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ABSTRACT 

 When a voltage is applied to a layer of a dielectric elastomer, the layer reduces in 

thickness and expands in area.  A recent experiment has shown that the homogeneous 

deformation of the layer can be unstable, giving way to an inhomogeneous deformation, such 

that regions of two kinds coexist in the layer, one being flat and the other wrinkled.  To analyze 

this instability, we construct for a class of model materials, which we call ideal dielectric 

elastomers, a free-energy function comprising contributions from stretching and polarizing.  We 

show that the free-energy function is typically non-convex, causing the elastomer to undergo a 

discontinuous transition from a thick state to a thin state.  When the two states coexist in the 

elastomer, a region of the thin state has a large area, and wrinkles when constrained by nearby 

regions of the thick state.   We show that an elastomer described by the Gaussian statistics cannot 

stabilize the thin state, but a stiffening elastomer near the extension limit can.  We further show 

that the instability can be tuned by the density of cross links and the state of stress. 
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I.  INTRODUCTION 

 Soft active materials (SAMs) are being developed to mimic a salient feature of life:  

movement in response to stimuli.1-6  This paper focuses on a family of materials known as 

dielectric elastomers.  Fig. 1 illustrates a thin layer of a dielectric elastomer sandwiched between 

two compliant electrodes.  When a voltage is applied between the two electrodes, the dielectric 

elastomer reduces in thickness and expands in area, causing a weight to move.  This 

phenomenon has been studied intensely in recent years,2, 5, 7-17 with possible applications 

including medical devices, energy harvesters, and space robotics.1, 6, 18-23  

 The dielectric elastomer is susceptible to a mode of failure known as pull-in instability.  

As the electric field increases, the elastomer thins down, so that the same voltage will induce an 

even higher electric field.  The positive feedback may cause the elastomer to thin down 

drastically, resulting in even larger electric field.   This electromechanical instability can be a 

precursor of electrical breakdown, and has long been recognized in the power industry as a 

failure mode of polymer insulators.24, 25  The instability has also been analyzed recently in the 

context of dielectric elastomer actuators.10, 14, 26, 27    

 In a recent study of the pull-in instability, it was observed experimentally that, when a 

layer of a dielectric elastomer is subject to a voltage, the homogeneous deformation can be 

unstable, giving way to an inhomogeneous deformation, such that two regions coexist in the 

layer, one being flat and the other wrinkled.10  The underlying cause of this behavior has not 

been discussed in the literature.  Here we develop a theory to show how a homogenous 

deformation in the dielectric layer can give way to two coexistent states.   

 Our theory will suggest the following qualitative picture.  Figure 2 sketches the relation 

between the voltage applied between the two electrodes, Φ , and the magnitude of the electric 
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charge on either electrode, Q .  When the charge is small, the voltage needed to maintain the 

charge increases with the charge.  This behavior is the same as for any capacitor, and the slope of 

the voltage-charge curve gives the capacitance.  When the charge is large enough, the elastomer 

thins down appreciably, and the electric field in the layer is very high, so that the voltage needed 

to maintain the charge starts to decrease.  Consequently, the voltage reaches a peak, which has 

long been identified with the onset of the pull-in instability.28  The elastomer consists of long-

chained polymers cross-linked into a three-dimensional network.  Under no load, the end-to-end 

distance of each polymer chain is small compared to its fully stretched length, known as the 

extension limit.  When the elastomer is subject to a large voltage, the polymer chains approach 

the extension limit, so that the elastomer stiffens sharply, and the voltage increases again with 

the charge.   

 The shape of the voltage-charge curve in Fig. 2 underlies a discontinuous transition of the 

elastomer from a thick state to a thin state.  If the voltage is controlled, the elastomer may exhibit 

hysteresis, jumping from one state to the other, much like a ferroelectric.  If the charge is 

controlled, the two states may coexist in the elastomer at a constant voltage, with the new state 

growing at the expense of the old.  A region of the thin state has a large area, and wrinkles when 

constrained by nearby regions of the thick state.   Maxwell’s rule in the theory of phase transition 

applies: the voltage for coexistent states is at the level such that the two shaded regions in Fig. 2 

have the equal area.   

  The need to analyze large deformation of soft materials under diverse stimuli has led us 

to reexamine the theory of elastic dielectrics.  In his classic text, Maxwell29 showed that electric 

forces between conductors in a vacuum could be calculated by invoking a field of stress in the 

vacuum.  His derivation is outlined in the Appendix of this paper for ease of reference.  The 
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Maxwell stress has since been used in deformable dielectrics.5, 7, 30-34  This practice has been on 

an insecure theoretical foundation.  Feynman35 remarked that differentiating electrical and 

mechanical forces inside a sold was an unsolved problem and was probably unnecessary.  

