strength may be affected by additional impact-induced damage mechanisms including, distinct matrix cracks at the impact surface, matrix and fiber microcracking, as well as weakening of the interlaminar cohesive strength beyond the delamination zones. Systematic studies of the interactive effects of these damage processes have been relatively scarce. The CAI performance of composites is also significantly affected by the microstructural configuration [9], the mechanical properties of the constituent materials, particularly the resin [11], stacking sequence [12,13] and specimen thickness [2,14,7].

A number of analytical approaches have been proposed for the prediction of CAI strength (e.g., [15–18] among others). Chai et al. [15] employed a fracture mechanics criterion to model the stable and unstable delamination growth in laminated composites. Soutis and coworkers [17] observed the similarity between the failure patterns in laminated composites with an open-hole and impact-damaged composites, and employed a fracture toughness model, originally proposed for open-hole geometry, to predict the CAI strength. Xiong et al. [16] proposed a multistep analytical prediction method, in which the impact damage is modeled as an elliptical soft inclusion. In addition to analytical methods a number of numerical investigations have been conducted to predict the
buckling load and CAI strength (e.g., [19–21], among others). While the prediction strategies have been relatively successful in estimating the CAI strength, devising preventive strategies against strength degradation requires detailed analysis of failure in the pre- and post-buckling loading regimes, in which all dominant failure mechanisms and their interactions are taken into account [22].

In this manuscript, we conduct a detailed numerical analysis of the compression-after-impact response of a woven fiber composite composed of E-glass fibers and vinyl ester resin. Failure mechanisms of matrix cracking and fiber breakage are explicitly modeled based on a multiscale computational method recently proposed by Oskay and coworkers [23,24]. The propagation of impact-induced delamination at multiple ply interfaces is idealized using a cohesive surface model. The impact-induced damage is incorporated by considering the presence of an initial matrix crack, presence of initial delamination with circular geometry between plies, as well as initial damage along the ply interface outside the delaminated zone. Simulations of a composite specimen subjected to compression-after-impact loading is compared to experimental results. The failure progression along the ply interfaces as well as within the composite constituents is analyzed to identify the failure patterns under compressive loading.

2. CAI experiments

Glass fiber-reinforced vinyl ester (glass/VE) panels were produced using vacuum assisted resin transfer molding (VARTM) process [25]. Eight layers of plain weave glass fabric (CWR 2400/50 plain weave, Composites One, LLC) were used to produce the panels with 4.95 ± 0.1 mm thickness as required by ASTM D 7137 specification at the rate of 1 mm/min. Strain gages were attached on the sample back and front surfaces to monitor the strain variations at both surfaces during compression. The reason to use strain monitoring is to avoid any global laminate buckling during compression. The progressive compression failure started from the impact damage site as shown in Fig. 1. Initially, as the compression load increased, impact-induced delamination progressively propagates. The final failure was controlled by sudden extension of the horizontal matrix crack toward the edges of the specimen, as shown in Figs. 1b and d, in addition to the formation of a shear crack through the thickness as shown in Fig. 2. The shear crack was inclined at an angle of 30°–45° with respect to the compressive loading direction. No significant kink band formation was observed within the shear failure zone.

3. Numerical modeling of CAI failure

The geometry, discretization, boundary conditions and impact-induced damage considered in the numerical investigations are illustrated in Fig. 3. A 101.6 × 152.4 cm rectangular plate with 5 mm thickness is modeled. The thickness direction displacement is constrained (u3 = 0) along the edges of the front and back side of the plate, as prescribed by the compression-after-impact test fixture. The compression loading is imparted on the specimen by prescribing vertical displacement at the top surface. The bottom surface of the specimen is restrained in the vertical direction. In the numerical simulations, the prescribed vertical displacements are imposed by considering Dirichlet type boundary condition: $u^t = u(t)$. $u(t)$ is the prescribed displacement history of the boundary, which is taken to be linearly increasing at the top surface of the specimen and homogeneous at the bottom surface of the specimen. The compressive loading of the specimen mimics the loading in the experimental investigations.

