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  Poroelasticity, or diffusion in elastic solids 
 Migration of matter in an elastic solid.  A sponge is an elastic solid with connected 
pores.   When immersed in water, the sponge absorbs water.  When a saturated sponge is 
squeezed, water will come out.  More generally, the subject is known as diffusion in elastic 
solids, or elasticity of fluid-infiltrated porous solids, or poroelasticity.  The theory has been 
applied to diverse phenomena.  Here are a few examples.   
 
 Consolidation of soils.  A soil is a composite of solid particles and fluids (mainly water).  
Particles in the soil are more or less bound together and constitute an elastic skeleton.  The 
interstices of the skeleton are filled with water.  When a load is applied to the soil, water will 
flow out gradually, so that the soil will deform over some time.  This process is known as 
consolidation.     

• M.A. Biot, General theory of three-dimensional consolidation, Journal of Applied 
Physics 12, 155-164 (1941). 

• J. Bear, Dynamics of fluids in porous media.  Dover reprint, 1988. 
• J.R. Rice, Elasticity of fluid-infiltrated porous solids, notes for teaching on hydrology and 

environmental geomechanics (http://esag.harvard.edu/rice/e2_Poroelasticity.pdf).  
• J.R. Rice and M.P. Cleary, Some basic stress-diffusion solutions for fluid-saturated 

elastic porous media with compressible constituents.  Reviews of Geophysics and Space 
Physics 14, 227-241 (1976). 

• H. F. Wang, Theory of linear poroelasticity with applications to geomechanics and 
hydrogeology.  Princeton University Press, 2000. 
 

 Swelling of gels.  A gel is a composite of a network of crosslinked molecules, and a 
solvent consisting of all other molecules that permeate in the interstices of the network, but are 
not linked to the network.  The network is elastic, while the solvent can migrate through the 
interstices of the network.  The elasticity of the network and migration of the solvent are coupled:  
the network swells where the solvent accumulates, and the solvent migrates in response to the 
deformation of the network.  The gel is called a hydrogel when the solvent is water, or an aerogel 
when the solvent is a gas. 

• J. Dolbow, E. Fried, H. Ji, Chemically induced swelling of hydrogels.  Journal of the 
Mechanics and Physics of Solids 52, 51-84 (2004). 

• A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, and J. Aizenberg, Reversible switching 
of hydrogel-actuated nanostructures into complex micropatterns.  Science 315, 487-490 
(2007).  

 
 Fluid migration in tissues.  Nearly all living tissues are porous and elastic, with fluid 
migrating in the pores inside the tissues to transport nutrients and wastes. 

• S.C. Cowin and S.B. Doty, Tissue mechanics.  Springer, 2007.  
 
 Diffusion in crystals.  Metals and ceramics are often in the form of alloys, consisting of 
dissimilar atoms.  Some atoms diffuse much faster than other atoms, so that the slow diffusers 
may serve the role of an elastic network.  For example, some materials can absorb and release 
large amounts of hydrogen, making them candidates for hydrogen storage technology.    

• F.C. Larche and J.W. Cahn, The interactions of composition and stress in crystalline 
solids, Acta Metallurgica 33, 331-357 (1985). 

http://esag.harvard.edu/rice/e2_Poroelasticity.pdf
http://en.wikipedia.org/wiki/Aerogel
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• P.W. Voorhees and W.C. Johnson, The thermodynamics of elastically stressed crystals, 
Solid State Physics 59, 1-201 (2004). 

However, for most alloys, diffusion is coupled with inelastic deformation, so that the theory of 
diffusion in elastic crystals is not applicable.  See discussions in 

• Z. Suo, A continuum theory that couples creep and self-diffusion. Journal of Applied 
Mechanics 71, 646-651 (2004).  (http://www.deas.harvard.edu/suo/papers/156.pdf) 

 
 This lecture will focus on diffusion in elastic solids.  Historically, the theory coupling 
diffusion and elasticity has caused a great deal of confusion.  It might be helpful if we start with 
elementary ideas. 
 