Recently we and others have revisited the theory of deformable dielectrics36-38, showing that the 

Maxwell stress is not applicable to deformable dielectrics in general, and that the effect of 

electric field on deformation is material specific.     

 The plan of this paper is as follows.  Section II outlines the theory of deformable 

dielectrics.  The field equations are applicable for arbitrarily large deformation, and are linear 

partial differential equations.  On the basis of available experimental observations, we construct 

in Section III a free-energy function for a class of model materials, which we call ideal dielectric 

elastomers.  The free energy of the elastomer comes from two processes:  stretching and 

polarizing.  The polarizing process is taken to be the same as that in a liquid, unaffected by the 

stretching process.  We show that for this special class of materials, the Maxwell stress emerges 

from the free-energy function.  Section IV applies the theory to analyze a layer of a dielectric 

elastomer deforming under a voltage.  We show that an elastomer characterized by the Gaussian 

statistics cannot stabilize the thin state; to do so we have to invoke stiffening near the extension 

limit, as described by non-Gaussian statistics.   

 

II.  FIELD EQUATIONS OF DEFORMABLE DIELECTRICS 

 As a preparation for the later sections, this section summarizes basic equations of the 

field theory of deformable dielectrics.  Following closely the approach of Ref. 27, we express the 

theory in terms of material coordinates and nominal quantities, and we do not invoke the notions 

of electric body force and Maxwell stress.  Because a field may also exist in the vacuum 
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surrounding the dielectric, we will regard the vacuum as a special dielectric, with a constant 

permittivity and vanishing mechanical stiffness.  Thus, the field extends to the entire space, both 

the solid dielectric and the vacuum.  All the volume integrals extend over the entire space, and 

the surface integrals extend over all the interfaces.  We take the continuum at a particular time as 

a reference state, and name each material particle using its coordinate X in the reference state.  

Let ( )XdV  be an element of volume, and ( ) ( )XX dAN K  be an element of an interface, where 

( )XdA  is the area of the element, and ( )XKN  is the unit vector normal to the interface between 

two materials labeled as – and +, pointing toward material +.    

 In a current state at time t, a particle X occupies a place with coordinate ( )t,Xx .  Denote 

the deformation gradient by 

  
( )

K

i
iK X

tx
F

∂
∂

=
,X

. (1) 

The deformation gradient is a second-rank tensor, and generalizes the stretches. 

 We will use the word “weight” as a shorthand for any mechanism that applies an external 

force to the continuum.  Imagine that we hang a weight to each material particle.  In the current 

state, let the force due to the field of weights on an element of volume be ( ) ( )XXB dVt, , and on 

an element of an interface be ( ) ( )XXT dAt, .  Define the nominal stress ( )tsiK ,X  such that the 

following equation 

  ∫∫∫ +=
∂
∂

dATdVBdV
X

s iiii
K

i
iK ξξξ

, (2) 

holds true for any test function ( )Xiξ .   

 Applying the divergence theorem, we obtain that 
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Across the interface, ( )Xiξ  is assumed to be continuous, but the stress need not be continuous.  

Insisting that (2) hold true for any test function ( )Xiξ , we find that the nominal stress obeys that 

  
( ) ( ) 0,

,
=+

∂
∂

tB
X

ts
i

K

iK X
X

 (4) 

in the volume, and that 

  ( ) ( )( ) ( ) ( )tTtNtsts iKiKiK ,,,, XXXX =− +−  (5) 

on an interface.  Equations (4) and (5) express momentum balance in every current state in terms 

of the nominal fields.  While these equations are well known in continuum mechanics, we should 

emphasize that B  and T  are forces associated with the field of weights; the notion of electrical 

body forces need not be invoked in the theory of deformable dielectrics.   

 We will use the word “battery” as a shorthand for any mechanism that applies an electric 

voltage to a material particle.  Imagine we attach a battery to every material particle.  In the 

current state, the battery maintains the voltage of the particle, ( )t,XΦ , with respect to the ground.  

Denote the nominal electric field as the gradient of the electric potential:  

  ( )
K

K X
tE

∂
Φ∂−= ,~ X . (6) 

The negative sign conforms to the convention that the electric field points from a particle with 

high electric potential to a particle with low electric potential.   

 In the current state, let the charge on an element of volume be ( ) ( )XX dVtQ , , and the 

charge on an element of an interface be ( ) ( )XX dAt,Ω . Define the nominal electric displacement 

( )tDK ,~ X  such that 



9/5/2007 7   

  ∫ ∫∫ Ω+=⎟⎟
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ηηη ~  (7) 

holds true for any test function ( )Xη .   

