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28.1 INTRODUCTION

When long polymer molecules are chemically linked
together to form a three-dimensional network, the resulting
material exhibits a unique set of properties that have come
to be referred to as “rubber-like.” Among these are large
deformation elasticity which has important consequences
for mechanical behavior and resistance to solvent attack. As
for the latter, when solvent molecules penetrate into the
polymer, it undergoes swelling rather than dissolution, and
the diluted network is referred to as a chemically
crosslinked gel. While there are several structures that
exhibit gel-like behavior (e.g., (1) covalent networks of
long chain molecules, (2) physical networks formed by
aggregation of polymer chains (gelatin, agarose), (3)
lamellar, fibrillar or reticular systems exhibiting partially
ordered structures (clays, surfactants, etc.), the focus of this
work is solely on elastomeric polymer networks containing
a three-dimensional permanent structure of high molecular
weight chain molecules swollen in a low molecular weight
diluent as depicted in Fig. 28.1.

The covalent network, composed of long flexible chains
capable of adopting large conformational changes (chain
deformations), extends throughout the sample providing the
ability to undergo large and reversible (elastic) deforma-
tions and a corresponding ability to swell rather than
dissolve. Though the molecular origins of rubber elasticity
were recognized as early as the 1930s and 40s [1-5], a
complete theoretical description of the swelling behavior of
rubber-like polymers has yet to be achieved. The result is
that while there is a general understanding of the behavior
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of crosslinked materials within the framework of some
“classical” models of rubber elasticity, there are still
several unresolved problems. For example, even the funda-
mental assumption, originally put forth by Frenkel [5],
Flory and Rehner [2,4] that the free energy of mixing of a
solvent and rubber network can be separated into an elastic
term for the network and a mixing term for the solvent and
polymer is a subject for much recent research and discus-
sion [6-32]. ‘

There is a diversity of theoretical models used to eluci-
date the relationships between the molecular parameters of
the network and the various experimental results [33-57].
Hence, the resulting deduction of the molecular structure of
the network can depend on the model chosen for data
analysis. Additionally, the structure of the networks at the
supermolecular level is a function of the preparation condi-
tions (temperature, concentration at crosslinking, chemical
nature of the crosslinker, etc.). During network formation,
imperfections in the structure may also develop. In many
cases the crosslinking process leads to fixation of otherwise
nonequilibrium states. A wide variety of molecular super-
structures may be produced within networks prepared from
the same starting materials. This makes comparisons of
experimental results from different literature sources
complicated. Consequently, a simple tabulation of previ-
ously published data is not particularly useful.

The present work is intended to briefly survey the basic
thermodynamic considerations of rubber elasticity and,
swelling from both a continuum point of view and with
regard to existing network models. Our goal is to illustrate
the range of applicability and the limitations of the different
approaches for the description of experimental data. Addi-



380 / CHAPTER 28

tionally, this work should provide the reader with the ability
to use the models to obtain estimates of the molecular struc-
ture of the gel through analysis and interpretation of typical
sets of experimental data. Conversely, the swelling and
mechanical response of new networks should be able to be
estimated from a chemist’s knowledge of the molecular
parameters of the network.

28.2 THEORETICAL BACKGROUND
28.2.1 General Considerations

In thinking about the behavior of rubber networks and
gels, there are two features of behavior that we consider in
the following. First, the fundamental nature of the elasto-
meric network itself in the undiluted state needs to be
weighed. This is done using both the phenomenological
theories of rubber elasticity and the molecular (statistical
mechanical) models. Both approaches result in forms of the
free energy function (Helmholtz) of the network and ulti-
mately need to give the same descriptions of the phenom-
enological behavior of the dry network. Second, we
consider the specific behavior of the swollen network or gel
from similar considerations. In the latter case, the formula-
tion of a mixing free energy as a function of the swelling
ratio is also required in addition to the elastic free energy.

Laboratory measurements, for the most part, record the
macroscopic behavior of the material. Depending on the
purposes of the experimenter, the link between the
molecular models and the phenomenological models
provides a basis for either deducing molecular parameters
from the measurements or for predicting future measure-
ments from known molecular structures. The latter is prima-
rily important to estimate the physical properties of a given

O solvent molecules

~— polymer chains

FIGURE 28.1. Schematic representation of a chemically
crosslinked polymer network swolien by a low molecular
weight solvent.

gel whose molecular structure is known. The background
provided in what follows should permit one to do both
within the limitations of current knowledge.

28.2.2 The Strain Energy Density Function—The
Mechanical Contribution to the Helmholtz Free
Energy

Continuum Description

There is an extensive body of literature describing the
stress-strain response of rubber-like materials that is based
upon the concepts of the Finite Elasticity Theory which was
originally developed by Rivlin and others [58,59]. The
reader is referred to this literature for further details of the
relevant developments. For the purposes of this chapter, we
discuss the development of the so-called Valanis—Landel
Strain Energy Density Function (VL function) [60], because
it is a form that is most commonly derived from the statis-
tical mechanical models of rubber networks and has been
very successful in describing the mechanical response of
crosslinked rubber and it is resultingly very useful in under-
standing the behavior of swollen networks.

Here we begin with a sample of rubber having initial
dimensions /;,/;,l;. We deform it by an amount
Aly,Al,,Al; and define the stretch (ratio) in each direction
as \;=(l;+Al)/1;=1/1;. The purpose of the Finite Elas-
ticity Theory has been to relate the deformations of the
malterial to the stresses needed to obtain the deformation.
This is done through the Strain Energy Density Function,
which we describe using the Valanis—Landel formalism as
W(X\y.A5.0;). Importantly, as we will see later, this is the
mechanical contribution to the Helmholtz Free Energy.
Valanis and Landel assumed [60] that the strain energy
density function is a separable function of the stretches A,;:

W()\] ,)\2,}\3)=W(A|)+W()\2)+IV(A3)+0 ln(hlhz(x3))
28.1

While the term aln(A\;\;) is not important in the
mechanical response, because of the incompressibility
assumption, it may be important in swelling [61]. We also
note that some of the molecular models include this loga-
rithmic term. Then, the principal stresses o;; in any defor-
mation can be related through the strain energy function and
deformations as follows:

U'”_(TJ‘,:)\,W’(K,)_XIW'(AJ), (28.2)

where w'(AN)=dw(\)/d\ is the derivative of the VL func-
tion w(\). We note that the stresses are the true stresses in
that they referred to the deformed sample geometry. In the
dry, unswollen rubber, the material is generally assumed to
be incompressible, meaning that the distortional or shape-
changing deformations are much more easily made than are
the volume-changing ones, so that the latter can be
neglected. Hence Eq. (28.2) is written in terms of the prin-
cipal stress differences. In the case of a uniaxial deforma-
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tion A in the 1 direction, Eq. (28.2) becomes:

O —02=Mw () =X w'(N,y), (28.3)

and because of the incompressibility condition that
MAA3=1 we find that A\,=A;=A,”'? and Eq. (28.3)
becomes:

O = 00=Aw'(A\)= A"V (\"12) (28.4)

where A=\,. For uniaxial extension, \>1, while for
uniaxial compression, A<1.

From a practical viewpoint, Eq. (28.4) can be used to
describe the stress-strain relation of a matcrial if w’(\) is
known. w'()) can be obtained in the laboratory in various
ways, such as pure shear experiments as described by
Valanis and Landel [60] by torsional measurements as
described by Kearsley and Zapas [62] and by a combination
of tension and compression experiments as also described
by Kearsley and Zapas [62]. Treloar et al. [63] have also
shown that the VL function description of the mechanical
response of rubber is a very good one. The reader is referred
to the original literature for these methods.

Another point to keep in mind here is that in most
models, the description of rubber elasticity given from
statistical mechanical models results in a Valanis~Landel
form of the Strain Energy Density Function. This becomes
important in the following developments. We now look at
some common representations of the strain energy density
function used to describe the stress-strain behavior of
crosslinked rubber.

There are two common phenomenological strain energy
density functions that have been used to describe the stress-
strain response of rubber [58,59,64]. These are referred to
as the Neo-Hookean form and the Mooney-Rivlin form and
both can be written as Valanis—Landel forms, aithough they
represent truncated forms of more general strain energy
density functions. The Neo-Hookean form is a special form
of the Mooney—-Rivlin form, so we will begin with the
latter. For a Mooney-Rivlin material the Strain Energy
Density Function is written as:

WA A2 ) =C (A 24+ N2 4032 =3) + Cp(N 724,72
+X372=3), (28.5)

and we see that the VL function for this is of the form
w(A)=C\;*+C,\; 2 and the VL derivative is given as:

w'(M\)=2C\\;~2C,\; 73, (28.6)

where C, and C, are material constants, often referred to as
the Mooney-Rivlin Coefficients. For uniaxial deformations
of magnitude X one then writes Eq. (28.4) for the Mooney—
Rivlin stress-strain response as:

o= 0=(N—1/\){2C,+2C,/\}.  (28.7)

Equation (28.7) makes obvious the reasons for the repre-
sentation of experimental data in the so-called Mooney-
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Rivlin plot. If the material has a Mooney-Rivlin strain
energy density function then a plot of (o, —0%,)/(A\2=1/))
vs. 1/X results in a straight line with the slope and intercept
at A=1 determining 2C, and (2C,+2C,), respectively.