3.1. Impact-induced damage

Four mechanisms of impact-induced damage are considered: (1) the presence of a matrix crack along the fill (horizontal)
direction, (2) delamination within the impact damage zone, (3) loss of strength and cohesive energy along the ply interfaces outside the delaminated zone, and (4) matrix and fiber cracking within the impact damage zone. The experimental results clearly display the presence of two impact-induced matrix cracks along the fill and warp (vertical) directions on the impacted (front) face as shown in Fig. 1a. The experimental investigations suggest that the matrix crack along the fill direction grows, whereas the crack along the warp direction remains unaltered upon compression. Hence, the warp direction matrix crack is not incorporated into the numerical model. The crack orientation and the depth are 45° and one ply length (0.625 mm), respectively. The surface roughness and friction on the faces of the impact-induced matrix crack is assumed to have little effect on the compression response and neglected.

The area of the impact-induced delamination within the sublamine is assumed to be circular in shape. While the actual measured shape of the delamination zone is typically more complex [13], the assumption of circular delamination zone has been employed in prior investigations [17,27] and adopted in this study. The largest delamination under impact loading is observed between the 7th and 8th plies. It is assumed that the size of the delamination zone between plies increases as a function of thickness [5] as illustrated in Fig. 3b. Delamination is considered between plies 4–5, 5–6, 6–7, and 7–8 only. The areas of delamination between plies 1–2, 2–3, and 3–4 are small and does not significantly affect the CAI response as verified by numerical simulations. Within the zones of impact-induced delamination, interfacial tractions vanish under tensile and shear loading. Friction between the debonded surfaces is ignored. Delaminated plies are prevented from overlapping by employing contact formulation at the zones of delamination. Impact event affects the interlaminar cohesive strength outside the zone of delamination. The cohesive strength as well as the critical energy release rate of the interfaces are found to be smaller than the cohesive strength and the critical energy release rate of the undamaged material. This effect is further discussed in Section 4.

In addition to delamination, the composite constituents undergo damage during the impact event within the area delimited by the cone shape illustrated in Fig. 3b. Some prior investigations considered a complete lack of load carrying capacity of the plies within the damaged area [16,17]. In view of these investigations, we consider that the plies 5–8 have negligible residual strength within the conical damage zone after the impact event.

3.2. Ply failure

Failure mechanisms within each ply are modeled using an eigendeformation-based reduced order computational homogenization (EHM) model recently proposed by Oskay and coworkers [23,24]. The aim and the main contribution of the current investigations are to employ the EHM model to understand failure mechanisms under compression-after-impact loading. In the current modeling approach, the response at the scale of the microstructure is numerically evaluated using simulations conducted on the domain of the representative volume element (RVE). The EHM model employs the transformation field theory [28], which is based on the idea of precomputing certain information about the micro-

Fig. 2. A schematic of the load-displacement curve of an impacted composite laminate in compression.

Fig. 3. The numerical model of the CAI specimen: (a) boundary conditions and impact-induced damage, (b) impact-induced delamination along the thickness direction, and (c) finite element discretization of the CAI specimen.

The weighting matrix differentiates between damage accumulation direction, and fibers along the warp direction. Let the weighting matrix.

\[F^t = \begin{pmatrix} F_{11}^t & F_{12}^t & F_{13}^t \\ F_{21}^t & F_{22}^t & F_{23}^t \\ F_{31}^t & F_{32}^t & F_{33}^t \end{pmatrix} \]

in which, \(\epsilon_{ij}^t \) is the tensor of elastic moduli in constituent, \(\gamma \). The fundamental solutions and the polarization functions of the RVE problem based on the EHM method. The resulting macroscale stress–strain relationship is schematically illustrated in Fig. 5a. The fundamental solutions and the polarization functions of the RVE problem based on the EHM method. The fundamental solutions and the polarization functions of the RVE problem based on the EHM method.

\[\sigma_y(x, t) = \mathbf{E}_{ijkl}(x, t) + \sum_i \mathbf{E}_{ijkl}^{(i)}(x, t) \]

where, \(\mathbf{E}_{ijkl}^{(i)} \) are the damage-induced and elastic polarization functions computed using the fundamental solutions of the RVE problem based on the EHM method. The fundamental solutions and the polarization functions of the RVE are evaluated numerically [23], \(\mathbf{E}_{ijkl} \) denotes the tensor of elastic moduli in constituent, \(\gamma \).