 We apply the divergence theorem to the left-hand side, and obtain that 

  ( ) ∫∫∫ ∂
∂

−−=
∂
∂ +− dV

X
DdANDDdVD

X K

K
KKKK

K

~
~~~ ηηη . (8) 

The test function ( )Xη  is assumed to be continuous across the interface, but the electric 

displacement need not be continuous across the interface.  Insisting that (7) hold true for any test 

function  ( )Xη , we find that the nominal electric displacement obeys that 

  ( ) ( )tQ
X

tD
K

K ,,~
XX =

∂
∂  (9) 

in the volume, and that 

  ( ) ( )( ) ( ) ( )ttNtDtD KKK ,,,~,~ XXXX Ω=− −+  (10) 

on an interface.  These equations express Gauss’s law in every current state in terms of the 

nominal fields.  

 In the above, we have used nominal quantities exclusively.  For later reference, recall the 

well known relations between the true and the nominal quantities.  The true stress ijσ  relates to 

the nominal stress by 

  ( ) iK
jK

ij s
F

Fdet
=σ . (11) 

The true electric displacement relates to the nominal electric displacement by  

  ( ) K
iK

i D
F

D ~
det F

= . (12) 

The true electric field relates to the nominal electric field by 
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  KiKi EHE ~=  , (13) 

where iKH  is the inverse of the deformation gradient, namely, KLiLiK FH δ=  and ijjKiK FH δ= . 

 

III.  IDEAL DIELECTRIC ELASTOMERS 

 The field equations, (1), (4), (6), (9), are linear partial differential equations; they 

determine the field in conjunction with material laws, which we specify in this section.  When 

the material particles displace by xδ , the weights do work ∫∫ + dAxTdVxB iiii δδ .  When small 

amount of charge Qδ  and Ωδ  flows from the ground to the material particles, the batteries do 

work ∫∫ ΩΦ+Φ dAQdV δδ .   

  Let the free energy of the dielectric per unit reference volume be W , taken to be a 

function of the deformation gradient and the nominal electric displacement, ( )DF ~,W .  

Associated with small changes Fδ  and D~δ , the free energy changes by 

  ( ) ( )
K

K
iK

iK

D
D

WF
F

WW ~
~

~,~, δδδ
∂

∂+
∂

∂= DFDF . (14) 

 The dielectric, the weights and the batteries together form a thermodynamic system. The 

free energy of the system, G, is a sum of the free energy of the dielectric, and the potential 

energy of the weights and batteries. Consequently, associated with the small changes, the free 

energy of the system changes by      

  ∫∫∫∫∫ ΩΦ−Φ−−−= dAQdVdAxTdVxBWdVG iiii δδδδδδ . (15) 

 Applying (14), (2) and (7) to (15), we obtain that 

  ∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂= dVDE

D
WdVFs

F
WG KK

K
iKiK

iK

~~
~ δδδ . (16) 
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Thermodynamics dictate that an equilibrium state minimizes the free energy of the system.  That 

is, 0=Gδ  for any small changes Fδ  and D~δ  in the neighborhood of the equilibrium state.  

Consequently, the coefficients in front of the two variations must vanish, leading to 

  ( )
iK

iK F
Ws
∂

∂= DF ~, , (17) 

  ( )
K

K D
WE ~

~,~
∂

∂= DF . (18) 

Once the function ( )DF ~,W  is known for an elastic dielectric,  (17) and (18) give material laws.   

 The free-energy density ( )DF ~,W  is a function of a tensor and a vector.  An explicit form 

of such generality is unavailable for any real material.  On the other hand, experiments suggest 

that, for dielectric elastomers, the true electric displacement is linear in the true electric field, 

ED ε= , with the permittivity ε  being approximately independent of the state of deformation. 5, 7, 

9, 10  We interpret this experimental observation as follows.  Each polymer in an elastomer is a 

long chain of covalently bonded links.  The neighboring links along the chain can readily rotate 

relative to each other, so that the chain is flexible.  A link also interacts with links on other 

chains through weak bonds.  Different chains are cross linked with covalent bonds to form a 

three-dimensional network.   When each chain contains a large number of links, and when the 

end-to-end distance of the chain has not reached its fully stretched length, the extension limit, the 

local behavior of the links is just like molecules in a liquid.   The elastomer can polarize nearly 

as freely as in liquids.  Furthermore, for an elastomer with approximately isotropic dielectric 

behavior, we surmise that the polarizability of links is comparable in the directions along the 

chain and transverse to the chain.  
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 Motivated by the experimental observation and molecular interpretation, we define an 

ideal dielectric elastomer such that its free energy is the sum of the free energy due to stretching 

the network, and the free energy due to polarizing the liquid polymer.  We will take unstretched, 

