Chemical Potential

A system capable of three independent variations. Once again we regard a half glass of wine as a system. It is a rather complex system. In particular, the system is a mixture of two phases: liquid and gas. Both phases are included when we refer to “the wine”. The system contains many species of molecules—water, ethanol, etc.

We arrange to vary the system in three ways. We change the volume of the system by moving a piston using a weight, add matter to the system by opening a valve that connects to a cup of water, and transfer heat to the system by bringing the wine into thermal contact with a heater.

There may be other ways to do work to the wine, but we will neglect them for now. There are many species of molecules in the wine; we will use a valve equipped with a semi-permeable membrane, which allows water molecules to go through, but blocks all other species of molecules. Consequently, of all species of molecules in the wine, only the number of water molecules can vary.

We model the wine as a system with three independent variables:
- the energy in the wine, U
- the volume occupied by the wine, V
- the number of water molecules in the wine, N

The volume of the wine is varied by moving the piston, and the number of water molecules in the wine is varied by opening the valve. The energy of the wine, however, is varied by all three ways—moving the piston, opening the valve, and contacting the heater.

We regard U, V, N as independent variables. When we hold any two constant, we can still vary the third one.

The function $S(U,V,N)$ of a system. When we thermally insulate the wine, fix the position of the piston, and close the valve, the three variables of the wine, (U,V,N), are fixed at a particular set of values. Consequently, once (U,V,N) are fixed, the wine is an isolated system, flipping among a set of microstates. Let Ω be the number of the microstates of the isolated system.
When the three variables \((U,V,N)\) are fixed at a different set of values, the wine becomes another isolated system, flipping among another set of microstates. Consequently, the wine with the three variables corresponds to a family of isolated systems, and the number of microstates is a function of the three variables:

\[
\Omega(U,V,N).
\]

We call the quantity \(\log \Omega\) the entropy, and give it a symbol \(S\), namely,

\[
S = \log \Omega.
\]

The logarithmic function is introduced to simplify mathematics. We make the composite of the wine and the cheese as an isolated system. The number of microstates of the composite is the number of microstates of the wine times the number of microstates of the cheese. The logarithmic function converts this multiplication to an addition: the entropy of the composite is the sum of the entropy of the wine and the entropy of the cheese.

For a system with three variables \((U,V,N)\), the entropy of the system is a function of the three variables, namely,

\[
S = S(U,V,N).
\]

Two systems exchanging energy, space, and matter. Now consider two systems: a glass of wine and a piece of cheese. Both systems contain water. When the wine and cheese are nearby, water molecules may escape from the wine, and then enter the cheese. Of course, water molecules may go the other way around, from the cheese to the wine. How do we predict the direction of water transfer without placing them together? That is, how do we know which one is wetter, the wine or the cheese?

The two systems, the wine and the cheese, are designated as \(A'\) and \(A''\). They are characterized by different functions, \(S'(U',V',N')\) and \(S''(U'',V'',N'')\).

We make the composite of the wine and the cheese into an isolated system, so that the sums,

\[
U' + U'', \quad V' + V'', \quad N' + N'',
\]

are fixed as the wine and the cheese exchange energy, volume, and water. The cheese is wrapped with a semi-permeable membrane, so that cheese and the wine can exchange water molecules, but not any other species of molecules.

The composite has three independent internal variables: the partitions of energy, volume,
and water between the wine and the cheese. A particular set of partitions defines a macrostate of the composite. For a given set of partitions of energy, volume, and water between the wine and the cheese, the two systems are two isolated systems, each flipping among a set of microstates. A microstate of the wine and a microstate of the cheese together constitute a microstate of the composite. The number of microstates of the composite under this set of partitions is the product of the number of microstate of the wine and that of the cheese. Consequently, the entropy of the composite under this set of partitions is the sum of the entropies of the wine and the cheese:

$$S_{\text{com}} = S'(U', V', N') + S''(U'', V'', N'').$$

The composite changes from one macrostate to another as the wine and the cheese exchange energy, volume, and water. When the wine changes energy by δU, changes volume by δV, and changes the number of water molecules by δN, the cheese changes energy by $-\delta U$, changes volume by $-\delta V$ and changes the number of water molecules by $-\delta N$. Associated with this change of the three internal variables, the composite changes its macrostate, and the entropy of the composite changes by

$$\delta S_{\text{com}} = \left[\frac{\partial S'(U', V', N')}{\partial U'} - \frac{S''(U'', V'', N'')}{\partial U''} \right] \delta U$$

$$+ \left[\frac{\partial S'(U', V', N')}{\partial V'} - \frac{S''(U'', V'', N'')}{\partial V''} \right] \delta V$$

$$+ \left[\frac{\partial S'(U', V', N')}{\partial N'} - \frac{S''(U'', V'', N'')}{\partial N''} \right] \delta N$$

According to the fundamental postulate, any change of the internal variables of an isolated system will increase the entropy of the isolated system (http://imechanica.org/node/290). That is, for any combination of δU, δV and δN,

$$\delta S_{\text{com}} \geq 0.$$

This inequality may be satisfied in many ways. We next describe two examples.

Equilibrium between two systems exchanging energy, space, and matter. For any combination of δU, δV and δN, the equality

$$\delta S_{\text{com}} = 0$$

holds when the wine and the cheese are in equilibrium. Consequently, upon exchanging energy, volume and water molecules, the two systems equilibrate when
The two functions, $S(U', V', N')$ and $S^*(U', V', N*)$, are taken to be known. Once the total energy, volume and number of water molecules are given, the above conditions of equilibrium are nonlinear algebraic equations that determine the equilibrium partitions of the energy, volume and water between the two systems.