For the Neo-Hookean material, the strain energy density
function is the same as for the Mooney—Rivlin material but
with C,=0:

WA LA A3)=C (0202 +032-3).  (28.8)
The VL derivative is:
w/ (N)=2C\\;. (28.9)
The corresponding reduced stress oy, is:
or=(0,—0)/(N*=1/A)=2C,.  (28.10)

Hence, in the Mooney—Rivlin plot, the stress-strain data are
reduced to a line of slope zero.

A point worth noting here is that several of the molecular
models that are described in the subsequent sections are
Neo-Hookean in form. Normaily, dry rubbers do not exhibit
Neo-Hookean behavior. As for the Mooney—Rivlin form of
strain energy density function, rubbers may follow such
behavior in extension, yet they do not behave as Mooney—
Rivlin materials in compression. In Fig. 28.2, we depict
typical experimental data for a poly(dimethylsiloxane)
network [39] and compare the response to Mooney—Rivlin
and Neo-Hookean behaviors. The horizontal lines represent
the affine and the phantom limits (see the Network Models
section). The straight line in the range A~ '<1 shows the fit
of the Mooney-Rivlin equation to the experimental data
points.

ag
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FIGURE 28.2, Comparison of typical stress-strain data for
PDMS rubber [39] in a “Mooney-Rivlin” plot with “Neo-
Hookean” and “Mooney-Riviin” strain energy function
descriptions. (See text for discussion.)
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Statistical Theories
Structural Characteristics of Polymer Networks

In this section we discuss the most important structural
parameters characteristic of an ideal polymer network. The
structure of a real network always displays deviation from
that of an ideal network. Network defects, such as unreacted
functionalities, cyclic structures, and entanglements, arise
from the statistics of the crosslinking process. The
crosslinking reaction, in general, results in a length distri-
bution for the network chains. In addition to the molecular
imperfections, real networks always contain inhomogene-
ities, i.e., regions in which the polymer concentration is
permanently higher than the average concentration. The
topological structure of any real network is very complex
and no complete theoretical treatment is available at the
moment. It is worthwhile, however, to define the structural
parameters for a perfect network because it allows us to
treat any real network by reference to these parameters.
Statistical models yield explicit expressions for the relation
between the molecular structure of the network and the
elastic properties.

The most important molecular parameter characteristic of
a polymer network is the concentration of the elastic chains
or that of the elastically active junctions connecting the
macromolecules. An active junction is joined by at least
three paths to the polymer network and an active chain is
defined as one terminated by active junctions at both ends.
There are several ways to express the extent of crosslinking:
(1) the concentration of the elastically active chains, v,/V,,
where v, is the number of chains connecting two elastically
active junctions and V, is the volume of the dry network;
(2) the molecular weight of the polymer chains between the
junctions

M =p(VoN4/lvy), (28.11)

where p is the density of the polymer and N, is Avogadro’s
number; (3) the crosslink density, u./V,, where u, is the
number of the crosslinks; and (4) the cycle rank density,
&V, where £ is the cycle rank, i.e., the number of inde-
pendent circuits in the system. Naturally, these quantities
are not independent. The relationship between v,;, u,, and £
for a “perfect” network is given by [35]

§= Vel_—l"‘e|+ i. (28.]2)

In Fig. 28.3 a network structure is shown with ¢=4, v,=12
and u,=9.

Another important parameter is the crosslink function-
ality, f, which is the number of chains emanating from a
network junction. Only junctions with functionality higher
than 2 are elastically active. For perfect networks, i.e.,
crosslinked polymers containing no defects, v, and u,, are
connected by the functionality of the crosslinks [65]

/.l-e|=(2/f )Vel- (28.13)

Real networks always contain molecular imperfections,
such as pendant chains bound to the network at one end
only, intramolecular loops formed by the linking of two
units of the same chain, and intermolecular entanglements.
For an imperfect tetrafunctional network Flory [66]
proposed a simple formula for correction for pendant chains

Ve=vo(1-2M_IM,), (28.14)
where 1y is the total number of chains in the network, and
M, is the number average molecular weight of the primary
molecules.

The extent to which entanglements contribute to network
elasticity is not yet fully resolved. In the model of Langley
[45], Dossin, and Graessley [46-48] a contribution to the
equilibrium modulus is associated with the plateau modulus
of viscoelasticity. On the other hand, Flory [36] and Erman
[38-40] assume that interpenetration of chains is solely
reflected by suppression of the fluctuations of junctions.

A further type of network defect is caused by inhomoge-
neities. Clustering of chains or network junctions causes
permanent departures from the homogeneous distribution of
the polymer throughout the gel. Regions of higher polymer
concentration build-up that appear as permanent deviations
from uniformity. They are specific to the given system and
dependent upon the condition of crosslinking. The effect of
inhomogeneities on the elastic and swelling behavior of the
networks has not been considered quantitatively in any
theoretical model of rubber elasticity.

Network Models

The primary goal of a general statistical theory is to
derive an equation of state for the elastomeric molecular
network which will hold for any deformation including
swelling. Since the major contribution to the elasticity is

@ junction point
“~~ network chain

FIGURE 28.3. Schematic representation of a network struc-
ture with vy =12, ug=9 and ¢=4 (a). Note that the cycle rank
is the number of cuts needed to reduce the network to a tree

(b).




entropic, the molecular interpretation depends on how the
stress affects the conformational distribution of an assembly
of chains. The successful statistical model will provide
predictive relationships between the molecular structure
and topology of the network and its macroscopic behavior,
e.g., mechanical and swelling responses.

The classical theories of rubber elasticity rest on two
basic assumptions [4]

1. The elastic free energy of the network is the sum of the
elastic free energies of the network chains, i.e., the
interactions between the constituent chains are inde-
pendent of the state of deformation, and do not make
any contribution to the elastic free energy; and

2. The end-to-end distribution of the network chains is
Gaussian, i.e., the excluded volume interactions are
ignored.

The affine and the phantom models derive the behavior
of the network from the statistical properties of the indi-
vidual molecules (single-chain models). In the more
advanced constrained junction fluctuation model the prop-
erties of these two classical models are bridged and inter-
chain interactions are taken into account. We remark for
completeness that other molecular models for rubber
networks have been proposed [67-79], however these are
not nearly as widely used and remain the subject of much
debate. The reader is referred to the literature for further
information on these models.

The Affine Model. In this model it is assumed that the
displacement of the mean positions of the junctions and of
the end-to-end vectors of the chains are transformed
affinely, i.e., linearly in the macroscopic strain [80,81].
Fluctuations of the network junctions are completely
suppressed by intermolecular entangling with neighboring
coils sharing the same region of space. The elastic free
energy of the affine network is given by [80-82]:

AF kT =(vq/2Vo)(A 2+ A2+ 132-3)
—([Lc|/V0)ln()\|)\2)\3), (2815)

where v, and ., are the number of the elastic chains and
junctions in the network, and A, A,, and XA, are the prin-
cipal deformation ratios. Here we note that the affine model
is of the Neo-Hookean form with C,=v,/2V,, if there is no
volume change upon deformation. Note also the presence of
a logarithmic term in the free energy expression.

The Phantom Model

In this model, polymer chains are allowed to move freely
through one another and the network junctions fluctuate
around their mean positions [3,83-85]. The conformation
of each chain depends only on the position of its ends and
is independent of the conformations of the surrounding
chains with which they share the same region of space. The

GELs / 383

junctions in the network are free to fluctuate around their
mean positions and the magnitude of the fluctuations is
strain invariant. The positions of the junctions and of the
domains of fluctuations deform affinely with macroscopic
strain. The result is that the instantaneous distribution of the
mean positions of the end-to-end vectors is not affine in the
strain because it is the convolution of the distribution of the
mean positions (which is affine) with the distribution of the
fluctuations (which is strain invariant). The elastic free
energy of deformation is given by

AFPYKT=(E2Vo)(N 2+ N2+ N2 -3), (28.16)

and again the free energy function is of the Neo-Hookean
form, with C,=§/2V,.

The Constrained Junction Fluctuation Model. The affine
and phantom models are two limiting cases on the network
properties and real network behavior is not perfectly
described by them (recall Fig. 28.2). Intermolecular
entanglements and other steric constraints on the fluctua-
tions of junctions have been postulated as contributing to
the elastic free energy. One widely used model proposed to
explain deviations from ideal elastic behavior is that of
Ronca and Allegra [34] and Flory [36]. They introduced the
assumption of constrained fluctuations and of affine defor-
mation of fluctuation domains.