unpolarized elastomer as the reference state.  The free energy of the liquid polymer per unit 

current volume is ε2/ii DD .  Thus, the free-energy function of the ideal dielectric elastomer is  

  ( ) ( ) ( ) LK
iLiK

s DD
FF

WW ~~
det2

~,
F

FDF
ε

+= . (19) 

The term ( )FsW  is the free energy due to stretching the three-dimensional network.  We assume 

that the free energy of stretching is mainly due to the entropy of the flexible chains, and neglect 

any effect of electric field on the free energy of stretching. 

 Inserting (19) into (18), we obtain that  

  ( ) L
iLiK

K D
FF

E ~
det

~
Fε

= , (20) 

which reduces to ii ED ε= .  As anticipated, the dielectric behavior of the ideal dielectric 

elastomer is identical to that of a liquid polymer,. 

 Inserting (19) into (17), and recalling an identity ( ) ( )FF det/det iKiK HF =∂∂ , we obtain 

that 

  
( )

( ) ( )FF
F

det2

~~

det

~~

εε
MLiKkMkLKLiL

iK

s
iK

DDHFFDDF
F

W
s −+

∂
∂

= . (21) 

Using (11), (12), (23) and (20), we reduce (21) to   

  ( )
( )

ijkkji
iK

sjK
ij EEEE

F
WF

δεεσ
2det

−+
∂

∂
=

F
F

. (22) 

The first term is due to stretching the network, and the second and third terms are due to electric 

field.   



9/5/2007 11   

 A comparison of (22) with the Appendix shows that the electric field induced stress in an 

ideal dielectric elastomer takes the same form as the Maxwell stress in a liquid.  This relation is 

not accidental, because we have modeled the dielectric behavior of the elastomer after a liquid.  

For a general solid dielectric, however, the free-energy function does not take the form (19), so 

that the effect of electric field on stress will not take the form of the Maxwell stress.  For 

example, when a solid dielectric is subject to a voltage, the layer will become thinner or thicker, 

depending on the dielectric used.39-42  For a dielectric that thickens under an electric field, the 

Maxwell stress does not even predict the correct sign of the strain.  The atomic origin of this 

thickening is well understood.  Influenced by the voltage between the electrodes, charged 

particles inside the dielectric tend to displace relative to one another, often accompanied by an 

elongation of the material in the direction of the electric field.  In the literature, when the strain 

induced by an electric field in a dielectric deviates from that predicted by the Maxwell stress, the 

strain is called electrostriction.  Effort has even been made to differentiate electrostriction from 

the strain induced by the Maxwell stress.  Within our theory, however, the Maxwell stress has 

lost significance for general dielectrics.  This is particularly true when the dielectric behavior is 

nonlinear, or when the permittivity depends on deformation, so that the Maxwell stress is not 

even defined.  In general, once the free-energy function is prescribed, (17) and (18) gives the 

complete material laws. 

 By definition (7), the nominal electric displacement field D~  is invariant when the entire 

system in the current state rotates as a rigid body.  The deformation gradient F , however, varies 

when the system in the current state rotates as a rigid body.  To ensure that the free energy is 

invariant under such a rigid-body rotation, following a usual practice, we invoke the right 
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Cauchy-Green deformation tensor, iLiKKL FFC = , and write the free energy as a function, 

( )DC ~,WW = .  Consequently, (17) becomes 

  
KL

iLiK C
WFs
∂

∂= )~,(2 DC . (23) 

 Under most types of load, an elastomer can undergo large shape change without 

appreciable volumetric change.  Following a common practice, we assume that the elastomer is 

incompressible, so that  

  ( ) 1det =F . (24)   

In minimizing the free energy G, the condition of incompressibility can be enforced as a 

constraint, by adding ( )( )∫ − dVp Fdet1  to G , where ( )tp ,X  is a field of Lagrangean multiplyers.  

Subject to the condition of incompressibility, (17) becomes 

  iK
KL

iLiK pH
C

WFs −
∂

∂= )~,(2 DC , (25) 

and (22) becomes 

  
( )

ijkkjiij
KL

s
jLjKij EEEEp

C
W

FF δεεδσ
2

2 −+−
∂

∂
=

C
. (26) 

The true stress is a symmetric tensor, and p corresponds to a state of hydrostatic stress. 

   Many forms of ( )CsW  can be found in the literature on elastomers.43, 44  We adopt an 

expression developed by Arruda and Boyce45 

  ( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+−+−= ...27

1050
119

20
13

2
1 3

2
2 I

n
I

n
IWs μC , (27) 

where μ  is the small-strain shear modulus, KKCI = , and n  is the number of links per chain.  

When ∞→n , (27) reduces to the Neo-Hookean law, which is derived from the Gaussian 
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statistics, assuming that the end-to-end distance of a chain is small compared to the length of the 