\[\mathbf{E}_{ijkl}^{(i)}(x, t) = 1 \bigg|_\Theta \int_{\theta(1)} \int_{\theta(0)} g_{ijkl}^{(i)}(y, y) dy dy \]

where, \(\theta \) and \(\theta(1) \) denote the domains of the RVE and the domain of the constituent, \(\eta \), respectively, and; \(g_{ijkl}^{(i)} \) and \(C_{ijkl} \) are the damage-induced and elastic polarization functions computed using the fundamental solutions of the RVE problem based on the EHM method. The fundamental solutions and the polarization functions of the RVE are evaluated numerically [23], \(\mathbf{E}_{ijkl} \) denotes the tensor of elastic moduli in constituent, \(\gamma \).

\[\mathbf{E}_{ijkl}^{(i)}(x, t) = 1 \bigg|_\Theta \int_{\theta(1)} \int_{\theta(0)} g_{ijkl}^{(i)}(y, y) dy dy \]

where, \(\theta \) and \(\theta(1) \) denote the domains of the RVE and the domain of the constituent, \(\eta \), respectively, and; \(g_{ijkl}^{(i)} \) and \(C_{ijkl} \) are the damage-induced and elastic polarization functions computed using the fundamental solutions of the RVE problem based on the EHM method. The fundamental solutions and the polarization functions of the RVE are evaluated numerically [23], \(\mathbf{E}_{ijkl} \) denotes the tensor of elastic moduli in constituent, \(\gamma \).

\[\mathbf{E}_{ijkl}^{(i)}(x, t) = 1 \bigg|_\Theta \int_{\theta(1)} \int_{\theta(0)} g_{ijkl}^{(i)}(y, y) dy dy \]

where, \(\theta \) and \(\theta(1) \) denote the domains of the RVE and the domain of the constituent, \(\eta \), respectively, and; \(g_{ijkl}^{(i)} \) and \(C_{ijkl} \) are the damage-induced and elastic polarization functions computed using the fundamental solutions of the RVE problem based on the EHM method. The fundamental solutions and the polarization functions of the RVE are evaluated numerically [23], \(\mathbf{E}_{ijkl} \) denotes the tensor of elastic moduli in constituent, \(\gamma \).

\[\mathbf{E}_{ijkl}^{(i)}(x, t) = 1 \bigg|_\Theta \int_{\theta(1)} \int_{\theta(0)} g_{ijkl}^{(i)}(y, y) dy dy \]

where, \(\theta \) and \(\theta(1) \) denote the domains of the RVE and the domain of the constituent, \(\eta \), respectively, and; \(g_{ijkl}^{(i)} \) and \(C_{ijkl} \) are the damage-induced and elastic polarization functions computed using the fundamental solutions of the RVE problem based on the EHM method. The fundamental solutions and the polarization functions of the RVE are evaluated numerically [23], \(\mathbf{E}_{ijkl} \) denotes the tensor of elastic moduli in constituent, \(\gamma \).
3.2.1. Calibration of undamaged material parameters
The multiscale model that defines the failure behavior within the plies includes 9 failure parameters: $a_{ph}^{(i)}$, $b_{ph}^{(i)}$, $c_{ph}^{(i)}$, $c_{a}^{(i)}$. Assuming isotropic behavior for the microconstituents; four elastic constants define the elastic response of the woven composite: $E^{(m)}$, $v^{(m)}$, $E^{(f)}$, and $v^{(f)}$. $E^{(c)}$ and $v^{(c)}$ denote the Young’s modulus and Poisson’s ratio in constituent γ, respectively.

The experimentally observed and simulated elastic and strength properties of the composite material are summarized in Table 1. Experimentally determined tensile moduli of the matrix and fiber materials are 3.4 GPa and 70 GPa, respectively. The tensile stiffness of the composite material along the warp and fill directions are 29.2 GPa and 23.9 GPa, respectively. The stiffness of the composite material under compression along the warp and fill directions are 31.9 GPa and 26.9 GPa. The Poisson’s ratios of the composite material along the warp and fill directions are 0.14 and 0.16, respectively. In our simulations, we employ the experimentally provided matrix and fiber stiffness values: $E^{(m)} = 3.4$ GPa and $E^{(f)} = 70$ GPa. Experimental measurements of the Poisson’s ratios for the constituent materials are not available. We therefore assume that the constituent Poisson’s ratios are equal to the average Poisson’s ratio of the overall composite (i.e., $v^{(m)} = v^{(f)} = 0.15$). The composite stiffness properties are evaluated based on the linear-elastic computational homogenization method [33]:

$$\sigma_{ijkl} = \frac{1}{|\Theta|} \int_{\Theta} T_{ijkl}(G_{\text{mod}} + I_{\text{mod}}) d\Theta$$

in which, T_{ijkl} denotes the tensor of elastic moduli of the composite. The computed elastic moduli for the overall composite and the experimental values are in good agreement as summarized in Table 1.