In the constrained junction fluctuation model [36,38-40]
developed by Flory and Erman, the spatial fluctuations of
the junctions are inhibited from the large values allowed in
the phantom network by restrictions due to neighboring
chains. The effect of conformational constraints are
assumed to be imposed solely on the network junctions. The
situation is illustrated by Fig. 28.4. The mean position of
the network junction is located in point A. In a phantom
network (Fig. 28.4a) the radius of the circle shows the
average root-mean-square fluctuation ((AR)Z) around
the mean position. The domain of constraints duc to inter-
molecular interactions with neighboring chains and to steric

4 y<as?,
<

FIGURE 28.4. Effect of constraints on the fluctuations of
network junctions. (a) Phantom model and (b) constrained
junction fluctuation model. Note that the domain boundaries
(circles in the figure) are diffuse rather than rigid. The action
of domain constraint is assumed to be a Gaussian function of
the distance of the junction from B8 similarly as the action of
the phantom network is a Gaussian function of AR from the
mean position A.
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requirements is represented by the smaller circle in Fig.
28.4b. This latter is centered at point B. Because of the
effect of constraints, the mean position of the junction (i.e.,
the equilibrium position in the unstrained network) is
removed from point A to point C. The instantaneous posi-
tion of the junction may differ significantly, however, from
the equilibrium position because the junction fluctuates
around its mean position. Thus, in addition to the phantom
network contribution to the free energy, an important new
parameter in this model is the measure of the severity of the
constraints relative to those imposed by a phantom network

k=(AR?)/(As?),, (28.17)

where ( ARz)ph is the mean-squared fluctuation in the posi-
tions of junctions from their mean locations in the phantom
model, and (As?), is the mean-squared fluctuation around B
that would occur in the undeformed network if the junction
were subject only to the effects of its interactions with the
surrounding chains [86]. The range of « therefore is from 0
(phantom limit) to o (affine limit). The size of the domains
of constraints is assumed to decrease with increasing strain
so that the junction fluctuations become larger. If the
network is deformed the fluctuations become anisotropic in
the stretching direction because the constraints become
smaller.
The elastic free energy is given by [38-40]

AFel=AFelph"l-AFelca (2818)

where AF,° is the contribution to the elastic free energy
arising from the presence of constraints relative to those in
the phantom network AF " [see Eq. (28.16)]. This term
can be written

AF° g :
ir =Gy 2 [(1+80B,—In((B+1)(g,8,+1))],
(28.19a)
with

Bi=(\—1)(1+N,— ) (1+g,)72, (28.19b)

g =N k1N~ 1)], (28.19¢)

where the parameter { characterizes the non-affine transfor-
mation of the domains of constraints with deformation.

Importantly, the model spans the behavior between the
phantom and affine models. When x=c and (=0 we
recover the affine network behavior. In this case the junc-
tion fluctuations are completely suppressed, i.e., (As2),=0.
When =0, i.e., the junctions are free to fluctuate, we
recover the phantom network model.

We note that the free energy function in the Flory—Erman
model is a specific form of the Valanis-Landel Strain
Energy Density Function. McKenna and Hinkley [61]
determined the Valanis—Landel function for the junction
constraint model

w'(N)=EKTN + (uakT/2){B}(1+g,)+g/B,~ B (B,

+1)7'—(g,B}+B,g})(g,B,+1)""}, (28.20)
where
BY=B[20,(\,~ )]~ "+ (1 =22\)[ 27 (1 +,
—ODI 2 (1+g) 7Y, (28.21)

and

gF=x"1-(1-3)\,/2) (28.22)

We will come back to these models subsequently.

The Mixing Contribution to the Free Energy

So far we have discussed the behavior of networks in the
dry state. In the case of a swollen network, additional
effects must be taken into account. The thermodynamics of
mixing is governed by the interaction between the polymer
and the solvent molecules. As we have seen in the section
on network models, in gels the fluctuations of the network
junctions are significantly altered by the presence of
crosslinks. The formulation of a mixing free energy for the
swollen network would require a detailed knowledge of the
effect of osmotic forces on the size and shape of the fluc-
tuation domains. This is beyond the scope of the existing
molecular theories.

Because of the lack of an explicit molecular theory which
accounts for the effect of crosslinking on the structure of a
polymer solution, it is generally assumed that the functional
dependence of the free energy of mixing in the swollen
network is the same as in a polymer solution. Although this
is a strong approximation, the application of the theoretical
free energy functions derived for polymer solutions
provides a simple and straightforward way to interpret the
results of mechanical and swelling measurements
performed on swollen polymer networks.

There are two essentially different ways to describe the
thermodynamics of polymer solutions: classical (mean-
field) theories [4] including recent renormalized models
[87,88] and asymptotic scaling theories [89,90] based on
the analogy found between critical phenomena and polymer
chain statistics.

Flory—Huggins Theory of Polymer Solutions

The classical treatment of polymer solution thermody-
namics due to Flory and Huggins [4] is based on a lattice
mode! which assumes a uniform polymer segment concen-
tration throughout the entire system. The free energy of
mixing of a polymer solution is given by

AFix=RT{n, In(1—@)}+n, In ¢+ xn,p),
(28.23)

where ¢ is the volume fraction of the polymer, x is the
Flory—Huggins interaction parameter, n, and n, are the
numbers of moles of solvent and polymer, respectively. The

dtn s ARG
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chemical potential of the solvent is defined as the derivative
of the free energy of mixing with respect to amount of
solvent

(A1) mix= (A Fpix/ny)=RT[In(1— @) +(1 ..._N—l)(P
+x¢°], (28.24)

where N is the degree of polymerization. For a crosslinked
polymer N=co. In general, y depends on the polymer
concentration, [91] i.e.,

x=xotxiet..., (28.24a)

where xp and x; are constants.

Scaling Theory

In the 1970s a new theory of polymers was developed
based on the analogy found between polymer statistics and
critical phenomena taking account of correlations between
monomers [90]. For the chemical potential of mixing in the
semi-dilute region scaling theory yields

(A/"l)mix=KRT‘P" (‘P*<‘P<l), (28.25)

where the prefactor K is characteristic of the polymer/
solvent system and the value of the exponent n depends on
the thermodynamic quality of the solvent. In a good solvent
n==231, and in the theta condition n=3. ¢* is the polymer
volume fraction above which the domains of the coils start
to overlap, i.e., the volume fraction of the polymer inside a
separate coil

@*«xN/R3x N1 73¥, (28.26)
where » is the excluded volume exponent, the value of
which is v=3/5 (good solvent condition) or v=1/2 (theta
condition).

De Gennes proposed a description of the properties of
swollen polymer networks based on the analogy found
between the swollen network and semi-dilute polymer solu-
tions (¢* theorem) [90]. The fully swollen gel is expected
to maintain a polymer volume fraction, ¢, , which is propor-
tional to the overlap concentration. In a good solvent

e.=2(f Yp*xz(f )(1/2—x) 3N, (28.27)

where z(f ) is a constant factor of the order of unity, f is the
crosslink functionality and y is the Flory—Huggins poly-
mer-solvent interaction parameter.

Many attempts to explain the results of osmotic and
mechanical measurements on swollen polymer networks
have invoked analogies with semi-dilute polymer solutions.
Scaling forms for different physical quantities have been
derived from the ¢* theorem.

For example, the elastic (shear) modulus of a gel is given
by [59]

G=B(¢.IN.), (28.28)
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where ¢, is the volume fraction of the polymer in the fully
swollen gel, N, is the degree of polymerization between
crosslink points and B is a constant which depends on the
polymer/solvent system. From Eqs. (28.26) and (28.28) it
follows that

G=Be,", (28.29)
where n=3v/(3v—1). Eq. (28.29) predicts that the
concentration dependence of the elastic moduli of gel
homologs (chemically similar gels having different
crosslinking densities) follows a simple power law
behavior. The value of n depends on the thermodynamic
quality of the solvent: in good solvent condition n=2.31, in
theta condition n=3.

Here we note that in the simple scaling theory used
above, the polymer is considered as an infinitely thin chain
possessing length but not volume. At higher polymer
concentration, however, the finite volume of the structural
elements may no longer be neglected. More recent scaling
theories [87,88] using the Flory—Huggins lattice model as a
starting point are able to incorporate the polymer volume
into their formalism.

Swelling of Polymer Networks—The Frenkel—Flory—
Rehner Hypothesis

A crosslinked polymer exposed to a thermodynamically
compatible diluent absorbs solvent molecules. The driving
force of the mixing process is mainly entropic. As the
volume increases, the network chains are deformed and an’
elastic retractive force develops. The chain deformation
causes a decrease in the entropy, because the extended
configuration of the chains is less probable. Equilibrium is
achieved when these opposing forces are balanced.

The basic assumption in the Frenkel-Flory—Rehner
theory describing the swelling of a crosslinked polymer is
that the elastic (AF,) and mixing (A F,,,) contributions in
the free energy that accompany the swelling of the dry
network are separable and additive [2,4,5]

AF=AF,+AF ., (28.30)
where AF is the total free energy of the polymer-solvent
system. At equilibrfium with the pure solvent (at constant
temperature and pressure) the free energy is at minimum
with respect to any changes in composition, i.e.,

(8AF10n,)=py= p,°=0= (= 1)+ (11— 211
(28.31)

where n, is the number of moles of solvent, u; is the
chemical potential of solvent in the gel and Mo is the
chemical potential of the pure solvent. The subscripts .,
and (, refer to the mixing and elastic contributions to the
chemical potential respectively. How the Frenkel-Flory-
Rehner model can be used to relate macroscopic swelling
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observations to the molecular structure of the network is
developed subsequently.

Experimental Characterization of Swollen Polymer
Networks

Molecular theories of rubber elasticity (see section on
network models) allow the interpretation of the experi-
mental data obtained for elastomeric materials in terms of
structural characteristics of the network. The most
frequently used experimental techniques are stress-strain
measurements and swelling measurements.