fully stretched chain.  When the end-to-end distance approaches the length of the fully stretched 

chain, however, the Gaussian statistics is no longer applicable, and (27) provides one form of 

non-Gaussian correction.  As the chains approach to being fully stretched, the elastomer stiffens.  

As we will show below, this stiffening plays an essential role in stabilizing coexistent states. 

 

IV.  COEXISTENT STATES  

 We next apply the general theory to analyze an elastomer layer subject to a weight and a 

voltage (Fig. 1).  The undeformed elastomer is taken to be the reference state, in which the layer 

has thickness L and area A.  In the current state, a weight applies a force P to the layer, while 

through an external circuit a battery applies a voltage Φ  between the two electrodes.   The 

thickness of the layer becomes l and the area becomes a.  An amount of charge Q flows from the 

external circuit from one electrode to the other.  Define the stretch by /l Lλ = , the nominal 

stress by /s P A= , the nominal electric field by /E L= Φ , and the nominal electric 

displacement by /D Q A= .  These definitions are the special forms of those in Section II.  The 

true electric field is defined as /E l= Φ , and the true electric displacement is defined as 

/D Q a= .  For incompressible materials, alAL = , so that λ/~EE =  and DD ~λ= .  Observe that, 

in the absent of the weight, 0=s , regardless whether the dielectric thins or thickens under the 

voltage. 

 Let ( )DW ~,λ  be the free-energy function of the elastomer in the current state divided by 

the volume of the elastomer in the reference state.  At constant P and Φ , the potential energy of 

the weight and the battery are, respectively,  Pl−  and QΦ− .  The elastomer, the weight and the 
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battery together constitute a thermodynamic system.  The free energy of the system is the sum 

over the parts, namely, 

  ( ) QPlDLAWG Φ−−= ~,λ . (28)   

A state of the system is described by two generalized coordinates, λ  and D~ .  We fix both P and 

Φ , and vary λ  and D~ .  Thermodynamics dictates that when the elastomer equilibrates with the 

weight and the battery, the values of λ  and D~  should minimize the free energy of the system G.   

 When the system changes from a state ( )D~,λ  to a state ( δλλ + , DD ~~ δ+ ), the free 

energy changes by 

  ( ) ( ) D
D

WD
D
WWDE

D
WsW
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G ~

~
~

~22
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~
22

2

2
2

2

2

δλδ
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δδλ
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∂∂
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∂+⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛ −

∂
∂= . (29) 

This is the Taylor expansion to the second order in δλ  and D~δ .  For the state ( )D~,λ  to minimize  

G, the coefficient of the first-order variation must vanish, so that 

  
( ),W D

s
λ
λ

∂
=

∂
,    

( ),W D
E

D
λ∂

=
∂

. (30) 

Furthermore, the second-order variation must be positive for arbitrary variations δλ  and D~δ , so 

that 
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. (31) 

Conditions (30) are anticipated because the nominal stress is work-conjugate to the stretch, and 

the nominal electric field is work-conjugate to the nominal electric displacement.  Both (30) and 

(31) have familiar graphical interpretations.  The function ( )DW ~,λ  is a surface in the space 

spanned by the coordinates W, λ  and D~ .  Thus, s and E~  are the slopes of the plane tangent to 
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the surface at ( )D~,λ .  Conditions (31) guarantee that the surface ( )DW ~,λ  is convex at ( )D~,λ .  

Of the three conditions in (31), the first ensures mechanical stability, the second electrical 

stability, and the third electromechanical stability.  As we will see, for typical dielectric 

elastomers, the first two conditions are satisfied for all values of ( )D~,λ , but the third is violated 

for some values of ( )D~,λ .  

 In deriving (30), we have regarded ( )Es ~,  as the loading parameters set by the weight and 

the battery.  We may also regard ( )Es ~,  as functions of the generalized coordinates ( )D~,λ .  Thus, 

once the free-energy function ( )DW ~,λ  is prescribed, (30) gives the equations of state of the 

elastomer.  When the generalized coordinates vary by small amounts, ( )D~,δδλ , to maintain 

equilibrium, (30) dictates that the loading parameters vary by ( )Es ~,δδ , such that 

 ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂∂
∂

∂∂
∂

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
D

D
W

D
W

D
WW

E
s

~
~~

~
~

2