3.3. Interlaminar failure
The failure along the interfaces between composite laminates is modeled using cohesive surfaces. To this extent, the traction–displacement relationship along the interlaminar boundaries are expressed as:

$$\mathbf{t} = (1 - \omega_{\text{int}})K\mathbf{\delta}$$

in which, $\mathbf{t} = [t_1, t_2]$ is traction vector with normal and shear components are indicated by subscripts, N and S, respectively; $K = \text{diag} \begin{bmatrix} K_N, K_S, K_S \end{bmatrix}$ the diagonal interface stiffness matrix; $\delta = \{\delta_n, \delta_s\}$, the displacement jump vector, and; ω_{int} is a history dependent variable describing the state of damage. The evolution of damage as a function of displacement jump is schematically described in Fig. 5b. A linear damage evolution law is adopted in this study. The damage growth initiation criteria describes the range of effective displacement jump that corresponds to no accumulation of damage:

$$\lambda_c = \sqrt{\frac{(\delta_n)^2}{\delta_n} + \frac{(\delta_s)^2}{\delta_s}} \leq 1$$

Hence the damage initiates when λ_c reaches unity. Upon initiation, the evolution of damage is expressed as:

$$\dot{\omega}_{\text{int}} = \frac{K_f}{K_N(K_f - K_c)} \lambda_c^N$$

in which, $K_c = \sqrt{(\delta_n)^2 + (\delta_s)^2}$ denotes the critical equivalent displacement jump at the initiation of damage growth, and; K_f denotes equivalent displacement jump at ultimate debonding.

The failure parameters $a_{ph}^{(i)}$ and $b_{ph}^{(i)}$ define the evolution of damage throughout the loading history, whereas, $c_{ph}^{(i)}$ differentiate between the tensile and compressive failure behavior. The strength of the constituent materials and the overall composite along the tensile and compressive directions provided by the experimental investigations are employed to calibrate the fiber and matrix failure parameters. The calibrated material parameters are summarized in Table 2. The stress–strain response of the overall composite computed by unit cell simulations is shown in Fig. 6. The simulated strength values are in reasonable agreement with the experiments as summarized in Table 1.

Table 1	Stiffness and strength properties of the composite material provided by experiments [31] and RVE scale simulations.	
Compression properties	**Experiments**	**Simulations**
Compression modulus (GPa)	31.9	30.5
Warp direction	26.9	25.5
Fill direction	29.2	30.5
Tension modulus (GPa)	23.9	25.5
Compression strength (MPa)	363.4 (75.0)a	357.0
Warp direction	336.4 (25.2)	353.0
Tension strength (MPa)	512.5 (22.5)	481.0
Poisson’s ratio	0.16 (0.01)	0.15

a Standard deviation.

| Table 2 | Calibrated strength parameter for the composite constituent materials. |
|---------------------------------|------------------|------------------|
| $a_{ph}^{(i)}$ | 15.0 |
| $b_{ph}^{(i)}$ | 2.3 |
| $c_{ph}^{(i)}$ | 5.0 |
| $a_{ph}^{(m)}$ | 1.0 |
| $b_{ph}^{(m)}$ | 2.0 |
| $c_{ph}^{(m)}$ | -28.0 |
| $a_{ph}^{(f)}$ | 400.0 |
| $b_{ph}^{(f)}$ | 168.0 |
| $c_{ph}^{(f)}$ | 0.0 |

Fig. 5. Illustration of the damage progression models: (a) bilinear cohesive law for delamination propagation in case of pure mode I condition. A mixed mode cohesive surface law is employed in the simulations and (b) damage evolution law for composite constituents.
the Benzeggah–Kenane criterion [34]:

\[\kappa = \max_{\epsilon_{ij}(\tau)} \left[\epsilon_{ij}(\tau) \right] \]

where, \(\epsilon_{ij} \) and \(\epsilon_{ij}^{\prime} \) are ultimate normal and shear tractions along the interface, respectively. \(\kappa = \max_{\epsilon_{ij}(\tau)} \left[\epsilon_{ij}(\tau) \right] \) is the maximum equivalent displacement jump attained throughout the history of loading. The mixed mode condition for cohesive cracking is modeled using the Benzeggah–Kenane criterion [34]:

\[G_c = \frac{G_{Kc} + (G_{Kc} - G_{K}) \sqrt{\kappa}}{G} \]

where, \(G_{Kc} \) is a material parameter defining mode mixity; \(G_{Kc}/G \) denotes the fraction of the cohesive energy dissipated by shear tractions, \(G \) the work done by the interface tractions; \(G_{Kc} \) the work done by the shear components of interface tractions, and; \(G_{Kc} \) and \(G_{K} \) are critical mode I and II energy release rates, respectively.