Stress-Strain Isotherms

Uniaxial stress-strain measurements are often used to
characterize polymer networks both in the dry state and in
equilibrium with a diluent. The analysis of the stress-strain
isotherms is usually performed in terms of the reduced force

F*I=r*(Vo/V)'B3i(a—a™?), (28.32)

where f* is the force per unit unstrained cross-section of the
unswollen network, and « is the deformation ratio relative
to the undeformed swollen state of volume V. The relation-
ship between a and A, is given by

A= a(VIVe)'3, (28.33a)

and

A=Ny=a~2(y1vy)s, (28.33b)
In both the phantom and affine models the reduced force is
identified with the elastic modulus. In the affine limit the
shear modulus is expressed as

Gur=[*1lur=kT(vy/Vy), (28.34)
while in the phantom limit
Gon=[f*1pn=kT(&/V,). (28.35)

In general, experimental stress-strain isotherms differ from
the predictions of the simple statistical theories.

The constrained junction fluctuation theory provides a
description of the network behavior which lies between the
affine and phantom limits [36,38—40]. According to this
theory, the elastic force, f, is the sum of two contributions

f=fph+fc’

where f, is the phantom network contribution, and Sfe
arises from the entanglement constraints. The reduced stress
[f*] is given by

LA 1=KT(EIVo)(1 + 1. If 1),

The expression for S/ fpn in uniaxial deformation is

(28.36)

(28.37)

felfon= (W EIAKA ) ~N"2ZE(N DI =-A"2) 7,
(28.38)

where A;=)\ and A\,=\""2 The function X is defined by
K()\rz)--Bt[Br*(Bt’*'l)_I+gt(gtBt*+gt*Bl)(gtBr
+1)71, (28.39)

where B,, B,* and g, are the same as in Eqgs. (28.19),
(28.21) and (28.22)

The Flory-Erman theory considers topological interac-
tions among junctions and chains only in that they restrict
Junction fluctuations. Ferry [92], Langley [45], Dossin [46]
and Graessley [48] assume that these interactions are also
present in the small-strain limit. Dossin and Graessley [46)
proposed for the small strain modulus

Go = ( Vei— h”’el)k TV, (28.40)

where h is an empirical constant, the value of which is
between 0 and 1, depending on the extent to which the
junction fluctuations are impeded in the network (=0 in
the affine limit, and A=1 in the phantom limit).

Gottlieb and Macosko [55] and Gottlieb [49] pointed out
that the two parameters h and «x, both measuring the
severity of constraints are related. For the case of a perfect,
incompressible, unswollen network the analytical relation-
ship is given by

h=1-(1-1/20)% k¥ (*+ 1) (k+1)"4.
(28.40a)

At the limit of k=0 Eq. (28.40a) yields k=1 (phantom
network), and at the limit of k—, h={(1—{/4) and hence
for {=0 affine network behavior is observed. Affine
network behavior is obtained also in the case {=2. Inter-
mediate behavior is obtained in ranges of both 0<x< and
0<{<2.

Another approach is to consider that topological interac-
tions raise the free energy of the network, as if there were
additional crosslinks [45-48]. The argument is based on the
existence of a rubbery plateau modulus, G,°, which is
observed in the viscoelastic properties of high molecular
weight linear polymers. The plateau modulus is assumed to
be a measure of the entanglement interactions between the
chains. In a permanent network the interchain entangle-
ments are fixed due to the presence of the chemical bonds.
Langley [45] and Graessley and co-workers [46—48] have
suggested that these trapped entanglements can be simply
added to the small strain modulus from Eq. (28.40)

G=v kT(1-2hIfT)(VIV)**IV+T,G,™,
(28.41)

‘where T, is the fraction of the maximum concentration of

topological interactions which are permanently trapped by
the networks and G,™* is the maximum possible contribu-
tion of entangled chains to the modulus. Thus Eq. (28.41)
predicts a small-strain modulus greater than predicted by

al i L
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the Flory—Erman theory and greater than that of the affine
model.

Importantly the Flory—Erman theory has been developed
for finite (large) deformations, which is not true of the
entanglement model, which resultingly limits the latter’s
usefulness in terms of making quantitative estimates of
experimental results, particularly in large deformation
experiments, including swelling.

Swelling Measurements

In addition to mechanical measurements, swelling
measurements are frequently used to characterize rubber
networks. Of particular interest is the relationship between
the molecular weight between crosslinks and the degree of
swelling. Unfortunately, the numerical values of the
molecular parameters obtained by elastic and swelling
measurements strongly depend upon the particular theo-
retical model used to evaluate the experiments. The model
behaviors are described in the following paragraphs.

The swelling equation for a phantom network is given as
[44,93]:

In(1 = @)+ @+ xp2=—(EIN, Vo)V, 0,3,
(28.42)

while for an affine network [44]

In(1—@,)+ @+ xp2=—(EINyVo)Vi0 [ 1+ (u,,/£)
xX(1=-¢,2%)], (28.43)

where N, is Avogadro’s number and the extra complexity in
Eq. (28.43) arises due to the logarithmic contribution to the
free energy in the affine network model [see Egs. (28.1) and
(28.15)].

The corresponding equation according to the Flory-
Erman constrained junction fluctuation model is

In(1— @)+ @+ xe.2=—(EIN Vo) V0, [ 1+ K(A?)],
(28.44)

where K(\2) has been defined earlier [see Eq. (28.39)].

Queslel et al. [93] made a comparison between the
values of the molecular network parameters calculated
through Egs. (28.42)-(28.44). The highest value of M,
(chain molecular weight) is obtained by the affine model.
The phantom model yields lower M than the affine model,
because junction fluctuations decrease the impact of the
changes in chain entropy in the phantom model. Using Eq.
(28.43) the same elastic contribution as that of an affine
network is thus achieved if £ is higher (or correspondingly
M, is smaller). The value of M_ determined from the
Flory-Erman model lies between these limiting values. It is
important to remark that Eqs. (28.42) and (28.43) enable
one to estimate a range for M. without any prior knowledge
of the network structure.

Both the affine and the phantom network models predict
that the reduced stress, [f*], measured in uniaxial deforma-
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tion is independent of the deformation ratio. However, it
became clear from early studies of rubber elasticity that real
networks, in general, exhibit significant departures from
this prediction: the reduced stress decreases with elongation
and also with increasing swelling. It was recognized that the
limiting value of the reduced stress at high elongation or
swelling ratio is a characteristic quantity of the network.

The detailed calculations according to the constrained
junction fluctuation model can only be performed with a
computer. The fitting of the stress-strain {(or swelling) data
to the model, in principle, requires three parameters: [*],,,
« and . Here we briefly outline the steps of the fitting
procedure [94,95]:

I. In many cases it is reasonable to take the initial value
of [f*],=2C,, where 2C, is the Mooney-Rivlin
constant. An alternative possibility is to estimate
[f*]pn from the stoichiometry of the chemical reaction
using Eqgs. (28.12)-(28.14) and (28.35).

2. The initial value of « can be obtained from the Flory-
Erman theory on the basis of the following argument
[94]. Since « is assumed to be proportional to the
number of chains sharing the volume occupied by one
chain, it is the measure of the degree of interpenetra-
tion of the network chains, i.e.,

k=I(r*)g**(vy/Vy), (28.45)

where {r?), is the unperturbed dimension of a chain
and I is a proportionality constant. Expressing Eq.
(28.45) in terms of measurable quantities one gets
[94]

k=A(2C,)"2p WD) tm (28.46)

where ¢, is the volume fraction of the polymer at
crosslinking and A=I1((r*)/M)¥*(1
-2/f )”sz’zem(kT)”z, where N, is Avogadro’s
number, p is the density of the polymer, and f is the
crosslink functionality. The experimental value of A is
the order of unity (for PDMS networks Erman and
Mark [95] reported A=1.29 and m=0.385).

3. In a first approximation the parameter { can be
assumed to be zero.

4. Using these initial values the differences between
theory and experiment should be minimized. In order
to achieve this, the value of x obtained in step (2) is
used to calculate [f*];, from Eqs. (28.37)-(28.38).
Then 2C, in Eq. (28.46) is replaced by [f*];, to
obtain a new value of k. These steps are iterated until
k converges. Using the new values of [f*],, and « the
function [f*] vs a™! is calculated from Eq. (28.37).

5. The procedure described in 4 is repeated for a new
value of m (and A), and the values of [f*],, and « are
recalculated. The calculation is continued until the
error between the experimental and the calculated data
reaches a minimum.

6. If the agreement between calculated data and experi-
ment is still not perfect, the value of { can be varied to
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fit experimental data. The values of { giving the best
agreement with experiments are usually close to zero.

28.3 ANALYSIS OF EXPERIMENTAL RESULTS
28.3.1 General Comments

The primary goal of the molecular theories is to derive
the structure-property relationships for polymeric networks.
A quantitative understanding of the dependence of the
physical properties upon the network structure is essential
to deduce molecular parameters (e.g., molecular weight
between crosslinks) from measurements. This is also
required to synthesize new polymer networks having
desired physical properties.

To test the validity of different network theories is
particularly difficult because the structure of the network is
unknown at the molecular level. Usually crosslinks are
introduced in a less perfectly controlled manner than
desired. The extent of imperfections depends on the mecha-
nism of the crosslinking process, e.g., clustering of chains
or junctions may lead to deviations from the complete
randomness assumed in the theories. In most cases, the
distribution of the network chains and junctions is not
uniform throughout the sample.