 Thermodynamics of a fluid of single species of molecules.  We have studied chemical 
potential in a previous lecture (http://imechanica.org/node/911).  The chemical potential of a 
species of molecules in a system is defined as the increase of the free energy of the system upon 
gaining one molecule of the species.   
 A thermodynamic state of a fluid (either a gas or a liquid) of a single species of 
molecules is characterized by three degrees of freedom.  For example, we can use the Gibbs 
function to characterize all possible thermodynamic states of the fluid.  A particular 
thermodynamic state of the fluid has a homogeneous field of pressure p and temperature T.  The 
Gibbs function is proportional to the number of molecules, N.  Thus, 

( NTpG ,, )

  ( ) ( )TpNNTpG ,,, µ= , 
where the free energy per molecule, µ , is the chemical potential.  Because the dependence of the 
Gibbs function on N is trivial, this family of thermodynamic states are essentially characterized 
by, ( Tp, )µ , a function of two variables.  
 Associated with small changes in the pressure and the temperature, the chemical potential 
changes by 
  TSpV δδδµ −= , 
where V  is the volume of the fluid divided by the number of molecules, and S  is the entropy of 
the fluid divided by the number of molecules.  In practice, the functions ( TpV , ) and ( )TpS ,  are 
determined by experiments. 
 Chemical potential of an incompressible liquid.  We now hold the temperature 
constant, but vary the pressure, so that the chemical potential varies by 
  pVδδµ = . 
For an incompressible liquid, the volume per molecule, V , is independent of the pressure.  
Integrating with respect to the pressure, we obtain that 
   ( ) ( ) ( )( )00 ,, ppTVTpTp −+= µµ . 
This result is often written as 
  pV=µ , 
with the understanding that µ  is the chemical potential at pressure p relative to the chemical 
potential at zero pressure, while the temperature is fixed. 
 Chemical potential of an ideal gas.  Recall the ideal gas law, , so that NTpV =

pTV /= .  Integrating pVδδµ = , we obtain that 
  ( ) ( ) ( )00 /log,, ppTTpTp += µµ . 

http://www.deas.harvard.edu/suo/papers/156.pdf
http://imechanica.org/node/911
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)

This relation holds for ideal gas. 
weight

gas 

liquid

 Equilibrating a liquid and a vapor of the same species of molecules.  
Consider a liquid in contact with a vapor of the same species of molecules.  The 
composite of the gas and the liquid is a system has a fixed pressure p, a fixed 
temperature T, and a fixed total number of molecules .  Molecules can escape 
from the liquid and enter the vapor (evaporation), or the other way around 
(condensation).  Consequently, the number of molecules in the vapor, N, is an 
internal variable of the composite system.   

totN

 Let ( Tpl ,µ be the Gibbs function per molecule in the liquid, and ( Tpg , )µ  be the Gibbs 
function per molecule in the gas.  When the gas has N molecules, the liquid will have NNtot −  
molecules.  The Gibbs function for the composite system is the sum of the free energy of the gas 
and that of the liquid: 
  ( ) ( ) ( ) ( )TpNNTpNNTpG ltotg ,,,, µµ −+= . 
When the vapor equilibrates with the liquid, the Gibbs function of the composite minimizes, so 
that , namely, ( ) 0/,, =∂∂ NNTpG
  ( ) ( )TpTp lg ,, µµ = . 
Thus, when two systems are in contact, allowing a species of molecules to go between the two 
systems, the two systems in equilibrium will have the same chemical potential of the species. 
 (Incidentally, the above conclusion is general.  When a species of molecules is allowed to 
relocate throughout a system, in equilibrium the chemical potential of this species is uniform 
everywhere in the system.  The situation is analogous to the temperature, when energy is allowed 
to relocate.) 
 Now, let us return to the vapor and the liquid.  The equilibrium condition 

( ) ( TpTp lg ,, )µµ =  requires that the pressure be a function of the temperature.  This functional 
dependence can be made explicit as follows.  The equilibrium condition ( ) ( )TpTp lg ,, µµ =  
holds for any pressure and temperature.  For small changes in the pressure and temperature, we 
can differentiate the equation on both sides, so that 
  TSpVTSpV llgg δδδδ −=− . 
We regard the pressure as a function of the temperature, ( )Tp , so that 

  
lg

lg

VV
SS

T
p

−
−

=
δ
δ . 