Partial equilibrium between two systems exchanging energy, space, and matter. The composite has many ways vary its macrostates to increase its entropy. For example, the wine and the cheese may redistribute energy and volume rapidly. However, the cheese is wrapped by a semi-impermeable membrane that allows water molecules to go through very slowly. Consequently, the wine and the cheese are in partial equilibrium with respect to exchanging energy and volume, but are not in equilibrium with respect to exchanging water. In this example, the inequality $\delta S_{\text{corr}} \geq 0$ becomes three separate conditions:

$$\frac{\partial S(U', V', N')}{\partial U'} = \frac{S^*(U', V', N*)}{\partial U*},$$
$$\frac{\partial S(U', V', N')}{\partial V'} = \frac{S^*(U', V', N*)}{\partial V*},$$
$$\left[\frac{\partial S(U', V', N')}{\partial N'} - \frac{S^*(U', V', N*)}{\partial N*} \right] \delta N > 0.$$

When the energy, the volume, and the number of water molecules are at a specific set of partitions, all the partial derivatives are known. According to the last condition, if

$$\frac{\partial S(U', V', N')}{\partial N'} > \frac{S^*(U', V', N*)}{\partial N*},$$

to increase the entropy of the composite, the wine gains water from the cheese, namely, $\delta N > 0$. Conversely, if

$$\frac{\partial S(U', V', N')}{\partial N'} < \frac{S^*(U', V', N*)}{\partial N*},$$
to increase the entropy of the composite, the wine loses water to the cheese, namely, \(\partial N < 0 \). At the end of the notes, we will convert the inequality into an equation by using a kinetic model.

Name partial derivatives of the function \(S(U,V,N) \) **of a system.**

It is too much work to write these partial derivatives all the time. We will give each partial derivative some kind of shorthand. For a system of variable energy, volume and amount of water, the entropy of the system is a function of the three variables, namely,

\[
S = S(U,V,N).
\]

When the independent variables change by small amounts, \(\partial U \), \(\partial V \) and \(\partial N \), the entropy changes by

\[
\partial S = \frac{\partial S(U,V,N)}{\partial U} \partial U + \frac{\partial S(U,V,N)}{\partial V} \partial V + \frac{\partial S(U,V,N)}{\partial N} \partial N.
\]

We have interpreted one partial derivative by using the temperature \(T \), namely,

\[
\frac{\partial S(U,V,N)}{\partial U} = \frac{1}{T}.
\]

See notes on Temperature (http://imechanica.org/node/291). Thus \(1/T \) is the change in the entropy associated with unit change in the energy, while fixing the volume and the number of water molecules. The experimental significance of the temperature is as follows. When \(V \) and \(N \) are fixed, and the system is in contact with a reservoir of energy, energy goes from the system to the reservoir if the temperature of the system is higher than the temperature of the reservoir.

We have also interpreted another partial derivative by writing

\[
\frac{\partial S(U,V,N)}{\partial V} = \frac{p}{T}.
\]

See notes on Pressure (http://imechanica.org/node/885). Thus \(p/T \) is the change in the entropy associated with unit change in the volume, while fixing the energy and the number of water molecules. The experimental significance of the quantity \(p/T \) is as follows. When \(U \) and \(N \) are fixed, and the system is in contact with the reservoir of space, the volume of the system increases at the expense of the volume of the reservoir if the system has a higher value of \(p/T \) than the reservoir. In this experiment, only the partial derivative \(\partial S(U,V,N)/\partial V \) has significance. For historical reasons, however, we give no distinct name to this partial derivative. Rather, we give two separate quantities: the pressure \(p \) and the temperature \(T \). Of course, this single experiment is
incapable of distinguishing two quantities. The two quantities become separately meaningful when we open the system in two ways, changing both its energy and volume. That p is the same as the pressure used in mechanics will be clear when we discuss the function $U(S,V,N)$.

By analogy, we interpret yet another partial derivative by writing
\[
\left(\frac{\partial S(U,V,N)}{\partial N}\right) = -\frac{\mu}{T}.
\]

The symbol μ is called the chemical potential. Thus μ / T is the change in the entropy associated with adding one water molecule to the system, while fixing the energy and the volume. When U and V are fixed, and the system is in contact with the reservoir of water molecules, water goes from the system to the reservoir if the system has a higher value of μ / T than the reservoir. Once again, in such an experiment, only the quantity μ / T is significant. To give μ a separate experimental interpretation, we will have to open the system in more than one way. In any event, the experiment of fixing U and V and then varying N is rather unusual. We will talk about other experimental conditions shortly.

We can also interpret the negative sign in the above definition. When two systems are in mechanical and thermal equilibrium, but not in equilibrium with respect to exchanging water, the following inequality holds:
\[
\left[\left(\frac{\partial S(U', V', N')}{\partial N'} - \frac{S(U^*, V^*, N^*)}{\partial N^*}\right)\right] \delta N' > 0.
\]

Rewrite the inequality as
\[
-\left(\frac{\mu'}{T} - \frac{\mu^*}{T}\right) \delta N' > 0
\]

That is, the two systems have different chemical potentials of water, and water goes from the system with higher chemical potential of water to the system with a lower chemical potential.