Analysis of the experimental data obtained for model
networks having known structure provides a straightfor-
ward way of understanding the structure-property relation-
ships. Such model networks can be synthesized by specific
chemical reactions, e.g., by end-linking of well character-
ized polymer chains through a controlled chemical reaction.
The characteristics of the chains, prior to crosslinking, can
be determined using the usual solution characterization
techniques (gel chromatography, viscometry, etc.). In this
way the average molecular weight between crosslinks (M)
and the distribution of M_ can be varied in a controlled
manner. The crosslink functionality (f ) is known from the
chemistry of the crosslinking reaction. Since v, and f are
known é=vy,—puy+1 is also known. Assuming that the
chemical reaction between the end-groups of the chains and
the crosslinking agent is stoichiometric, and that the effects
of entanglements and network imperfections (cycles,
pendent chains) are negligible, the elastic properties of the
gel can be predicted. Equations (28.34) and (28.35) allow
the elastic modulus both in the phantom and the affine
limits to be calculated. The decrease of the modulus with X
depends on the values of « and ¢ in the Flory-Erman
theory. Unfortunately, this theory does not make an a priori
prediction for these parameters. Since no independent infor-
mation is available about the actual size of the junction
fluctuation domains and about the anisotropy of these
domains, the values of x and { can only be determined
empirically using a fitting procedure such as that described
in the section on swelling measurements.

The testing of the network models with regard to the
prediction of the equilibrium swelling degree of the

crosslinked polymer as a function of the thermodynamic
activity of the diluent requires further assumptions
concerning the mixing free energy contribution. This term
is supposed, firstly, to be separable from the total change in
the free energy [see Eq. (28.30)] and, secondly, to be iden-
tical for the gel and for the solution of the uncrosslinked
polymer of infinite molecular weight. The latter assumption
presumes that the polymer-solvent interaction parameter is
unaffected by the presence of crosslinks. Thus, the only
difference between the swollen network and the polymer
solution is the existence of a permanent elastic modulus and
the theoretical dependence of the equilibrium volume frac-
tion upon the molecular parameters is predicted by Eqgs.
(28.42)-(28.44).

The structure of any real network exhibits departures
from that of the ideal (model) network. A comparison
between the experimental and theoretical values of the
network parameters provides quantitative information on
the deviation from the behavior of the hypothetical model
systern, and allows one to treat real networks by reference
to the structural parameters of a perfect network. In the
following sections, typical experimental results obtained for
different network systems and analyzed using different
theoretical approaches are briefly reviewed.

28.3.2 Determination of the Model Parameters from
Stress-Strain Measurements

A large amount of experimental work has been reported
on the stress-strain behavior of swollen polymeric
networks. Fitting of stress-strain data measured at different
degrees of dilution to Eqs. (28.37)-(28.39) enables one to
determine £, « and {.

Erman and Flory [39] reanalyzed the data of Allen et al.
[96] on swollen natural rubber samples crosslinked with
dicumyl peroxide. It was found that the shape of the [f*] vs.
o' curves in a wide range of dilution in n-decane (0.24
<@<1) can be well reproduced using a single set of param-
eters [f*],,=0.166 MPa, k=8 and {=0.12. Similar analysis
of the data of Flory and Tatara [33] for radiation crosslinked
PDMS samples swollen in benzene yields the values
[f*],,h=0.l36 MPa, k=6 and {=0.12. For poly(ethy! acry-
late) networks [37] having different crosslink densities
swollen in bis(2-ethoxyethyl)ether « varied in the range
1.8-16.0, and { varied between 0.0 and 0.1. It was also
found that the stress-strain isotherms for the same networks
in the unswollen state and in swelling equilibrium with a
diluent are consistently described by the same set of param-
eters, x and {. Typical [f*] vs ! data along with the fit of
the Flory—Erman theory are shown in Fig. 28.5.

Swelling equilibrium measurements provide an indepen-
dent route to determine [f*],. At swelling equilibrium the
sum of the contributions to the chemical potential from
mixing and from the elastic deformation of the network
should be zero [see Eq. (28.31)]. Thus




0=In(1- @)+ @+ x>+ (V EINJVoON T [1+K(\2)],
(28:47)

where N, is the Avogadro number. Substitution for &V,
according to Eq. 28.35 yields

[*Iw=—(RT/V))[In(1 — @)+ o+ x@*IN[1 + K(\?)],
(28.48)

where K(\?) is defined by Eq. (28.39).

Using Eq. (28.48) Erman and Flory [39] analyzed the
results of Mark and Sullivan [97]} on end-linked PDMS
networks swollen in benzene as well as the data from
Erman, Wagner and Flory [37] on poly(ethyl acrylate).
They compared the values of [f*],, obtained from stress-
strain isotherms and swelling measurements with data
calculated from the chemistry of cross-linking. The [f*],,
values derived from elasticity measurements were slightly
higher than those calculated from the known molecular
weights of the primary chains on the basis of stoichiometry.
The deviation was attributed to possible departures from
equilibrium in the force measurements. The most
pronounced departure was observed for networks of low
degrees of crosslinking in which the approach to equilib-
rium is protracted. No such deviation was detected for
[f*};n obtained from swelling measurements. The satisfac-
tory agreement between the experimental and the calculated
values of [f*]y, led the authors to the conclusion that
trapped entanglements do not have a significant contribu-
tion to the elastic response of the network. If the effective
degree of interlinking is enhanced by discrete entangle-
ments, the values of [f*],, deduced from elastic or swelling

[f*]/MPa

0.26 T T T Y

o »=1.00

o ¢=0.36 .

0.24

0.22

0.20

FIGURE 28.5. “Mooney-Rivlin" reduced stress plot
showing comparison of experimental data with modified
constrained chain model (MCC) predictions for dry (O) and
swollen (®) natural rubber networks [96,102]. Swelling
agent: n-Decane. Continuous lines are theorstical curves
calculated with parameters £kT/V,=0.17 MPa and xg=2.0.
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measurements should exceed the chemical values of
kT§/V, calculated from the chemistry of crosslinking.

Gottlieb er al. [54] reached a conclusion opposite that
drawn by Erman and Flory by the analysis of data on
PDMS from different sources, including the same data set
of Mark and Sullivan [97]. They argued that trapped
entanglements contribute substantially to the stress. Erman
and Flory [39] criticized this interpretation on several
grounds. Their main criticism was that Gottlieb et al. [54]
confined attention to stresses at small strains and did not
deduct the contribution to the reduced stress from restraints
on junction fluctuations. In the analysis of Gottlieb et al.,
such fluctuations are assumed to be totally suppressed at
small strains, as if «=o for all networks, and the contribu-
tion arising from the constraints is treated as a constant
fraction of the reduced stress. This procedure may enhance
the reduced forces by factors that increase with decreasing
crosslink density, and lead to a finite value of [f*],, at £=0.
According to Flory and Erman [39] the large entanglement
contribution in the analysis conducted by Gottlieb et al.
[54] is largely a fiction of their data treatment.

A comprehensive analysis of previously reported stress-
strain data for five different elastomers both in the swollen
and unswollen states was performed on the basis of the
Flory~Erman theory by Brotzman and Mark [98] (Table
28.1). They found that in most cases, as the polymer
volume fraction decreases, the value of x required to
describe the experimental data also decreases. The analysis
also revealed that when { is set to zero, the high-extension
intercept of the [f*],, vs o ! curves is practically indepen-
dent of the degree of swelling. In Table 28.2, the values of
2C, and 2C,+2C, obtained for the same networks by
using the linear Mooney—-Rivlin equation of the reduced
force, [f*]=2C,+2C,a"", are listed. The 2C, values are
in reasonable agreement with the [f*];, data given in Table
28.1, indicating that the Mooney—Rivlin treatment can yield
similar estimates of the cycle rank of the network as does
the more detailed theoretical approach.

Poorer agreement was found between [f*], and 2C/ by
Sharaf and Mark [99]. These authors re-examined the
small-strain modulus data reported for unswollen PDMS
model networks (Table 28.3). The values [f*], were found
two- or threefold lower than the corresponding values of
2C,. For comparison in Table 28.4, the characteristic quan-
tities of the same PDMS model networks are given in terms
of the entanglement model [see Eqs. (28.40) and (28.41)].