This result is known as the Clapeyron equation. 
 The above result is exact.  We next make a few useful approximations.  Note that 

lg VV >> , so that we will neglect lV  in the denominator.  Furthermore, we will approximate the 

vapor as an ideal gas, so that pTVg /= .  By definition, the entropy difference is  

  
T

H
SS vap

lg =− , 

where  is the enthalpy of vaporization, which is essentially the energy of the molecular 
bonds in the liquid.  Inserting these approximations into the Clapeyron equation, we obtain that 

vapH

  2T
H

T
p vap=

δ
δ  
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If we neglect the weak temperature dependence of , we obtain that vapH

  ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

0
0

11/log
TT

Hpp vap . 

This expression is known as the Clausius-Clapeyron equation. 
 The vapor pressure as a function of the temperature can be determined experimentally.  
For example, here are the experimental data for water vapor.   
 
Pressures of water vapor in equilibrium  
with liquid water at several temperatures 
_______________________________________________ 
T (C) T (10-2 eV) 1/T (1/eV) p (kPa) 
0 2.36  42.4 0.61  
10 2.45 40.8 1.23 
20 2.52 39.7 2.34 
30 2.61 38.3 4.24 
40 2.70 37.0 7.38 
50 2.79 35.8 12.33 
  
100 3.22 31.1 101.33 
37 2.68 37.3 6.28 
_______________________________________________  
 
 Recall the conversion between different units of temperature: 

  ( ) ( )( )
JeV

KJCTeVT
/1060.1

/1038.125.273 19

23

−

−

×
×

+= . 

The vapor pressure increases with the temperature.  At the freezing point, the vapor pressure is 
0.61 Pa.  At 100C, the vapor pressure is 101.33 kPa.  One can plot  against 1/T.  On this 
plot, all the data points are approximately on a straight line.  The slope of this line is the enthalpy 
of vaporization.  These data give 

plog

eVHvap 45.0≈ . 
 
 Humidity.  The absolute humidity may be measured by the number of water molecules 
per unit volume, .  If we model the vapor as an ideal gas, VN / TpVN // = .   
 At a given temperature, when the air is in equilibrium with the liquid water, we say that 
the air is saturated with water.  Thus, at the body temperature 37C, the saturated vapor has the 
absolute humidity of  molecules/m3. 241046.1 ×
 If a given volume of air contains fewer water molecules, the number of molecules in the 
air divided by that in the saturated vapor is called the relative humidity (RH).  If the vapor is 
modeled as an ideal gas, the relative humidity is also the pressure of water in the given vapor 
divided by that in the saturated vapor.  We write the chemical potential of water in the air as 
  RHT log=µ , 
with the understanding that the chemical potential is relative to that of the water molecules in a 
saturated water at the same temperature. 
 The lung is always saturated with water vapor at the body temperature (37C), but the 
atmospheric air may not be.  In winter, the cold air outside has low water content even at 100% 
relative humidity.  When the cold air enters a warm room, the relative humidity in the room will 
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reduce below 100% at the room temperature.  We will feel uncomfortable.  Also, water inside 
the warm room will condense on cold window panes.    
   