22

2

2

2

δ
δλ

λ

λλ
δ
δ

. (32) 

The matrix in (32), known as the Hessian, linearly maps the changes in the generalized 

coordinates to the changes in the loading parameters.  That is, the Hessian is the generalized 

tangent modulus.   

 Before we turn to the specific material model, we first outline consequences of a non-

convex free energy.  Figure 3 sketches the behavior of an elastomer loaded with a battery ( 0~ ≠E ) 

but not a weight ( 0=s ).  Assuming mechanical stability, namely ( ) 0/~, 22 >∂∂ λλ DW , we 

conclude that ( ) λλ ∂∂ /~, DW  is a monotonically increasing function, so that the condition 
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( ) 0/~, =∂∂= λλ DWs  can be inverted to express λ  as a function of D~ .  This function is sketched 

in Figure 3a:  The elastomer thins down as the charge on either electrode increases.   

 Inserting the relation ( )D~λ  into the function ( )DW ~,λ , we obtain the free energy of the 

elastomer as a function of the nominal electric displacement, ( ) ( )( )DDWDW ~,~~ˆ λ= .  This free-

energy function is sketched in Figure 3b; the function is convex for small and large D~ , but is 

non-convex for an intermediate range of D~ .   The physical origin of this non-convex shape has 

been discussed in connection with Fig. 2.   

 Figure 3c sketches the free energy of the composite system of the elastomer and the 

battery,  

  ( ) DEDWLAG ~~~ˆ/ −= .  (33)  

Each curve corresponds to a nominal electric field, LE /~ Φ= .  For a small or a large E~ , the free 

energy function  has a single minimum, corresponding to a stable equilibrium state.  For an 

intermediate range of E~ , the function has two minima, with the lower one corresponding to a 

stable equilibrium state, and the higher one a metastable equilibrium state.  At a particular 

nominal electric field, *~E , the two minima have the equal value of the free energy.   The 

significance of *~E  is understood as follows.  Suppose that the state of the elastomer is no longer 

homogenous, but is composed of two states.  The material of the two states occupies areas 'A  

and ''A  when undeformed.  In this simplified treatment, we will neglect the transition region in 

the elastomer between the areas of the two states, so that the total area in the reference state is 

  AAA =′′+′ .  (34)  

Similarly, the electric charge on one of the electrode is  

  QDADA =′′′′+′′ ,  (35) 
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and the free energy of the composite system of the elastomer and the battery is 

  ( ) ( ) ( )DADADWALDWLAG ′′′′+′Φ−′′′′+′= 'ˆˆ' . (36) 

Thermodynamics requires that in equilibrium this free energy be minimized subject to the 

constraint AAA =′′+′ .  Setting 0// =′′∂∂=′∂∂ DGDG  and 0/ =′∂∂ AG , we obtain that  

  ( ) ( )
DD

DWDW
Dd
Wd

Dd
Wd

L ′−′′
′−′′

=
′′

=
′

=Φ ˆˆ
~
ˆ

~
ˆ

. (37) 

These conditions have the familiar graphical interpretations.  The two states equilibrate when 

they lie on the common tangent line in Fig. 3b or, equivalently, when the two minima have the 

same height in Fig.3c.  The slope of the common tangent gives *~E , the nominal electric field 

under which the two states coexist in equilibrium. 

 Figure 3d sketches the nominal electric field DdWdE ~/ˆ~ =  as the function of the nominal 

electric displacement.  Because the free-energy function is non-convex, its derivative ( )DE ~~  is 

not monotonic.  Equation (37) has a graphic interpretation in Fig. 3d:  the nominal electric field 

*~E  under which the two states coexist in equilibrium is at the level such that the two shaded 

regions have the same area.  This interpretation is known as Maxwell’s rule in the theory of 

phase transition.  Similar interpretation holds for instability in structures, such as the propagation 

of bulges along a cylindrical party balloon and buckles along a pipe.46, 47 

 We expect that the experimental consequence of Fig. 3d also parallels that of a phase 

transition and structural instability.  If the voltage is controlled, we expect that the elastomer 

exhibits a hysteresis loop, as indicated by the arrows in Fig. 3d.  In reality, the hysteresis loop 

may operates in an interval narrower than ( )peakvally EE ~,~ , because imperfections in elastomer may 

lower the barriers for switching from one state to the other in a small region, and then the area of 

the new state expands at the expense of the area of the old state.  If the charge is controlled, we 



9/5/2007 18   

expect that the two states coexist at the voltage *~EL .  As the charge ramps and the change of 

state occurs at a constant voltage.    

 We next apply our theory to the ideal dielectric elastomer. We specialize (20) and (21) to 

  
ε

λ
λ

2~D
d

dW
s s += ,   

ε
λ DE

~~ 2

= . (38) 