Exercise. A half glass of wine and a piece of cheese can exchange energy, water and ethanol. The change of volume in either system is negligible. Develop the conditions that determine the directions of the exchange.

Temperature vs. chemical potential. The temperature of a system measures the change in the entropy of the system associated with the change in energy. We measure temperature by using a thermometer, and adding energy to the system by using a heater. Energy flows from a place of high temperature to a place of low temperature. Temperature corresponds to the daily experience of hotness. Indeed, our daily experience of hotness is so pervasive that it may even
impede our learning of thermodynamics. It takes significant effort for us to sort out, of all our feelings for hotness, what is essential and what is incidental. Only then we can link our daily experience of hotness to the thermodynamics of temperature. See notes on Temperature (http://imechanica.org/node/291).

The chemical potential of ethanol in a glass of wine measures the change in the entropy of the wine associated with the change in the number of molecules of ethanol. Ethanol goes from a place of high chemical potential to a place of low chemical potential. Chemical potential corresponds to the daily experience of the smell of the wine.

Given similarly pervasive roles of temperature and chemical potential in our lives, we may wonder why we do not have the same level of familiarity with the two quantities. I can think of two reasons: one is cultural and the other technical. The cultural reason is that when we feel something is hot, our parents tell us that the temperature is high. However, when we smell a strong wine, our parents miss the teachable moment, and fail to tell us the chemical potential of ethanol is high. The phrase—the chemical potential of ethanol—is simply not in the daily language. So blame our parents.

The technical reason is that, when we feel that something is hot, we attribute the sense of hotness to a single quantity: temperature. However, when we smell something, we may sense multiple quantities: a list of chemical potentials of a list of species of molecules. It is simpler to deal with one quantity than deal with multiple quantities. So blame our world: it confuses us with too many species of molecules.

Of all species of molecules, water is particularly significant to us. Our parents do tell us about humidity. Indeed, our experience of humidity can be mapped to the thermodynamics of the chemical potential of water, just as our experience of hotness can be mapped to the thermodynamics of temperature.

In daily language, some of us may say that a wine is concentrated with alcohol if we feel a strong smell. We will show that the concentration of a solute in a solution can be mapped to the chemical potential of the solute in the solution.

Thermodynamics 0, 1, 2, 3. In teaching thermodynamics, I have followed the following sequence:

- Isolated system (http://imechanica.org/node/290): a system capable of no variation. Entropy, \(S \).
- Temperature (http://imechanica.org/node/291): a system capable of one independent variation. Entropy is a function of energy, \(S(U) \).
• Pressure (http://imechanica.org/node/885): a system capable of two independent variations. Entropy is a function of energy and volume, \(S(U,V) \).

• Chemical potential: a system capable of three independent variations. Entropy is a function of energy, volume and the number of water molecules, \(S(U,V,N) \).

The word “entropy” is the shorthand for the phrase “the logarithm of the number of quantum states”. Thermodynamics stands on a single fundamental postulate: A system isolated for a long time can be in any one of its quantum states with equal probability.

We can speak of the number of quantum states only for an isolated system, but we are interested in interactive systems. To study an interactive system in terms of an isolated system, we allow the system to vary quantities such as energy, volume, and the number of water. These quantities share a remarkable property: each is conserved. When the system loses energy, the rest of the world gains the same amount of energy.

Such an open system is characterized by the entropy as a function of the conserved quantities. When two systems exchange these conserved quantities, the composite of the two systems is an isolated system. The fundamental postulate ascribes experimental significance to the derivative of the entropy with respect to each of the conserved quantities. Given a system, we can measure its temperature, pressure, and chemical potential of water by equilibrating the system with another system with known temperature, pressure, and chemical potential of water.

Experimental determination of the function \(S(U,V,N) \) **of a system.** For a given system of the three independent variables, we can determine the function \(S(U,V,N) \) experimentally as follows. According to the above definitions, when the independent variables change by small amounts \(\delta U \), \(\delta V \) and \(\delta N \), the entropy changes by

\[
\delta S = \frac{1}{T} \delta U + \frac{p}{T} \delta V - \frac{\mu}{T} \delta N
\]

We can put this system in contact with a reservoir, so that the system and the reservoir can exchange energy, volume, and water. When the system and the reservoir equilibrate, the values of \(T \), \(p \) and \(\mu \) of the system equal those of the reservoir. We have already known how to determine \(T \) and \(p \) by experiments. Once we know how to determine \(\mu \) by experiments, we can use the above
equation to determine the function $S(U,V,N)$ incrementally. We will describe the procedure to determine the chemical potential shortly.

Of course, you can always try to theoretically count the number of quantum states of the system, $\Omega(U,V,N)$, and calculate the entropy by $S = \log \Omega$. Such a theoretical counting can be done for a few idealized systems, and will not be pursued in this course.

Experimental determination of the chemical potential of a species of molecules in a complex system. How do we experimentally measure the chemical potential of a species of molecules in a complex system? When two systems can exchange energy and a species of molecules, the fundamental postulate dictates that the two systems reach equilibrium when they have the same temperature and the same chemical potential of the species of molecules. Consequently, once the chemical potential of a species of molecules in one system is determined, the system can be used to determine the chemical potential of the same species of molecules in other systems.