 Equilibrate a gel with a weight and a moist environment.  We have outlined the 
thermodynamics of hydrogels in a previous lecture (http://imechanica.org/node/911).  A gel is 
subject to a force P, which may be varied by hanging different weights to the gel. The gel is also 
in a moist environment, with the chemical potential of water in the environment being µ , which 
can be varied by changing the partial pressure of the water in the environment.  We may regard 
both P and µ  as external loads applied to the gel.  Let l be the displacement of the weight, and N 
be the number of water molecules absorbed by the gel.  When the gel is in equilibrium with the 
weight and the moisture, what are the displacement and the water content in the gel?     
 When dropping by a small displacement, lδ , the weight does work lPδ  or, equivalently, 
the weight reduces its free energy by lPδ .  If the weight is fixed, the free energy of the weight is 

.       Pl−
 Upon giving a number of water molecules, Nδ , to the gel, the moisture does work Nµδ , 
or equivalently, the moisture reduces its free energy by Nµδ .  If the moisture is a large reservoir 
of water molecules, so that the chemical potential µ  is fixed as the gel absorbs water.  The 
moisture of a fixed chemical potential has the free energy Nµ− .  
 At the fixed temperature, the gel is characterized by the Helmholtz function ( )NlF , .  
Associated with the small changes lδ  and Nδ , the free energy of the gel increases by 

  ( ) ( ) N
N

NlFdl
l
NlFF δδ

∂
∂

+
∂

∂
=

,, . 

 The composite of the gel, the weight and the moisture is a system in thermal contact with 
a reservoir of energy, which holds the system at a fixed temperature.  We only permit energy to 
go between the composite and the reservoir; we block all other modes of interaction between the 
composite and the reservoir.  The displacement l and the number of water molecules N in the gel 
are the internal variables of the composite.  The total free energy of the composite system, Π , is 
the sum of the free energy of the gel, the weight and the moisture, and is a function of l and N, 
namely,   
  ( ) ( ) NPlNlFNl µ−−=Π ,, . 
In equilibrium, the free energy of the composite minimizes, so that the variation of the total free 
energy vanishes: 
  0=−− NlPF µδδδ .  
Consequently, to equilibrate with the gel, the weight and the chemical potential of water 
molecules in the moisture must be 

  ( )
l
NlFP

∂
∂

=
, ,     ( )

N
NlF

∂
∂

=
,µ . 

The gel couples chemistry and mechanics:  a change in the chemical potential of water molecules 
in the moisture will cause a change in the displacement of the weight, and a change in the weight 
will cause water molecules to diffuse into or out of the gel.   
 The above theory is applicable when the gel is inhomogeneous and of any size.  For 
example, the theory is applicable even when the gel is a single molecule.  We next extend the 
theory into a field theory.  When the weight and the chemical potential of the moisture change, 
water molecules must diffuse in or out of the gel.  We would like to describe this nonequilibrium 
process.  If the gel is homogeneous over a size scale of interest to us, and the size is larger than 

http://imechanica.org/node/911
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the size of microstructure, we can benefit from a field theory.  The associated boundary and 
initial value problems will allow us to study inhomogeneous deformation of the network and 
inhomogeneous distribution of water molecules, as well as the time needed for a body to settle to 
a new configuration after a load is applied.   
  
 A homogeneous field of stress and water concentration.  To formulate a field theory, 
we will need intensive variables.  First consider a rod in a homogenous state.  Any state may be 
used as a reference state.  In the reference state, the rod has a cross-sectional area , length , 
and volume .  In the current state, subject to a weight P and a moisture of chemical 
potential 

A L
ALV =

µ , the rod has the length l, and the number of water molecules N.    
 Define the stretch by 

  
L
l

=λ . 

Define the nominal stress by 

  
A
Ps = . 

The work done by the weight is  
  δλδ VslP = . 
 Define the nominal concentration by 

  
V
NC = . 

The work done by the chemical potential of the moisture is  
  CVN µδµδ = . 
 The Helmholtz function of the rod is ( )NlF , .  Define the nominal density of the 
Helmholtz free energy by 

  
V
FW = . 

This density is a function ( CW , )λ .  Its differential is 

  ( ) ( ) C
C

CW
C

CWW δλδλλδ
∂

∂
+

∂
∂

=
,, . 