3.3.1. Calibration of undamaged material parameters

The cohesive surface model includes seven independent parameters. The interface stiffness coefficients along the normal and shear directions are related to the equivalent Young's and shear moduli within the interface region: \(K_N = E_{eq}/h \) and \(K_S = G_{eq}/h \), in which, \(h \) is the thickness of the interface region. \(E_{eq} \) and \(G_{eq} \) are typically bounded by the stiffness of the constituent materials: \(E_{matrix} \leq E_{eq} \leq E_{fiber} \) and \(G_{matrix} \leq G_{eq} \leq G_{fiber} \). In this study, we assume that the equivalent elastic and shear moduli within the interface region are equal to the homogenized moduli of the composite material along the thickness direction: \(E_{eq} = E_{33} \) and \(G_{eq} = G_{33} = G_{13} \). The orientation of the composite representative volume element is illustrated in Fig. 4. The interface thickness in our simulations is taken to be 100 μm. The interface thickness is calculated based on the composite RVE, as the average resin thickness between plies.

The ultimate normal and shear tractions along the interface are bounded by the strength of the constituent materials: \(\sigma_{matrix}^{\prime} \leq \sigma_{fiber}^{\prime} \) and \(\sigma_{matrix}^{\prime} \leq \tau_{fiber}^{\prime} \). \(\sigma_{matrix}^{\prime} \) and \(\tau_{matrix}^{\prime} \) denote the tensile strength of the matrix and fiber materials along the thickness direction, respectively, and; \(\sigma_{fiber}^{\prime} \) and \(\tau_{fiber}^{\prime} \) are the shear strength values. In this study, the ultimate normal and shear tractions are taken to be equal to the normal and shear strength of the composite: \(\sigma_{n}^{\prime} = 109.25 \) MPa and \(\tau_{n}^{\prime} = 42.5 \) MPa. The components of the critical equivalent displacement jump vector are: \(\delta_{n}^{\prime} = \delta_{n} \) and \(\delta_{s}^{\prime} = \delta_{s} / K_S \). Critical energy release rates for interface delamination in composite systems typically vary between 200-2000 J/m² range [35]. The experiments conducted by Ref. [36] reported \(G_c \) values of 1210 J/m² and 4550 J/m², respectively, for a composite configuration similar to that under investigation in this study. These values are taken to be the undamaged material properties in our investigations, acknowledging the significant variations in experimentally reported \(G_c \) and \(G_{Kc} \) values for similar materials [35]. The mode mixity parameter, \(\eta \), is calibrated based on the experimental measurements provided by Dharmawan et al. [36]. \(\eta = 1.53 \) is the optimal mode mix parameter in the least square sense.

4. Numerical simulation of CAI response

4.1. Sublamine buckling

A series of simulations have been conducted to estimate the critical compressive loads that lead to local buckling at the impact-induced damage zone. Fig. 7 shows the numerically computed buckling loads for two failure scenarios in impacted specimens compared to the experimental observations and the undamaged material. The constituent materials are assumed to be elastic and delaminated zones are assumed to remain unaltered during the buckling simulations. When the damage within the composite constituents and delaminations are restricted to the impact-induced configuration as described in Section 3.1 – which assumes no significant damage progression prior to buckling – the buckling strength is 173 MPa. The computed value is significantly higher than the failure strength observed in the experiments (117 MPa with standard deviation of 8.6 MPa). This suggests that the theoretical buckling strength of impact-induced damage configuration overestimates the compressive strength. Damage progression during the compression loading event is critical in predicting the CAI failure. When the delamination zone is extended across the specimen within middle third of the specimen – which corresponds to maximum level of delamination prior to buckling – the buckling strength is 103 MPa. The computed buckling strength is slightly lower than the experimental observations, indicating that significant delamination propagation precedes sublamine buckling under compression loading.