For example, as described in the next paragraph, we can determine the chemical potential of water molecules in a flask containing a pure water vapor as a function of temperature and pressure, $\mu = \mu(T,p)$. We now wish to measure the chemical potential of water molecules in the half glass of wine. We can bring the wine into contact with a flask of water vapor. The contact is made with a semi-permeable membrane that allows water molecules to go through, but blocks all other species of molecules. We then allow the wine to equilibrate with the water vapor in the flask, so that both energy and water molecules stop exchanging between the wine and the flask. The two systems have the same temperature and the same chemical potential. A reading of the chemical potential of water in the flask gives the chemical potential of water in the wine.

Chemical potential of a species of molecules in a pure substance. A pure substance aggregates a large number of a single species of molecules. Several basic phenomena of a pure substance, such as transition of phases and critical point, have been discussed in the notes on Pressure (http://imechanica.org/node/885). We now wish to determine the chemical potential of the species of molecules aggregated in the substance.

When the substance is in a single phase, the energy of a piece of the substance, U, is proportional to the number of molecules in the piece, N. Let the energy per molecule in the piece be
\[u = \frac{U}{N}. \]

The energy per molecule, \(u \), is independent of the size and the shape of the piece. We can similarly define the entropy per molecule,
\[s = \frac{S}{N}, \]
and the volume per molecule,
\[v = \frac{V}{N}. \]
For example, for a gas in a flask, \(V \) is the volume of the flask, so that \(v \) is much larger than the size of a molecule itself.

As a thermodynamic model of the substance, we prescribe the function
\[s = s(u, v). \]

The partial derivatives of the function are interpreted as
\[\frac{\partial s(u, v)}{\partial u} = \frac{1}{T}, \quad \frac{\partial s(u, v)}{\partial v} = \frac{p}{T}. \]

When the energy varies by \(\delta u \) and the volume varies by \(\delta v \), the entropy varies by
\[\delta s = \frac{\delta u}{T} + \frac{p \delta v}{T}. \]

In the above equation, all the quantities on the right-hand side can be measured experimentally. Consequently, the function \(s(u, v) \) can be determined by experiments for any pure substance.

Once the function \(s(u, v) \) for a pure substance is determined, this function can be used to calculate all other thermodynamic functions, such as enthalpy and free energy. We now calculate the chemical potential of the species of the molecules in the substance. For a piece of a pure substance containing \(N \) molecules, the entropy, energy and volume of the piece are all proportional to \(N \), namely,
\[S = Ns, \quad U = Nu, \quad V = Nu. \]

Once the substance is characterized by the function \(s(u, v) \), the function \(S(U, V, N) \) for the piece of the substance is given by
\[S(U, V, N) = Ns(u, v), \]
with
\[u = \frac{U}{N}, \quad v = \frac{V}{N}. \]
Recall the definition of the chemical potential:
Apply the chain rule in calculus, and we obtain that
\[
\mu = -Ts - NT \frac{\partial s(u,v)}{\partial u} \left(- \frac{U}{N^2} \right) - NT \frac{\partial s(u,v)}{\partial v} \left(- \frac{V}{N^2} \right) .
\]
Simplifying, we find the chemical potential of a species in a pure substance:
\[
\mu = -Ts + u + pv.
\]
Once the function \(s(u,v) \) for a pure substance is determined, so is the chemical potential of the species of the molecules that constitute the substance. Of all five quantities on the right-hand side of the above equation, only the energy \(u \) has an arbitrary additive constant. The same additive constant appears in the chemical potential. Incidentally, the right-hand side of the above equation happens to be the Gibbs free energy per molecule of the pure substance.

For many pure substances, the experimentally measured values of \(s, u \) and \(v \) are tabulated for various \(T \) and \(p \). From the above equation, we can obtain the chemical potential of a molecular species in a pure substance as a function of the pressure and temperature
\[
\mu = \mu(T, p).
\]
Recall an old relation:
\[
\delta s = \frac{\partial u}{T} + p \frac{\partial v}{T} .
\]
A combination of the above two equations gives
\[
\delta u = -s \delta T + v \delta p .
\]
We interpret the partial derivatives of the function as
\[
\frac{\partial \mu(T, p)}{\partial T} = -s, \quad \frac{\partial \mu(T, p)}{\partial p} = v.
\]
In the above, we have considered a pure substance in a single phase. When two phases of the pure substance are in equilibrium with each other, the chemical potential of the species of molecules in the two phases are equal. For example, when liquid water equilibrates with its own vapor, the chemical potential of water in the liquid equals the chemical potential of water in the vapor.

Ideal gas. An ideal gas, of \(N \) number of a single species of molecules, and in a flask of volume \(V \), is subject to pressure \(p \) and temperature \(T \). Recall the ideal gas law
\[
pV = NT.
\]
The volume of the flask divided by the number of molecules is denoted by
\[v = \frac{V}{N}, \]
so that the ideal gas law becomes
\[p v = T. \]

Inserting the ideal gas law into the expression
\[\delta \mu = v dp, \]
and then integrating at a constant temperature, we obtain that
\[\mu(T, p) = \mu(T, p_0) + T \log \left(\frac{p}{p_0} \right). \]

At a fixed temperature, this expression determines the chemical potential of an ideal gas up to an additive constant.

For a mixture of several species of molecules, the above equations hold for each species, with the pressure interpreted as the partial pressure of the species. Thus, by changing the partial pressure of the species of molecules in a gas of multiple species of molecules, we can vary the chemical potential of the species in the gas.

