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  Free Energy 
 In modeling a system in thermal contact with the rest of the world, we 
have invoked three variables:  entropy, energy, and temperature.  We place a 
constraint internal to the system, and associate this constraint to an internal 
variable.   
 In this lecture, we will consider an important special case:  a system in 
thermal contact with a thermostat.  The thermostat holds the system at a fixed 
temperature.  When the constraint internal to the system is lifted, the associated 
internal variable changes, and the system exchanges energy with the thermostat.  
The system is no longer isolated, and the internal variable evolves by an 
isothermal process.  For a system held at a fixed temperature, of all values of the 
internal variable, the most probable value minimizes the Helmholtz free energy.  
This statement is a useful paraphrase of the fundamental postulate. 
 To illustrate the process of thermodynamic modeling, we study two types 
of phase transition.  We use experimental observations to motivate the 
construction of the models.   
 
 Algorithm to analyze an isolated system with an internal 
variable.  In the first lecture, we have described a basic algorithm of 
thermodynamics (http://imechanica.org/node/290).   For a given phenomenon, 
we construct an isolated system with a set of quantum states.  Imagine a 
constraint internal to the isolated system, and associate the constraint to an 
internal variable.  When the constraint is in effect, the internal variable is at a 
fixed value, and the isolated system flips among a subset of the quantum states.  
When the constraint is lifted, the internal variable can take other values, and the 
isolated system can flip in other subsets of the quantum states.  The fundamental 
postulate implies that, of all values of the internal variable, the most probable 
value corresponds to the subset having the largest number of the quantum states.  
In brief, the algorithm is as follows. 

• Construct an isolated system. 
• Identify an internal variable Y. 
• Count the number of quantum states in each subset, ( )YΩ . 

• Maximize ( )YΩ  by varying Y.  
  
 Entropy ( )YUS , .  Most systems are not isolated.  For example, consider 
a half bottle of water in thermal contact with the rest of the world.  Inside the 
bottle, water molecules are in two phases:  liquid in bottom and vapor on top.  
We are interested in two variables:  the energy in the bottle, and the number of 
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water molecules in the top half of the bottle.  
The bottle is sealed to prevent molecules from 
escaping. 
 In general terms, consider a system in 
thermal contact with the rest of the world.  We 
are interested in two variables:  the energy of 
the system U, and an internal variable of the 
system Y.  When the energy U of the system is 
fixed, and the internal variable Y is allowed to 
vary, the system becomes an isolated system 
with an internal variable, and flips among a set of quantum states.   
 When both U and Y are fixed at specific values, the system flips among a 
subset of the quantum states that have value Y.  Denote the number of the 
quantum states in this subset by ( )YU ,Ω .   We write 

  ( ) ( )YUYUS ,log, Ω= . 
The fundamental postulate implies the following statement: 
 

At a constant U, of all possible value of Y, the most probable value of Y 
maximizes the function ( )YUS , . 
 

This statement is graphed for the case that the internal variable can take only two 
values, 1Y  and 2Y .  
 
 Energy ( )YSU , .  When Y is fixed, S  is an increasing function of U.  That 
is, for an isolated system with an internal constraint, the more energy the system 
has, the more quantum states the system has.  Consequently, the function 
( )YUS ,  can be inverted to obtain the function 

( )YSU , .  The two functions characterize the 
same system.  The previous statement of 
maximal number of quantum states is 
equivalent to the following statement: 
 

At a constant S , of all possible value of 
Y, the most probable value of Y 
minimizes the function ( )YSU , .   
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This statement is graphed for the case that the 
internal variable can take only two values, 1Y  

and 2Y .  The two functions ( )YUS ,  and 

( )YSU ,  have identical graphs.  For the curves 

graphed, value 1Y  is more probable than value 

2Y . 
 
 Entropy-temperature plane.  Recall 
the relation   

  ( )
S

YSUT
∂

∂
=

, . 