The constrained junction fluctuation theory of amorphous
polymer networks was modified by Erman and Monnerie
[100]. The fundamental difference between the modified
and the original models is the adoption of the assumption
that constraints affect the whole chain rather than the junc-
tion points only. They considered two different cases: (1)
the fluctuations of all points along the chains in the phantom
network are independent of macroscopic strain (constrained
chain scheme, CC); and (2) the fluctuations of the points in
the phantom network are dependent on the macroscopic
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TABLE 28.1. Parameters of the stress-strain isotherms calculated from the fit of the Flory—Erman model for different networks

systems [98].
Polymer?® Diluent f Cross-linker T/°C ® [f*]o/MPa K L
PDMS [111] lin. PDMS 4 v-irradiation 30 1.00 0.0325 7.66 0.00
0.80 0.0317 4,79 0.00
0.60 0.0317 4.10 0.00
0.40 0.0318 3.96 0.00
1.00 0.0355 6.75 0.05
0.80 0.334 491 0.05
0.60 0.0330 5.02 0.05
0.40 0.0333 4.69 0.05
1.00 0.0366 6.94 0.10
0.80 0.0341 6.09 0.10
0.40 0.0343 9.96 0.10
PDMS [111] lin. PDMS 4 y-irradiation 30 1.00 0.0245 14.3 0.00
0.80 0.0238 474 0.00
0.60 0.0232 4.63 0.00
0.40 0.0221 4.35 0.00
PDMS [111]) lin. PDMS 4 y-irradiation 30 1.00 0.0146 156.3 0.00
0.80 0.0139 8.23 0.00
0.60 0.0129 10.8 0.00
0.40 0.0130 4.77 0.00
PBD-S [112] 1,2,4-tri- 4 1% sulfur 25 1.00 0.222 7.93 0.00
chloro- 0.80 0.213 6.43  0.00
benzene 0.60 0.204 6.74 0.00
0.40 0.192 8.07 0.00
0.20 0.212 5.21 0.00
1.00 0.245 6.83 0.05
0.80 0.232 6.04 0.05
0.60 0.227 5.47 0.05
0.40 0.219 7.68 0.05
0.20 0.231 12.0 0.05
1.00 0.250 10.3 0.10
0.80 0.237 7.77 0.10
0.60 0.232 8.12 0.10
0.40 0.229 25.0 0.10
0.20 0.240 4.81 0.10
PBD-G {112] 1,2,4-tri- T4 y-irradiation 10 1.00 0.107 20.2 0.00
chioro- 0.80 0.097 16.4 0.00
benzene 0.60 0.98 9.77 0.00
0.40 0.93 8.1 0.00
: 0.20 0.93 6.78 0.00
24 10 1.00 0.162 24 0.00
0.80 0.135 20 0.00
0.60 0.127 22.8 0.00
0.40 0.111 27.2 0.00
0.20 0.101 29.7 0.00
PBDP-P [112) 1,2,4-tri- 4 1% benzoyl peroxide 10 1.00 0.147 2.96 0.00
chloro- 0.80 0.143 2.16 0.00
benzene 0.60 0.142 : 1.42 0.00
j . 0.40 0.142 0.84 0.00
| 0.20 0.140 1.07 0.00
24 10 1.00 0.164 18.2 0.00
0.80 0.153 16.1 0.00
0.60 0.143 17.7 0.00
0.40 0.138 25.4 0.00
0.20 0.136 23.0 0.00
PIB [113] 1,2,4-tri- 4 disulfide 30 1.00 0.082 10.0 0.00
chioro- 0.80 0.083 2.44 0.00
! benzene
4
i
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TABLE 28.1. Continued.
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Polymer Diluent f Cross-linker T/°C @ [f*]on/MPa K I4
0.60 0.073 3.98 0.00
0.40 0.070 2.65 0.00
20 1.00 0.166 3.22 0.00
0.80 0.104 3.74 0.00
0.60 0.104 2.75 0.00
0.40 0.095 3.14 0.00
15 1.00 0.131 3.95 0.00
0.80 0.123 4.1 0.00
0.60 0.119 2.16 0.00
0.40 0.107 1.21 0.00
POE [114] phenyl- 3 triisocyanate 25 1.00 0.721 1.14 0.00
acetate 0.597 0.637 1.58 0.00
0.565 0.549 2.26 0.00
0.488 0.337 14.8 0.00
0.390 0.608 1.58 0.00
POE [114] phenyl- 3 triisocyanate 25 0.429 0.608 1.56 0.00
acetate 0.325 0.240 2.52 0.00
0.220 0.259 0.960 0.00
POE (114} phenyi- 3 triisocyanate 25 0.457 0.314 1.29 0.00
acetate 0.341 0.345 1.19 0.00
0.291 0.314 1.29 0.00
0.488 0.337 14.8 0.00
0.390 0.608 1.58 0.00
POP [115] benzene tris(p-phenyl- 60 0.216 0.285 2.0 0.00
misocyanate) 0.216 0.315 22 0.00
thiophosphate : :
M =3000 0.286 0.400 1.5 0.00
M=2000 0.286 0.417 1.7 0.00
0.273 0.376 1.7 0.00
M,=1025 0.406 0.805 0.5 0.00
0.421 0.773 0.5 0.00
M =725 0.464 0.750 0.5 0.00
0.456 0.769 0.5 0.00
M=730 0.473 0.725 0.4 0.00
0.477 0.758 0.4 0.00
0.440 0.755 04 0.00
M,=740 0.522 0.695 05 0.00
0.519 0.645 04 . 000
M,=725 0.480 0.850 0.5 0.00
0.510 0.829 0.4 0.00

2PDMS: poly(dimethyl siloxane); PDB: cis-1,4-polybutadiene; PIB: polyisobutylene; POE: poly(oxyethylene); POP: poly(oxy-

propylene).

strain, only the junctions are invariant to strain (modified
constrained chain scheme, MCC). The important conse-
quence is that « of the constrained junction fluctuation
theory has been replaced by the function [100]

h(\)=xs{1+(A-1)®] 7, (28.49)

where g is a parameter corresponding to «, and
®=(1-2/f)%3 (CC model), (28.50a)
®=(1-2/f)? (MCC model). (28.50b)

Both constrained chain models predict that the elastic
modulus may exceed the value obtained from the affine
model, and according to the MCC scheme it exhibits a more

sensitive dependence upon elongation or swelling than
given by the original Flory—Erman theory. The effect of
constraints is represented by a single parameter «; instead
of the two parameters « and { in the previous model, which
makes the new theory more straightforward for the inter-
pretation of the experimental stress-strain-swelling data.
Fontaine er al. [101,102] compared the prediction of the
constrained chain models with the results of elongation
measurements performed on dry and swollen natural rubber,
poly(ethylene oxide), polybutadiene, poly(dimethylsilox-
ane) and cis-1,4-polyisoprene networks. In Table 28.5 the
parameters obtained by analysis of the same network
systems using both the CC and the MCC models are listed.
It was found that the strong dependence of the reduced
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TABLE 28.2. Mooney-Riviin parameters of the stress-strain isotherms for different networks systems [98].

Polymer Diluent f Cross-linker TrC ® 2C4/MPa (2C{+2C,)/MPa
PDMS [111] lin. PDMS 4 y-irradiation 30 1.00 0.0304 0.0571
0.80 0.0298 0.0476
0.60 0.0299 0.0433
0.40 0.0305 0.0398
PDMS [111] lin. PDMS 4 y-irradiation 30 1.00 0.0218 0.0533
0.80 0.0220 0.0365
0.60 0.0218 0.0324
' 0.40 0.0208 0.0290
PDMS [111) lin. PDMS 4 y-irradiation 30 1.00 0.0118 0.0364
0.80 0.0121 0.0255
0.60 0.0117 0.0230
0.40 0.0126 0.0168
PBD-S [112] 1,2,4,-tri- 4 1% sulfur 25 1.00 0.203 0.406
chioro- 0.80 0.202 0.343
benzene 0.60 0.202 0.302
0.40 0.196 0.272
- 0.20 0.204 0.254
PBD-G [112] 1,2,4-tri- 4 y-irradiation 10 1.00 0.0904 0.280
chloro- 0.80 0.0864 0.210
benzene 0.60 0.0915 0.167
0.40 0.0933 0.135
0.20 0.0878 0.117
24 10 1.00 0.0904 0.28 -
0.80 0.0868 0.210 .
0.60 0.0915 0.167 -
0.40 0.0933 0.135
0.20 0.0878 0.117 *
PBD-P [112] 1,2,4-tri- 4 1% benzoyl peroxide 10 1.00 0.142 0.228 a2
chloro- 0.80 0.140 0.178
benzene 0.60 0.138 0.160
0.40 0.138 0.150
0.20 0.142 0.144
24 10 1.00 0.164 0.168
0.80 0.140 0.178
0.60 0.138 0.160
0.40 0.138 0.150
0.20 0.135 0.144
PIB [113] 1,2,4-tri- 4 disulfide 30 1.00 0.072 0.159
chloro- 0.80 0.083 0.103
benzene 0.60 0.074 0.0953
0.40 0.073 0.0777 5
20 1.00 0.113 0.165 B
0.80 0.0976 0.148 :»";
0.60 0.104 0.131 5
0.40 0.0905 0.115 2
15 1.00 0.128 0.194 e
0.80 0.123 0.170
0.60 0.114 0.145
0.40 0.108 0.114
POE [114) phenyl- 3 triisocyanate 25 1.00 0.744 0.934
acetate 0.597 0.660 0.795
0.565 0.613 0.722
0.488 0.575 0.732
0.390 0.593 0.715
POE [114] phenyl- 3 triisocyanate 25 0.429 0.251 0.320
acetate 0.325 0.231 0.296

0.220 0.263 0.266




TABLE 28.2. Continued.
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Polymer Diluent f Cross-linker Tr°C ¢ 2C/MPa (2Cy+2C,)/MPa
POE [114] phenyl- 3 triisocyanate 25 0.457 0.280 0.390
acetate 0.341 0.329 0.402
0.291 0.310 0.348
POP [115] benzene tris(p-phenyi- 60 0.216 0.322 0.423
isocyanate) 0.216 0.328 0.477
thiophosphate
M, =3000 0.286 0.450 0.546
M =2000 0.286 0.448 0.594
0.273 0.398 0.537
M;=1025 0.406 0.839 0.899
0.421 0.839 0.859
M =725 0.464 0.810 0.835
0.456 0.847 0.851
M =730 0.473 0.779 0.785
0.477 0.796 0.832
0.440 0.814 0.817
M.=740 0.522 0.723 0.776
0.519 0.647 0.713
M =725 0.480 0.861 0.959
0.510 0.891 0.904

force on extension and swelling, observed in all the experi-
ments, can be satisfactorily described by the constrained
chain models. The value of the parameter, x;, varies

between 0.9 and 6.0 for all five network systems investi-
gated. (The other parameter, £kT/V,, required to describe
the strain and swelling dependence of the data is obtained

TABLE 28.3. Parameters of the stress-strain isotherms calculated from the Flory-Erman model for unswollen PDMS model

networks [99].