Exercise. The gravity of the Earth pulls molecules of gas toward the Earth, by the entropy of the gas disperses the molecules into the space. Assume that the temperature is constant, how does the density of a species of molecules in the gas change with the elevation?

Absolute humidity. The quantity of water per unit volume of air is called the absolute humidity (AH). Let \(N \) be the number of water molecules, \(V \) be the volume of air. The absolute humidity may be defined as
\[\text{AH} = \frac{N}{V}. \]

In practice, the quantity of water is also reported in terms of the mass of water.

We may model the vapor as an ideal gas, so that
\[\frac{N}{V} = \frac{p}{T}. \]

The absolute humidity relates to pressure and temperature as
\[\text{AH} = \frac{p}{T}. \]

At the body temperature 37°C, vapor pressure is 6.28 kPa, so that the saturated vapor has the absolute humidity of \(1.46 \times 10^4 \) water molecules/m³.

Relative humidity. At a given temperature, when the air is in equilibrium with the liquid water, we say that the air is saturated with water. If a given volume of air contains fewer water molecules, the number of water
molecules in the air divided by the number of water molecules in the saturated vapor is called the relative humidity (RH):

$$\text{RH} = \frac{N}{N_{\text{satu}}}.$$

When the vapor is modeled as an ideal gas, the relative humidity is also given by

$$\text{RH} = \frac{p}{p_{\text{satu}}}.$$

where p is the partial pressure of water in the unsaturated gas, $p < p_{\text{satu}}$. We write the chemical potential of water in the air as

$$\mu = T \log \left(\frac{p}{p_{\text{satu}}} \right),$$

with the understanding that the chemical potential is relative to that of the water molecules in a saturated water at the same temperature.

The lung is always saturated with water vapor at the body temperature (37°C), but the atmospheric air may not be. In winter, the cold air outside has low water content even at 100% relative humidity. When the cold air enters a warm room, the relative humidity in the room will reduce below 100% at the room temperature. We will feel uncomfortable. Also, water inside the warm room will condense on cold window panes.

Pressures of water vapor in equilibrium with liquid water at several temperatures

<table>
<thead>
<tr>
<th>T (C)</th>
<th>T (10⁻² eV)</th>
<th>1/T (1/eV)</th>
<th>p (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.36</td>
<td>42.4</td>
<td>0.61</td>
</tr>
<tr>
<td>10</td>
<td>2.45</td>
<td>40.8</td>
<td>1.23</td>
</tr>
<tr>
<td>20</td>
<td>2.52</td>
<td>39.7</td>
<td>2.34</td>
</tr>
<tr>
<td>30</td>
<td>2.61</td>
<td>38.3</td>
<td>4.24</td>
</tr>
<tr>
<td>40</td>
<td>2.70</td>
<td>37.0</td>
<td>7.38</td>
</tr>
<tr>
<td>50</td>
<td>2.79</td>
<td>35.8</td>
<td>12.33</td>
</tr>
<tr>
<td>100</td>
<td>3.22</td>
<td>31.1</td>
<td>101.33</td>
</tr>
<tr>
<td>37</td>
<td>2.68</td>
<td>37.3</td>
<td>6.28</td>
</tr>
</tbody>
</table>

Incompressible liquid. In many applications of liquids, the pressure is relatively small, so that the volume per molecule, v, is taken to be independent of the pressure. The chemical potential is

$$\mu(p) = \mu(0) + pv.$$
Thus, the chemical potential of a species of molecules in an incompressible liquid is linear in the pressure.

Chemical potential and osmotic pressure. Consider the following experiment. Pure water and an aqueous solution are separated by a semi-permeable membrane, which allows water molecules to go through, but blocks solute particles. The volume of a water molecule, \(v \), remains unchanged when the water molecule goes from the pure water to the solution. Denote by \(\Pi \) the difference between the pressure in the pure water and the pressure in the solution. That is, \(\Pi \) is the osmotic pressure due to the solute.

Set the pure water as the reference state, in which the chemical potential of water is zero and the pressure is zero. Thus, the pressure in the solution is \(\Pi \). Let \(\mu \) be the chemical potential of water in the solution due to the effect of the solute, without accounting for the effect of the pressure. This effect tends to draw water into the solution. The pressure in the solution adds to the chemical potential of water in the solution by \(\Pi v \). This pressure tends to push water out of the solution. Consequently, the condition for the pure water to equilibrate with the solution is that the net chemical potential of water is the same in the pure water and the solution, namely,

\[
O = \mu + v\Pi,
\]

or

\[
\mu = -v\Pi.
\]

This expression gives the chemical potential of water in the aqueous solution without accounting for the effect of the pressure. Because the osmotic pressure is often readily measured, this equation can be used to determine the chemical potential of water in the solution.

Chemical potential of the solvent in a dilute solution. A solution is dilute when the number of solute particles is very small compared to the number of solvent molecules. In the dilute solution, solute particles undergo the Brownian motion. The interaction between solute particles is negligible. For the dilute solution, the osmotic pressure is given by the van’t Hoff equation

\[
\Pi = \frac{N}{V} T,
\]

where \(N \) is the number of solute particles in the solution, and \(V \) is the volume of the solution. Thus, \(N/V \) is the concentration of the solution. When the solution
consists of multiple species of solute particles, \(N \) is the total number of the solute particles in the solution, and \(p \) is the net osmotic pressure. See the notes on pressure (http://imechanica.org/node/885).