The temperature is a function of the entropy and the internal variable, ( )YST , .  
Consider a plane with S as the horizontal axis, and T as the vertical axis.  In this 
plane, the function ( )YST ,  is a curve for any fixed value of the internal variable 

Y.  The area under the curve is the energy ( )YSU , .  
  
 Examine coexistent phases using the function ( )su .  A pure 
substance is an aggregate of a large number of molecules of the same species.  Let 
s be the entropy per molecule, and u be the energy per molecule. As discussed 
before (http://imechanica.org/node/291), the thermodynamics of the substance 
is characterized by the function ( )us .   
 For a substance with a nonconvex function 
( )us , part of the function will not be realized, and 

will be replaced by a common tangent line.  The two 
tangent points represent coexistent phases.  We 
now use the function ( )su  to examine this situation   
 Recall 

  ( )
ds

sduT = .   

When the function ( )su  is nonconvex, the function 

( )sT  is not a monotonically increasing function.  

The temperature for the phase transition, tT , is the 
slope of the common tangent, so that  
  ( )ssTuu t ′′−′=′′−′ . 

 On the ( )Ts,  plane, the area under the curve 
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( )sT  represents the energy ( )su .  Inspecting the graph, we can readily see that 

the above condition means that tT , is at the level such that the two shaded areas 
are equal.  This graphic interpretation is known as Maxwell’s rule. 
 Also marked on the ( )su  curve are the two inflection points, where 

  ( ) 02

2

=
∂

∂
s

su . 

The part of the ( )su  curve between the inflection points is concave, where a 

single phase is unstable.  Parts of the ( )su  curve are convex, but are between the 

interval ( )ss ′′′, .  These parts correspond to metastable phases. 
 
 Isothermal process.  Now consider a system with an internal variable.  
For example, a bottle of wine can be such a system, where the internal variable 
can be the extent of fermentation.    The wine is in thermal contact with the rest 
of the world.  As the wine ferments, we keep the temperature of the wine fixed, by 
adding energy to, or extracting energy from, the wine.  The change of an internal 
variable of a system under the condition of a fixed temperature is known as an 
isothermal process. 
    
 Thermostat.  A device that holds temperature constant is called a 
thermostat, or heat reservoir, or heat bath.  An example of a thermostat is the 
ice-water mixture.  The mixture holds the temperature at 0C.  When a system is 
in thermal contact with the ice-water, the amount of ice increases if the system 
draws energy from the mixture, and the amount of ice decreases if the system 
gives heat to the mixture.  In thermal equilibrium, the temperature of the system 
is held at 0C, regardless of the value of the internal variable of the system.  Of 
course, thermostats can be constructed by other means. 
 We characterize a thermostat by a particularly simple thermodynamic 
model.  The thermostat is capable one independent variation:  it can exchange 
energy with the rest of the world by thermal contact.  Let T be the temperature of 
the thermostat.  When the energy of the thermostat changes by Q, the entropy of 
the thermostat changes by 

  
T
QS =∆ thermostat . 

  
 Free energy ( )YTF , .  A bottle of wine is held at a fixed temperature by 
a thermostat.  We make the composite of the bottle of wine and the thermostat 
together as an isolated system.  The isolated system has two internal variables:  

http://imechanica.org/node/288�


Thermodynamics http://imechanica.org/node/288  Z. Suo 
 

February 15, 2011  Free Energy - 5   

the energy U in the wine, and the internal 
variable Y.  The entropy of wine relates to 
the two internal variables by the function 
( )YUS , .  Let T  be the temperature held by 

the thermostat.  When the system draws 
energy U from the thermostat, the entropy 
of the thermostat reduces by TU / .  The 
entropy of the composite is the sum of the 
entropy of the system and the entropy of the thermostat:  

  ( ) ( )
T
UYUSYUS −= ,,composite . 

 According to the fundamental postulate, the two internal variables U and 
Y evolve to increase compositeS  .  Consider an important condition.  The bottle of 

wine exchanges energy rapidly with the thermostat, so that they are in thermal 
equilibrium, while the wine ferments.  That is, the temperature of the wine is the 
same as that of the thermostat:   

  ( )
TU

YUS 1,
=

∂
∂ . 

The partial derivative is interpreted as follows.  The exchange of energy is so 
rapid that thermal equilibrium is established while the degree of fermentation 
remains unchanged.   
 The above equation defines the function ( )YUT , .  Further assuming that 

the temperature and the energy is 1-to-1, we can invert the function ( )YUT , , and 

obtain the function ( )YTU , .  Consequently, we can rewrite the above function as 

  ( )
T

TSUYTS −
−=,composite . 