M,(g mol™") f [*)pwMpa K 2C,MPa 2C,/MPa
32900 3 0.013 19.4 0.033 0.034
25600 3 0.014 18.2 0.043 0.052
18500 3 0.021 15.0 0.066 0.061

9500 3 0.053 9.5 0.093 0.057-
4700 3 0.075 7.9 0.148 0.011
4000 3 0.101 6.8 0.192 0.015
45000 4 0.008 223 0.038 0.030
32900 4 0.015 16.4 0.058 0.042
25600 4 0.028 1.9 0.084 0.055
18500 4 0.023 13.3 0.089 0.040
9500 4 0.062 . 8.0 0.167 0.050
4700 4 0.119 5.8 0.353 0.031
4000 4 0.195 45 0.395 0.021
18500 4 0.020 14.3 0.096 0.043
18500 4 0.020 14.3 0.089 0.043
18500 4 0.020 14.3 0.089 0.040
11300 4 0.082 7.0 0.196 0.083
11300 4 0.079 7.1 0.169 0.115
11300 4 0.084 6.9 0.199 0.076
11300 4 0.064 7.9 0.188 0.092
11300 4 0.060 8.2 0.178 0.098
11300 4 0.062 8.1  0.165 0.120
21500 4 0.038 10.3 0.142 0.098
11100 4 0.086 6.8 0.207 0.087
8800 4 0.104 6.2 0.244 0.084
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TABLE 28.4. Paramelers of the stress-strain isotherms for PDMS model networks calculated from the entanglement model

veRT/V [54].

M, (g mol™") f T/K 1075G/Pa 10750 RT)/Pa T,
32900 3 298 0.699 0.286 0.467
25600 3 0.947 0.377 0.474
18500 3 1.27 0.508 0.467

9500 3 1.50 1.41 0.641
4700 3 1.59 2.00 0.467
4000 3 2,07 2.66 0.536
45000 4 298 0.68 0.185 0.278
32900 4 1.00 0.335 0.38
25600 4 1.40 0.618 0.571
18500 4 298 1.29 0.517 0.324
9500 4 217 1.38 0.466
4700 4 3.84 2.63 0.439
4000 4 4.16 4.185 0.625
18500 4 1.35 0.45 0.278
11300 4 298 2.79 1.72 0.744
- 11300 4 2.84 1.68 0.723
11300 4 275 1.77 0.769
11300 4 2.75 1.50 0.804
11300 4 2.76 1.41 0.752
11300 4 2.85 1.44 0.771
21600 4 298 2.40 0.871 0.774
11100 4 2,94 1.87 0.866
8800 4 3.28 2.28 0.783

directly from the experimental stress-strain isotherms at
@ '=0) In the framework of the Flory-Erman model
quantitative agreement between the theory and the data for
the polybutadiene and poly(ethylene oxide) networks has
been achieved only when both « and the phantom modulus
€kT/Vy were allowed to be dependent on ¢. The formula-
tion according to the constrained chain models, however,
does not require ¢ dependent values of £k7/V, and kg .

28.3.3 Determination of the Model Parameters from
Swelling Measurements

Swelling of elastomers in a solvent is a relatively simple
technique for the characterization of polymer networks.

Empirical information, such as the degree of swelling and
the elastic modulus, can be obtained by direct measure-
ments. Equilibrium swelling measurements and stress-strain
measurements are the most frequently used methods for
determining the relative degree of crosslinking. A quantita-
tive analysis of the swelling data, however, requires further
considerations.

According to the Frenkel-Flory—Rehner hypothesis, the
elastic and mixing contributions to the free energy are addi-
tive, and the mixing free energy for the network is the same
as that of the corresponding uncrosslinked polymer. It
follows from these assumptions that the thermodynamic
activity of the solvent in the network contains two separable
contributions, a, . and a, ,, representing the diluent activi-

TABLE 28.5. Network parameters calculated by the constrained chain (CC) and modified constrained chain (MCC) models

(101,102].
(€kT/Vy)/MPa KG
System Cross-linker® @ cC MCC CcC MCC
cis 1,4- DCP 1.3% 0.197 0.312 0.325 1.1 0.9
polyisoprene/ DCP 0.75% 0.165 0.215 0.220 1.6 1.6
benzene DCP 0.30% 0.133 0.115 0.125 3.0 25
T=25°C DCP 0.20% 0.112 0.083 0.092 3.8 3.0
DCP 0.10% 0.081 0.043 0.045 5.0 6.0
NR/n-decane DCP 0.24-1.0 0.150 0.170 3.0 20
PEO/phenylac. isocyanate 0.22-1.0 0.260 0.275 1.5 1.6
PBD/chl.benz. sulfur 0.2-1.0 0.235 0.235 2.0 2.6
PDMS/benzene el.radiation 0.32-1.0 0.125 0.135 25 2.0

2DCP: dicumyl peroxide.
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FIGURE 28.6. Thermodynamic parameters that contribute
to the swelllng aclivity parameter S vs. the swelling deforma-
tion A=¢~ "3, (After Ref. 15. See text for discussion).

ties in the crosslinked and the uncrosslinked polymers,

respectively, and the ratio a, ./a, , at identical concentra- -

tions yields the elastic component of the solvent activity.
Experimental tests of this prediction have been performed
by differential sorption measurements first conducted by
Gee et al. [103] In this experiment on a natural rubber/
benzene system, the vapor pressure of the solvent and the
amount of solvent absorbed by the crosslinked and
uncrosslinked rubbers were determined simultaneously by
using a sensitive microbalance housed in a vacuum system.
Similar experiments were performed by Yen and Eichinger
[6], Brotzman and Eichinger [7-9], Neuburger and Eich-
inger [10], Zhao and Eichinger [11], and McKenna and
Crissman [16]. Conventionally the results of these measure-
ments are given in terms of the dimensionless swelling
activity parameter [15] (or dilation modulus [6-11])

S=A\ ln(al'c/al_“), (285])

where A= 18

Typical theoretical and experimental S vs. ¢~ curves
are shown in Fig. 28.6. The phantom network theory
predicts constancy while the affine network model predicts
a monotonic increase of S with increasing ¢~ '3, Many of
the experimental S vs. ¢~ ' curves, including that of Gee
et al. [103] exhibit a maximum. This behavior is consistent
with the Flory—Erman theory, although the experimental
peak is generally much sharper and significantly greater in
magnitude than that predicted by the model. Neuburger and
Eichinger [10] determined the swelling activity parameter
for poly(dimethylsiloxane) networks in benzene and cyclo-
hexane at 20° and 30 °C. They found that the benzene data
at 20 °C can be reasonably well described by the Flory—
Erman model with the parameters: &(N,V,)=4.09%10"*
mol/cm?, k=1.0 and {=90 (this value of { is much bigger
than that required to fit the stress strain data). The value of
the molecular weight between crosslinks, M_, calculated
from the equation §(N, V) =p/2M_ was M _=1190 g/mol.
It is significantly smaller than the actual M =26 000 g/mol.
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Even larger discrepancies were found between the calcu-
lated and the actual values of M, for the PDMS/
cyclohexane system. In this case, the best fit was obtained
using the phantom network model with &/(N,V,)=0.0012
mol/cm® corresponding to M =406 g/mol. The authors
concluded that the deviation is the consequence of the
breakdown of the Frenkel-Flory—Rehner theory, namely
the hypothesis that the elastic and mixing free energies are
separable.

McKenna and Crissman [16] performed similar investi-
gations on natural rubber networks swollen in different
diluents. They assumed that the elastic free energy contri-
bution is adequately described by the phenomenological
Valanis-Landel function [see Eq. (28.1)] and for the
measured degree of swelling they calculated it from the
values of w'(\) determined in the unswollen state.
Comparing these data with the mixing contribution
obtained by using Eq. (28.24) they came to the conclusion
that the value of the interaction parameter for the
crosslinked polymer, x., exceeds that of the solution of the
uncrosslinked polymer, x,. This conclusion has been
supported by lattice model calculations of Freed and Pesci
[104], who pointed out that the effective interaction param-
eter depends on the crosslink density.