The chemical potential of solvent in the dilute solution is

\[
\mu = -\frac{vNT}{V},
\]

where \(v \) is the volume per solvent molecule. This expression excludes any contribution to the chemical potential of water due to pressure. The chemical potential of solvent in the pure liquid solvent is set to be zero.

Water-filled void inside an elastomer. Consider a void inside an elastomer. The void is filled with liquid water, while the elastomer is surrounded by unsaturated air. The difference in humidity motivates water molecules to permeate through the elastomer, from inside the void to outside the elastomer, leaving the liquid water inside the void in tension. When the tension is low, the void reduces size but retains the shape. When the tension is high, the void changes shape and forms creases. In this case, water in the void remains as liquid. Alternatively, the liquid water may rupture, and in equilibrium, the water vapor inside the void will attain the same humidity as that outside the elastomer.

Exercise. Confirm that, in equilibrium, the tension in the pure liquid water inside the void is \(\sigma = 1 \text{MPa} \) when the relative humidity outside the elastomer is \(p/p_{\text{sat}} = 993\% \). (The volume per water molecule is \(3.0 \times 10^{-9} \text{m}^3 \).)

Exercise. When a cup of an aqueous solution is in a closed environment, the humidity in the environment is set by the concentration of the solution. Confirm that, in equilibrium, the tension in the pure liquid water inside the void is \(\sigma = 1 \text{MPa} \) when the concentration of the aqueous solution is \(c = 0.4 \text{M} \).

Chemical potential of a solute in a dilute solution. Consider a system of \(N \) identical particles in volume \(V \). The system can represent ink particles in a liquid, solute molecules in a solvent, or gas molecules in a flask. The particles explore the whole volume by random motion. The number of particles per unit volume defines the concentration of the particles:
The solution is dilute if the concentration is so low that motion of each particle is unaffected by other particles. For such a dilute solution, the number of microstates is given by

\[\Omega = \frac{(\omega V)^N}{N!} , \]

where \(\omega \) is the number of microstates for a system of a single particle in a unit volume. The entropy \(S = \log \Omega \) is given by

\[S = N \left(\log \omega + \log c - 1 \right) . \]

We have used the Stirling’s approximation \(\log N! \approx N \log N - N \).

In a dilute solution, each solute particle interacts with the surrounding solvent molecules. However, different solute particles are so far apart that one solute particle does not interact with another solute particle. When a solute particle is transferred from its pure state into the solvent, the energy of mixing is \(u \). The Helmholtz free energy of the solution of \(N \) solute particles is

\[F = Nu - TS . \]

Inserting the expression for entropy, we obtain that

\[F = Nu - NT \left(\log \omega + \log c - 1 \right) . \]

The chemical potential of the solute in the solution is the increase in the free energy associated with adding one solute particle. Thus,

\[\mu(T,c) = \mu(T,c_o) + T \log \left(\frac{c}{c_o} \right) . \]

Here \(c_o \) is an arbitrary concentration.

Exercise. A species of solute is dissolved in two kinds of solvents and form two dilute solutions. When the two solutions are in contact, the two solvents are immiscible, but the solute can migrate from one solution to the other. Show that, in equilibrium, the ratio of the concentrations of the two solutions is a constant independent of the total amount of solute in the solutions.

The function \(U(S,V,N) \). When \(V \) and \(N \) are fixed, the entropy is an increasing function of energy: the more energy a system has, the more microstates the system has. Consequently, we can invert the function \(S = S(U,V,N) \), and obtain the function

\[U = U(S,V,N) . \]
The two functions $S(U,V,N)$ and $U(S,V,N)$ contain the same information and characterize the same system capable of three independent variations. We have merely changed independent variables.

Recall the relation

$$\delta S = \frac{1}{T} \delta U + \frac{P}{T} \delta V - \frac{\mu}{T} \delta N.$$

Solving for δU, we find that

$$\delta U = T \delta S - P \delta V + \mu \delta N.$$

This equation was used by Gibbs to define the chemical potential. Consequently, the temperature, the pressure, and the chemical potential relate to partial derivatives of the function $U(S,V,N)$, namely,

$$T = \frac{\partial U(S,V,N)}{\partial S},$$

$$-P = \frac{\partial U(S,V,N)}{\partial V},$$

$$\mu = \frac{\partial U(S,V,N)}{\partial N}.$$

In particular, the chemical potential of water in a system is the increase in the energy of the system when the system gains one water molecule, while S and V are fixed. The chemical potential has the unit of energy.

This definition gives the impression that T, p and μ are on a similar footing. But this impression has no fundamental significance: there is no reason to believe that $\partial U(S,V,N)/\partial N$ is more basic than $\partial S(U,V,N)/\partial N$. In choosing to name the former but not the latter, we have twisted our presentation to conform to Gibbs's preference.

Other choices of independent variables. For a system capable of three independent variations, we can choose quantities other than U, V, N as independent variables. Such a change of variables will help us to answer a question like, How does the number of molecules in the gas phase change when we open the valve, while keeping the volume and the temperature of the wine unchanged? Let us first see how we change variables. Following the same procedure as described in the notes on Pressure (http://imechanica.org/node/885), we can define the enthalpy as

$$H(U,p,N) = U + pV,$$

the Helmholtz free energy as

$$F(T,V,N) = U - TS,$$
and the Gibbs free energy as
\[G(T, p, N) = U + pV - TS. \]
These functions are used to interpret experiments with alternative sets of independent variables.