At a fixed temperature, the value of Y evolves to increase ( )YTS ,composite .  

Equivalently, the value of Y evolves to decrease the function      
  TSUF −= , 
The function ( )YTF ,  now contains quantities of the system alone, and is known 
as the Helmholtz free energy of the system.   

 We can state the fundament al postulate in terms of the free energy. 
 
When the system is held at a fixed temperature T (i.e., in thermal 
equilibrium with a thermostat), of all values of the internal variable Y, 
the most probable value minimizes the function ( ) TSUYTF −=, .   

 

Thermostat 
 

System UUtot −
( )YUS ,

T
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In this minimization, the temperature is not a 
variable, but is fixed by the thermostat. 
 When Y is held constant, taking 
differential of the free energy TSUF −= , we 
obtain that  
  SdTTdSdUdF −−= . 
Recall that TdSdU =  when Y is held constant.  
The above equation becomes that 
  SdTdF −= . 
Consequently, the entropy is 

  ( )
T

YTFS
∂

∂
−=

, . 

For a constant value of Y, the function ( )YTF ,  is a monotonically decreasing 
function of the temperature.  
 
 Algorithm to analyze an isothermal process by using the free 
energy.  The above considerations suggest an algorithm to analyze an 
isothermal process:  

• Construct a system in thermal contact with a thermostat of a fixed 
temperature T.   

• Identify an internal variable Y. 
• Construct the free energy function ( )YTF , . 

• Minimize ( )YTF , by holding T fixed and varying Y.     
 
 Examine coexistent phases using the free energy.  Consider a 
mixture of two phases held at a temperature T.  Let the free energy per molecule 
in one phase be  ( )Tf ′  , and the free energy per molecule in the other phase be 

( )Tf ′′ .  The free energy of the mixture is. 

  ( ) ( )TfNTfNF ′′′′+′′= . 
The number of molecules in one phase is the 
internal variable, to be selected to minimize 
the total free energy.  The equation  
  ( ) ( )TfTf ′′=′  
determines the phase-transition 
temperature tT .  When tTT < , all molecules 

are in one phase.  When tTT >  all molecules 
are in the other phase. T
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 Recall the definition of the free energy, Tsuf −= .  The above condition 
of equilibrium gives becomes 
  sTusTu tt ′′−′′=′−′ . 
This condition recovers what we have derived before; see the notes on 
Temperature (http://imechanica.org/node/291).  
 
 Phase transition of the second kind.  As another illustration of 
thermodynamic modeling, consider the following experimental observation.  A 
crystal has a rectangular symmetry at a high temperature. When the temperature 
drops below a critical value, cT , the crystal spontaneously distorts by an angle α .  

Because of the symmetry, the distortion can go in both directions.  Below the 
critical temperature, the angle of distortion is observed to vary with the 
temperature.We regard the angle of distortion α  as an internal variable, also 
known as an order parameter.  The thermodynamics of the crystal is 
characterized by the free-energy function ( )α,TF .  To model the experimental 
observation, we assume that the free-energy function has the following form: 

  ( ) ( ) ( ) 42

4
1

2
1, ααα BTTATCTF c +−+= , 

where A and B are positive constants.  This form is a Taylor expansion in the 
powers of α .  Due to symmetry, the crystal is equally likely to distort in two 
directions, so that we keep the even powers of α .  Let us check if this function 
does reproduce the observed phase transition.  

 
 When cTT > , the coefficient of the 2α  term is positive, so that the the 

equilibrium state is 0=α .  In this case, the 4α  term is unnecessary to describe 
the behavior of the crystal.   

cTT >cTT <

cT
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 When cTT < , the coefficient 

of the 2α  term is negative, and the 
energy is no longer minimal at 0=α .  
Instead, the energy is minimal at two 
nonezero angles, denoted as the 
spontaneous angles, sα± .  In this 

case, the 4α  term will ensure that 
energy goes up again when α  is large.  
Note that 

 ( ) ( ) 3, αα
α
α BTTATF

c +−=
∂

∂ . 

Setting ( ) 0/, =∂∂ ααTF , we find the spontaneous values of the angle: 

 ( ) BTTA cs /−±=α . 

A significant prediction of this model is 
 ( ) 2/1~ TTcs −α . 
This prediction should be compared with the angle of distortion observed in the 
experiment.  
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