McKenna and co-workers [13-16] use the following
relation for the swelling activity parameter:

S=X1In(a,/a; ,)=(xXc= XN ">+ VW' (N)/RTA.
(28.52)

The important point to note from this equation is the
assumption that y.=y, often found in the use of the
Frenkel-Flory—Rehner hypothesis, has been suppressed.
Hence the first term on the right hand side of Eq. (28.52)
provides insight into the thermodynamics of swelling and in
particular is in accord with the experimental observation
that S#0 as A—1, i.e,, no swelling. A typical value for
Xc— X of approximately 0.027 can be obtained by exam-
ining the curve labeled NIn(a, ./a, ,)Gee, o w. Of Fig. 28.6
and taking the value at A=1.

In Fig. 28.6 we show the thermodynamic parameters
from Eq. (28.52) and a comparison with the swelling data of
Gee et al. [103]. The curve labeled Nn(a; /a; ,)cee, e al
refers to the data obtained by Gee et al. for S. The curve
labeled Aln(a, /a, )y refers to a calculauon of § from
Eq. (28.52) using the values of (x,— x,)\~> depicted in the
plot on the curve so labeled summed with the values of
Viw'(A\)/RTX determined by measurements on a rubber
similar to that used by Gee et al. [103] and depicted with
solid circles. The solid line without points labeled
Viw'(N)/RTN\ represents the value the elastic contribution
would have needed to agree with the the Gee et al. [103]
result. The deviation between the measured and calculated
curves is significant, i.e., the crosslink dependence of the
interaction parameter does not provide an adequate expla-
nation for the anomalous behavior of the swelling activity
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TABLE 28.6. Power law exponents for the concentration dependence of the elastic modulus in swollen network homologs.

System* Tr,C P B/kPa n r Refs.
Nr/n-decane 20 0.06-0.40 4500 2.06 0.992 [116,117)
PS/benzene 20 0.05-0.20 4200 2.28 0.955 [105)
PS/benzene 25 0.05-0.50 4140 2.35 0.993 [105]
PS/cyclohexane 37 0.12-0.28 1750 3.14 0.980 [28]
PEO/dioxane 25 0.03-0.35 8430 2.30 0.984 {106)
PEO/water 25 0.03-0.30 10401 2.51 0.992 [106}
PHPMA 25 0.08-0.35 2590 2.59 0.995 [106]
PDMS/toluene 25 0.10-0.40 2650 2.20 0.988 [23]
PVAC/toluene 25 0.06-0.30 2430 2.27 0.990 {22}
PVAC/acetone 25 0.05-0.25 4420 2.25 0.992 [22)
PVAC/isopropanol 70 0.10--0.60 3388 2.31 0.977 [109)
PAA/water 25 0.03-0.30 4880 2.23 0.991 [118]
PVA/water 25 0.03-0.30 3500 2.11 0.993 [116]

NR: natural rubber; PS: polystyrene; PEO: poly(ethylene oxide); PHPMA: poly(hydroxi-ethyl-methacrylate); PDMS: polydim-
ethylsiloxane; PVAC: poly(vinyl acetate); and PAA: poly(acryamide); PVA: poly(vinyl alcohol).

br: Correlation coefficient.

parameter. The reader is referred to McKenna et al. [16] for
further discussion.

McKenna and Crissman [16] also investigated the effect
of temperature on the shape of the S vs. ¢~ ' curves. In the
polyisoprene/benzene system, they did not observe a
maximum in § at 30° and 40 °C, rather a rapid decrease
occurred which was followed by a plateau region above
A=1.2. At 50 °C, however, a pronounced maximum was
found at A2=1.13. Neuburger and Eichinger [10] reported
similar changes in the swelling behavior for the PDMS/
benzene system in the temperature range between 20° and
30°C. Similar results were also reported for changing
solvent quality by Zhao and Eichinger [11]. Such abrupt
changes in behavior imply significant changes in the free
energy of the network over a narrow range of temperatures
(or solvent qualities). None of the existing network theories
predicts such a possibility.

28.3.4 Analysis of the Experimental Results on the Basis
of the Scaling Theory

The validity of scaling laws has been tested on several
swollen network systems (Table 28.6). Munch e al. [105]
studied the concentration dependence of the shear modulus
for polystyrene model networks synthesized by copolymer-
ization of styrene and divinylbenzene and swollen to equi-
librium in benzene (good solvent for polystyrene). It was
found that the modulus obeys a scaling law with equilib-
rium concentration, similar to that obtained for semi-dilute
polymer solutions. The best fit to the equation G=Bg,"
yields B=4200 kPa and n=2.28. Hild eral [106]
compared the concentration dependence of the shear moduli
of poly(ethylene oxide) networks crosslinked by aliphatic
pluriisocyanate in two diluents: dioxane and water. The
corresponding scaling laws were found: G=8430¢,>* kPa

TABLE 28.7. Swelling pressure and shear modulus parameters of PVAc networks in toluene and acetone [22].

Sample ®c A/kPa p G,%/kPa G,°/kPa
Toluene 25 °C
3/50 0.089 2171 2.28 0.342 8.6 8.9
6/50 0.146 2613 2.29 0.331 31.6 32.4
6/200 0.078 2072 2.22 0.340 7.2 6.9
9/50 0.208 2481 2.27 0.355 70.8 70.3
9/100 0.141 2350 2.25 0.336 28.6 28.3
9/200 0.112 2374 2.27 0.326 16.6 16.7
9/400 0.074 2273 2.27 0.315 6.16 6.26
12/50 0.229 3100 2.35 0.383 95.7 99.8
12/200 0.133 2425 2.26 0.335 25.5 25.2
Acetone 25 °C
9/100 0.103 4264 2.24 0.321 24.9 25.9
9/200 0.078 4731 2.26 0.346 14.9 14.8
9/400 0.051 4262 2.24 0.369 5.44 5.24
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(in 1,4-dioxane) and G=10400¢,%>' kPa (in water). The
exponent obtained in 1,4 dioxane is in excellent agreement
with the prediction of the scaling theory. However, for the
same networks swollen in water, a significantly higher
exponent, n=2.51, was obtained. They assumed that the
deviation from the theoretical exponent is due to the insolu-
bility of the urethane linkages in water, which may induce
inhomogeneities in the gels at the molecular level. Hecht
and Geissler [107] investigated the elastic properties of
polyacryamide gel homologs in a theta solvent (water-
methanol mixture, 3:1 by volume). They found that in the
concentration range 0.07<¢<0.3 the longitudinal elastic
modulus, £, , obtained from light scattering observations,
obeys a scaling law E;=8090¢p,>%” kPa in reasonable
agreement with the theoretical prediction. Richards and
Davidson [108] determined the shear moduli of randomly
cross-linked polystyrene networks swollen in cyclohexane
at the theta (O) temperature (35 °C) and also in toluene
(good solvent condition). The power law exponent, n=3.7,
reported for the theta system exceeds that of the theoretical
value. In good solvent conditions (toluene, 20 °C), they
found the value n=2.25. A comprehensive study of the
dependence of the elastic (shear) modulus on the polymer
concentration was performed by Zrinyi and Horkay [109]
on poly(vinyl acetate) gels swollen to equilibrium in isopro-
pylalcohol. The thermodynamic quality of the solvent was
varied by changing the temperature in the range from 30 °C
to 70 °C. Isopropylalcohol is a theta solvent for poly(vinyl
acetate) at 52 °C and a good solvent at 70 °C. It was found
that G vs ¢ exhibits a simple power law behavior at each
temperature. The exponent n varies between the values of
2.32 (good solvent condition, 70 °C) and 14.1 (poor solvent
condition, 30 °C) [109]. At the theta temperature (52 °C)
the best fit to the experimental data yields n=3.10.

The osmotic response of swollen polymeric networks
was studied on the basis of the scaling theory by Horkay
et al. {17-19,22,23,110]. They measured both the swelling
pressure, w, and the shear modulus of gels, G, at different
stages of dilution. The swelling pressure vs polymer volume
fraction data were analysed according to the equation [22]

w=I1-G=A4¢"-G.(¢/¢.)?, (28.53)
where I1 is the “osmotic” pressure of the swollen network,
G7 is the value of the volume elastic modulus at equilib-
rium with the pure solvent (w=0) and the constant A
depends on the polymer/solvent system. The exponents n
and p were iteratively adjusted to minimize the variation of
w for each set of data points. The resulting values of A, n,
p and G, for poly(vinyl acetate) gels are displayed in Table
28.7. The n values are consistent with the scaling prediction
for the mixing term. Also displayed in Table 28.7 are the
values of the shear modulus, G, measured at the swelling
equilibrium condition. The agreement between the
numerical values of the shear and the volume elastic moduli
provides experimental evidence that, in highly swollen
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networks, the separability of the elastic and mixing terms is
a reasonable approximation.

28.4 SUMMARY

A survey of the thermodynamics and mechanics of
crosslinked gels has been presented. Subjects include the
phenomenological description of crosslinked networks
within the framework of finite elasticity theory and
continuum thermodynamics. Particular emphasis is placed
on the Valanis—Landel form of the strain energy density
function. Several statistical mechanical models of rubber
elasticity are also presented. Of particular usefulness are the
affine and phantom network models, which are commonly
used to derive information about the molecular parameters
of the gel from swelling or mechanical measurements.
Techniques for using these models and the more modern
Flory-Erman constrained junction model and its most recent
modifications are described. Experimental data from the
literature are presented and used to deduce molecular
parameters for the networks using the different models. The
application of Scaling Theory to polymer gels is also
considered.

Related information can be found in Chapter 23.
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