4.2. Delamination propagation

The buckling analysis, as well as the experimental observations indicates propagation of delamination prior to the onset of failure. We investigated delamination propagation along the ply interfaces. The simulations in this section do not consider progression of damage within the composite constituents. Delamination propagation is modeled by introducing cohesive surface models within the middle third of each ply interface outside the initial impact-induced delamination zone. Within the impact-induced delamination zone, zero cohesive strength is considered. Numerical simulations conducted using the undamaged critical energy release rates

![Fig. 6. The stress-strain response of the composite RVE along the fill and warp directions under compressive and tensile loading.](image)

![Fig. 7. Experimental and simulated sublamine buckling strength of composite specimens.](image)

reported in Ref. [36] \(G_{IC} = 1210 \text{ J/m}^2\) and \(G_{IIc} = 4550 \text{ J/m}^2\) for a similar material configuration, and the undamaged ultimate traction values \(t_f^* = 109.25 \text{ MPa}\) and \(t_s^* = 42.5 \text{ MPa}\) indicated no significant delamination propagation up to the experimentally observed failure load. This is in contrast with our experimental observations, in which, the response is marked by delamination propagation at load levels lower than the ultimate failure. We therefore employed a parametric analysis to investigate the effect of impact on the strength and critical energy release rate beyond the circular initial delamination zones. Numerical investigations indicate that the delamination propagation is strongly influenced by the loss of interfacial strength, and to a lesser extent, to the reduction in critical energy release rates. Experimentally verified propagation of delamination prior to the onset of sublamine buckling are observed in the simulations when the critical energy release rates of \(G_{IC} = 200 \text{ J/m}^2\) and \(G_{IIc} = 756 \text{ J/m}^2\), and the ultimate normal and shear strength of 27.3 MPa and 10.6 MPa, respectively, are employed. The critical energy release rates remain to be consistent with, yet slightly lower than the experimentally observed range. The reduced strength and critical energy release rates point to the presence of impact-induced damage beyond the circular delamination zone. In addition, recent investigations [37] based on an efficient short-beam shear approach to measure the mode-II fracture toughness of bonded materials and composites indicate that mode-II fracture toughness of undamaged materials is lower than those measured based on previous techniques.

Fig. 8a–c shows the interface damage profiles between 4th and 5th plies, which triggers buckling. Upon buckling, the fiber and matrix crack propagation initiate at the back face of the specimen, propagating laterally toward the side of the specimen along the thickness direction, in shear mode. The shear crack, which causes ultimate failure within the specimen, is shown in Fig. 9g. The stress–strain diagram of the overall specimen under compression loading is compared to the experiments in Fig. 10. Our simulations provide a good quantitative match with the experimental observations. The compressive strength of the simulated specimen is 116.67 MPa, which is within 0.45% of the average compressive strength observed in the experiments (117.19 MPa). The average strain to failure based on experiments and the simulations are 0.4217% and 0.422%, respectively.

5. Conclusions

This manuscript provided a detailed numerical investigation of the compression-after-impact response of woven E-glass fiber-reinforced vinyl ester composite materials. The numerical investigations are validated against a suite of CAI experiments. We report the following findings: (1) The critical energy release rate to propagate the delamination of impact-induced ply debonds are lower than those observed experimentally in undamaged specimens of similar materials. This indicates impact-induced damage beyond the cone-shaped initial impact-induced damage zone. (2) Delamination propagation is the critical mechanism that lowers the sublamine buckling strength of impacted specimens. Delamination propagation extends throughout the width of the specimen between middle plies, which triggers the sublamine buckling. (3) Delamination propagation is marked by a mode transition: the loading direction shear dominated initial impact-induced delami-
nation extends in low amplitude compression loads, which transitions to the a lateral shear dominated delamination at higher amplitudes. The delamination then extends laterally toward the sides of the specimen. (4) Significant constituent (matrix and fiber) cracking is observed only upon sublaminate buckling. The constituent cracks initiate at the back face of the specimen. The constituent cracks propagate laterally and along the thickness direction in shear mode to cause the ultimate failure of the specimen under compressive loading.

Acknowledgement

The authors acknowledge the support from the Office of Naval Research and the National Science Foundation. The authors also acknowledge Prof. Uday Vaidya at University of Alabama, Birmingham (UAB) for providing samples and allowing us to conduct experiments at UAB testing facilities.

References