The chemical potential can be defined in many alternative, but equivalent, ways:
\[
\mu = \frac{\partial U(S, V, N)}{\partial N} = \frac{\partial H(S, p, N)}{\partial N} = \frac{\partial F(T, V, N)}{\partial N} = \frac{\partial G(T, p, N)}{\partial N}.
\]
For example, the definition
\[
\mu = \frac{\partial F(T, V, N)}{\partial N}
\]
may be easier to use than other definitions. It says the chemical potential of a species of molecules in a system is the change in the Helmholtz free energy of the system associated with adding one molecule of the species to the system, while maintaining \(T \) and \(V \) constant. Maintaining constant temperature may be easier than maintaining constant entropy. We can readily confirm that
\[
\partial F = -S \partial T - p \partial V + \mu \partial N.
\]
We can also state the corresponding minimal principles for systems with internal variables. For example, for a system characterized by three independent variables \((T, V, N)\) and an internal variable \(Y\), the Helmholtz free energy is a function of the four variables,
\[F = F(T, V, N, Y). \]
When \((T, V, N)\) are fixed, of all values of \(Y\), the most probable value minimizes the function \(F(T, V, N, Y) \).

Exercise. Note that the chemical potential of a species of molecules in a pure substance coincides with the Gibbs free energy per molecule:
\[\mu = u - Ts + pv. \]
Derive this result from an alternative definition of the chemical potential:
\[\mu = \frac{\partial G(T, p, N)}{\partial N}. \]
Can you see what makes the Gibbs free energy special?

Chemical potential as an independent variable. We can also make the chemical potential as an independent variable. Recall the expression
\[
\delta S = \frac{\partial S(U, V, N)}{\partial U} \partial U + \frac{\partial S(U, V, N)}{\partial V} \partial V + \frac{\partial S(U, V, N)}{\partial N} \partial N,
\]
and the interpretations of the partial derivatives:

\[\frac{1}{T} = \frac{\partial S(U,V,N)}{\partial U}, \]
\[\frac{p}{T} = \frac{\partial S(U,V,N)}{\partial V}, \]
\[-\frac{\mu}{T} = \frac{\partial S(U,V,N)}{\partial N}. \]

If the function \(S(U,V,N) \) is convex, the above equations can be inverted to express \((U,V,N) \) in terms of \((T,p,\mu) \).

Define a function

\[\Lambda = U - TS + pV - \mu N. \]

Once we express \((U,V,N) \) in terms of \((T,p,\mu) \), \(\Lambda \) is a function of \((T,p,\mu) \).

A combination of the above equations gives that

\[\delta \Lambda = -S \delta T + V \delta p - N \delta \mu. \]

The coefficients in the differential form can be defined by the partial derivatives of the function \(\Lambda(T,p,\mu) \).

Exercise. Let \(f(x_1,x_2,\ldots,x_n) \) be a convex function. That is, the Hessian of the function is either positive-definite or negative-definite. Show that the equations

\[y_i = \frac{\partial f(x_1,x_2,\ldots,x_n)}{\partial x_i} \]

can be inverted to express \((x_1,x_2,\ldots,x_n) \) in terms of \((y_1,y_2,\ldots,y_n) \).

A system in contact with a reservoir of energy, space and matter. If the above change of variables makes you dizzy, you can go back to the fundamental postulate to see what the change means. Holding the system at a constant temperature, pressure and chemical potential means that bringing the system into contact with a reservoir of energy, space, and matter; see the figure in the beginning of the notes. For simplicity, instead of having three separate reservoirs, we now have a single reservoir capable of three variations. When the reservoir has fixed values of energy \(U_R \), volume \(V_R \), and number of water molecules \(N_R \), the reservoir is an isolated system, with its entropy being a function of the independent variables:

\[S_R = S_R(U_R,V_R,N_R). \]
We view the composite of the system and the reservoir as an isolated system, with fixed total energy U_{tot}, total volume V_{tot} and total number of particles N_{tot}. When the small system is has fixed energy U, volume V and number of water molecules N, the reservoir has $U_{\text{tot}}-U$, $V_{\text{tot}}-V$ and $N_{\text{tot}}-N$, and the entropy of the reservoir becomes

$$S_R(U_R, V_R, N_R) = S_R(U_{\text{tot}}, V_{\text{tot}}, N_{\text{tot}}) - \frac{U + p_R V - \mu_R N}{T_R}.$$

This is the Taylor expansion to the first order of U, V, and N. The reservoir is taken to be so large that its exchange with the small system does not vary the values (T_R, p_R, μ_R) of the reservoir.

The entropy of the composite is the sum of the entropy of the reservoir and that of the small system:

$$S_{\text{com}} = S_R(U_{\text{tot}}, V_{\text{tot}}, N_{\text{tot}}) - \frac{U + p_R V - \mu_R N}{T_R} + S(U, V, N).$$

The composite is an isolated system, with (U, V, N) as internal variables. According to the fundamental postulate, of all values of (U, V, N), the most probable values of (U, V, N), maximizes S_{com}.

Maximizing the function $S_{\text{com}}(U, V, N)$, we recover the familiar equilibrium conditions

$$\frac{1}{T_R} = \frac{\partial S(U, V, N)}{\partial U},$$
$$\frac{p_R}{T_R} = \frac{\partial S(U, V, N)}{\partial V},$$
$$-\frac{\mu_R}{T_R} = \frac{\partial S(U, V, N)}{\partial N}.$$

That is, when the system equilibrates with the reservoir, the system and the reservoir have the same temperature, the same pressure, and the same chemical potential of water. When the system is in contact with the reservoir for a long time to equalize the temperature, the pressure and the chemical potential of water, we can drop the subscript R, and simply say that the wine is held at fixed (T, p, μ).