When the elastomer is under no external force, 0=s .    When ∞=n , the degree of crosslink is 

low, and  ( ) ( ) ( ) 2/322/3 12 −+=−= −λλμμλ IWs .  Eq. (38) reduces to  

  
3/12~

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

με
λ D ,    

3/22~
1

~

/

~ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

μεμεεμ
DDE . (39) 

The function ( )D~λ  is monotonic (Fig. 3a), as expected.  Figure 3b shows that the function ( )DE ~~  

has a peak:  the left side of the curve in Fig. 3b corresponds to a convex part of the free energy, 

and the right side corresponds to a concave part of the free energy.  The true electric field is 

λ/~EE = , and the function ( )DE ~  is monotonic (Fig. 3c).  The peak nominal electric field is 

εμ /69.0~ ≈peakE , which occurs when εμ3~ =D , 63.0≈λ  and εμ /1.1≈E .  The model 

suggests that if a region of the elastomer thins down to a critical thickness, the region should thin 

down further without limit. 

   The shape of the curve in Fig. 3b for the neo-Hookean material ( ∞=n ), however, is an 

exception rather than a rule. When n is finite, multiple terms in (27) are needed, leading to a 

much stiffer behavior as 0→λ .  Figure 3b plots the function ( )DE ~~  for several values of n.  

Below a critical value, 6.2<n , the function ( )DE ~~  is monotonic, and the elastomer is 

electromechanically stable for the full range of electric field.  When ∞<< n6.2 , the function 
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( )DE ~~  has the same shape as in Fig. 3d.  This shape is expected for most commonly used 

dielectric elastomers, given the large range of n. 

 Our theory can be extended to other loading conditions.  As an illustration, let Ps  be the 

nominal stress applied biaxially in the plane of the elastomer layer.  In terms of the through-

thickness stretch λ , the in-plane stretch is 2/1−λ , so that the free energy becomes 

   ( ) DEsDWLAG P
~~2~,/ 2/1 −−= −λλ .  (40)  

For a fixed value of n and Ps , the two coexistent states are subject to the same voltage, but have 

different true electric fields.  In experiment, the true electric field in the thin state may exceed the 

electric breakdown strength. As show in Fig. 5, imposing a biaxial stress significantly reduces 

the true electric field in the thin state, and may enable the two states to coexist.  Furthermore, for 

a given n, the electromechanical instability can be averted when the biaxial stress is large enough.  

These conclusions are consistent with the experimental observations.10 

 

V.  CONCLUSINGG REMARKS 

 We have specified a material model that is consistent with the available experimental 

data, and shown that the free energy of commonly used dielectric elastomers is non-convex, 

leading to coexistent states and hysteresis in elastomer layers.  The theory also directs attention 

to several topics ripe for exploration.  While we have explained the coexistence of flat and 

wrinkled states, we have not included wrinkles explicitly in our theory.  When molecular groups 

in an elastomer can polarize nearly as freely as in liquids, e.g., when the degree of crosslink is 

low and the deformation is well below the fully extended limit, the dielectric behavior of the 

elastomer is expected to be liquid-like.  It will be interesting to investigate how well the ideal 

dielectric elastomer represents a real one.  The large flow of charge associated with the change of 
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states may also lead to interesting applications.  We hope more refined experiment and theory 

will soon succeed in these explorations. 
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Appendix:  Maxwell stress in a vacuum or in an incompressible, linearly dielectric fluid 

 In his classic text, Maxwell derived an expression of stress in a vacuum due to an 

electrostatic field.  His derivation is outline here, which is referred to in several places in the 

body of the text.  When a test charge q is placed in the vacuum, if we find that an external force 

must be applied on the charge to keep it stationary, we say that an electric field E  exists in the 

vacuum, such that 

  Ef q= . (A1) 

By convention, f  is called the electrostatic force, and the external force needed to maintain 

equilibrium is f− .  When a field of charge is present in the vacuum, denote the coordinate of a 

point in the vacuum by x , and the charge per unit volume by ( )xq .  Equation (A1) now 

represents a field of electrostatic force, with ( )xf−  being the external force per unit volume that 

must be applied to maintain the field of charge in equilibrium.  

 The field of charge ( )xq  generates in the vacuum an electric field, which is governed by 

  
i

j

j

i

x
E

x
E

∂
∂

=
∂
∂

 ,    
0ε

q
x
E