Consider the following scenario. The wine has been in contact with the reservoir for a long time to equalize the temperature, the pressure and the chemical potential of water between the wine and the reservoir. However, there is still an internal variable Y: the number of water molecules in the gas phase of
the wine. Each Y corresponds to a macrostate of the wine, characterized by a function $S(U,V,N,Y)$. When (T,p,μ) are fixed, of all values of Y, the most probable value of Y maximizes S_{con}, or equivalently, minimizes the following function:

$$\Lambda(T,p,\mu,Y) = U - TS + pV - \mu N.$$

A kinetic model. We would like to study how fast water exchanges between the wine and the cheese. The wine and the cheese are separated by a semi-permeable membrane, which allows water molecules to go through, but blocks all other molecules. The exchange depends on three kinetic processes: diffusion of water in the wine, diffusion of water in the cheese, and permeation of water through the membrane. Here we will assume that the permeation through the membrane is very slow compared to diffusion in the wine and in the cheese, so that the rate of exchange of water is limited by permeation. The distribution of water within the wine is in equilibrium, and so is the distribution of water within the cheese. However, the water in the wine is not in equilibrium with the water in the cheese. This disequilibrium motivates water to permeate through the membrane.

We further assume that the wine and the cheese are held at a constant temperature, and their volumes are also held constant. Consequently, we will model the two systems by their Helmholtz free energies, $F'(N')$ and $F''(N'')$, where we have dropped the dependence on the temperature and the volume. We neglect the free energy of the membrane. Consequently, the free energy of the composite of the wine and the cheese is

$$F_{\text{com}} = F'(N') + F''(N'').$$

The total number of water molecules is conserved:

$$N' + N'' = N_{\text{tot}}.$$

Consequently, the composite has only one internal variable: the number of water molecules in the wine, N'. When the number of water molecules in the wine changes by $\Delta N'$, the number of water molecules in the cheese changes by $-\Delta N'$. Thermodynamics requires that the exchange reduces the Helmholtz free energy of the composite, so that

$$[\mu'(N') - \mu''(N'')]\Delta N' \leq 0.$$

Thus, the difference in the chemical potential of water in the wine and in the cheese motivates water molecules to permeate through the membrane.

To satisfy this inequality, we may specify a linear kinetic model:
\[
\frac{dN'}{dt} = -L[\mu'(N') - \mu''(N*)].
\]

The coefficient \(L \) is characteristic of permeation through the membrane. Thermodynamics requires that \(L > 0 \). Assuming \(L, \mu'(N') \) and \(\mu''(N*) \) are known, the above ordinary differential equation evolves the function \(N'(t) \).

Appendix A: Clapeyron equation. When liquid water is in equilibrium with its vapor, the chemical potential of water in the liquid equals that in the gas:

\[
\mu_g(p, T) = \mu(l, p, T).
\]

Because both functions are known, this equilibrium condition requires that the pressure be a function of the temperature. This function is represented as a curve on \((p, T)\)-plane—that boundary that separates the regions of the two phases.

For small changes in the pressure and temperature, we can differentiate the above condition of equilibrium on both sides, so that

\[
v_g \delta p - s_g \delta T = v_l \delta p - s_l \delta T.
\]

When the two phases are in equilibrium, the pressure is a function of the temperature, \(p(T) \), so that

\[
\frac{\delta p}{\delta T} = \frac{s_g - s_l}{v_g - v_l}.
\]

This result is known as the Clapeyron equation. This equation interprets the slope of the phase boundary, the function \(p(T) \).

Appendix B: Vapor pressure as a function of temperature. The above result is exact. We next make a few useful approximations. Note that \(v_g >> v_l \), so that we will neglect \(v_l \) in the denominator. Furthermore, we will approximate the vapor as an ideal gas, so that \(v_g = T/p \). The difference in the entropies of the two phases is often written as

\[
s_g - s_l = \frac{h_{vap}}{T}.
\]

The above equation defines the enthalpy of vaporization \(h_{vap} \), which is essentially the energy of the molecular bonds in the liquid. Inserting these approximations into the Clapeyron equation, we obtain that
If we neglect the weak dependence of h_{vap} on the temperature, we obtain that

$$p = A \exp \left(-\frac{h_{vap}}{T} \right),$$

where A and h_{vap} are constants independent of temperature. This expression relates the vapor pressure to temperature, and is known as the Clausius-Clapeyron equation.

The vapor pressure as a function of the temperature can be determined experimentally. For example, here are the experimental data for water vapor.

Recall the conversion between different units of temperature:

$$T(\text{eV}) = (T(\text{C}) + 273.2) \left(\frac{1.38 \times 10^{-23} \text{ J/K}}{1.60 \times 10^{-19} \text{ eV J}} \right).$$

The vapor pressure increases with the temperature. At the freezing point, the vapor pressure is 0.61 Pa. At 100°C, the vapor pressure is 101.33 kPa. One can plot $\log p$ against $1/T$. On this plot, all the data points are approximately on a straight line. The slope of this line gives the enthalpy of vaporization:

$$h_{vap} = 0.45 \text{ eV}.$$