i

i =
∂
∂

, (A2) 

where 0ε  is the permittivity of the vacuum.   

 Equations (A1) and (A2) together form a theory that can be tested experimentally.  Given 

a field of charge ( )xq , we can use (A2) to solve the electric field ( )xE , and then ascertain if we 

need to apply a field of external force ( )xf− , as predicted by (A1), to maintain the field of 

charge in equilibrium.  

 Inserting (A2) into (A1), one obtains that   



9/5/2007 22   

  ⎟
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⎛ −

∂
∂= ijkkji
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i EEEE

x
f δεε

2
0

0 . (A3) 

This equation is reminiscent of the equilibrium equation in continuum mechanics.  The quantity 

  ijkkjiij EEEE δεεσ
2
0

0 −=  (A4) 

is known as the Maxwell stress. 

 The above is how (A4) was derived in Maxwell’s text.  The expression is also valid for 

an incompressible, linearly dielectric fluid, provided the permittivity of the vacuum, 0ε , is 

replaced by that of the fluid, ε .  The expression is not valid for a compressible fluid dielectrics 

or solid dielectrics.  Maxwell said, “I have not been able to make the next step, namely, to 

account by mechanical considerations for these stresses in the dielectric.  I therefore leave the 

theory at this point…” 
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Figure captions 
 

Figure 1.  A thin layer of a dielectric elastomer sandwiched between two compliant electrodes, 

and loaded by a battery and a weight.    a, In the undeformed reference state, the elastomer has 

thickness L and area A.  b, In the current state, the battery applies voltage Φ , and the weight 

applies force P .  The loads are so arranged that the elastomer deforms homogeneously to 

thickness l and area a, while an amount of electric charge Q flows via the battery from one 

electrode to the other.  The electrodes are so compliant that they do not constrain the deformation 

of the elastomer.   In practice, the weight may be used to compress the elastomer, or to stretch 

the elastomer in the plane. 

 

Figure 2.  A schematic of the voltage-charge curve of a layer of an elastomer dielectric.  When 

Q is small, Φ  increases with Q.  When Q is large enough, the layer thins down appreciably, so 

that the true electric field in the layer is large, and Φ  needed to maintain the charge drops.  

When When Q is very large, the layer thins so much that the elastomer becomes very stiff, so 

that Φ  increases with Q. 

 

Figure 3.  Schematic behavior of a dielectric elastomer under a constant force and variable 

voltage.  All horizontal axes are the nominal electric displacement AQD /~ = .   a,  As the charge 

increases, the thickness of the electrode reduces.  b, The free-energy function ( )DW ~ˆ  is non-

convex.  The two states on the common tangent may coexist at the electric field *~E  given by the 

slope of the common tangent.   c, The free-energy function of the composite system of the 

elastomer and the battery, ( ) DEDWLAG ~~~ˆ/ −= , where LE /~ Φ= is the nominal electric field, i.e., 
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the voltage in the current state divided by the thickness of the elastomer in the reference state.  

For a small or a large E~ , the free-energy function has a single minimum, corresponding to a 

stable equilibrium state.  For an intermediate E~ , the free energy function has two minima, the 

lower one corresponding to a stable equilibrium state, and the higher one a metastable 

equilibrium state.  At *~E the two minima have the equal height, corresponding to the two 

coexisting states.  d, The function ( )DE ~~  is not monotonic.  A voltage-controlled load will result 

in a hysteretic loop.  A charge-controlled load will result in coexisting states, fixing *~E  at a level 

such as the two shaded regions have the same area. 

 

Figure 4.  Electromechanical behavior of elastomers for several values of n, the number of links 

per chain.  Various quantities are normalized by the small-strain shear modulus μ  and the 

permittivity ε .  a, The function ( )D~λ .  b, The function ( )DE ~~  reaches a peak when ∞=n , is 

monotonic when 6.2<n , and reaches a peak and a valley when ∞<< n6.2 .  c, The true electric 

field is a monotonic function of the charge. 

 

Figure 5.  The coexistent states can be tuned by the degree of crosslink and the state of stress.  A 

state of biaxial stress ps  is imposed in the plane of the elastomer layer.  For given n and μ/Ps , 

the coexistent states have different true electric fields; they are intersections between a curve in 

the figure and a vertical line (not shown).  Imposing an in-plane tension markedly reduces the 

true electric field in the thin state. 
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