 When the rod is in equilibrium with the weight and the moisture, the free energy of the 
composite of the rod, the weight and the moisture minimizes, so that for any small changes in the 
displacement and the number of molecules, the variation of the total free energy of the composite 
vanishes:  
  0=−− NlPF µδδδ . 
Divide this equation by the volume of the rod in the reference state, V, and we obtain that 
  0=−− CsW µδδλδ . 
When the rod equilibrates with the weight and the chemical potential, we obtain that 

  ( )
λ
λ
∂

∂
=

CWs , ,    ( )
C

CW
∂

∂
=

,λµ . 

 Alternative free-energy functions.  We may define an alternative free energy as 
  . µλ CsWW −−=ˆ
Thus, associated with small changes, this new free energy changes by 
  . δµλδδ CsW −−=ˆ
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The free energy is a function of the stretch and chemical potential. The stress and the 
concentrations are given by 

  ( ) ( )
µ
µµλ

∂
∂

−=
∂

∂
−=

,ˆ
,,ˆ sWC

s
sW . 

 Another useful alternative free-energy function is 
  µCWW −=~ . 
Thus, associated with small changes, this new free energy changes by 
  . δµδλδ CsW −=~

The free energy is a function of the stretch and chemical potential. The stress and the 
concentrations are given by 

  ( ) ( )
µ
µλ

λ
µλ

∂
∂

−=
∂

∂
=

,~
,,~ WCWs . 

  
 Inhomogeneous, equilibrium field.  We now expose an elastic network to a moist 
environment held at a fixed chemical potential µ , allowing water molecules to enter the network.  
We also hang weights on the network.  After some time, the body becomes an elastic network 
saturated with water, in equilibrium with the moist environment and the weights.  In equilibrium, 
the chemical potential will be homogenous in the body, and takes the value of the moist 
environment.  The field deformation of the network, however, can be inhomogeneous.  We next 
set out to formulate a theory to determine the deformation.       
 We take any particular state of the network as the reference state, and name a material 
particle in the network using its coordinates X in the reference state.  In the current state at time t, 
the material particle X is at a place with coordinate x.  The function  describes the 
deformation of the network.  We will retain the time dependence explicitly, which we will need 
later in formulating the theory for a gel not in equilibrium.   

( t,Xx )

 For inhomogeneous deformation in three dimensions, the stretch is generalized to the 
deformation gradient 

  ( ) ( )
K

i
iK X

tx
tF

∂
∂

=
,

,
X

X . 

 Consider a block of the network around X, of volume ( )XdV .  The network may contain 
interfaces between dissimilar parts.  Let ( ) ( )XX dAN K  be an area element of an interface, where 

 is the area of the element, and ( )XdA ( )XKN  is the unit vector normal to the element.  We hang 
weights on to the network.  Let ( ) ( )XXB dVt,  be the force due to the weights on a material 
element of volume, and  be the force due to the weights on a material element of 
interface.  Associated with a virtual deformation of the network, 

( ) (XXT dAt, )
( )Xxδ , the weights do work 

  ∫∫ + dVxTdVxB iiii δδ . 
The free energy of the weights reduces by this amount. 
 The concentration of the molecules, ( )tC ,X , is the number of the molecules inside the 
block divided by the volume of the block.  Associated with a virtual change in the concentration, 

( )XCδ , the number of molecules enter the body is ∫ CdVδ , so that the moist environment does 
work 
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  ∫ CdVδµ . 
 Let W  be the free energy in a block in the current state divided by the volume of the 
block in the reference state.   The free energy is taken to be a function of the deformation 
gradient and the concentration, .  Associated with any virtual changes, ( CW ,F ) iKFδ  and Cδ , the 
free energy of the material element of volume changes by 

  ( ) ( ) C
C

CWF
F

CWW iK
iK

δδδ
∂

∂
+

∂
∂

=
,, FF . 

 The body, the weights and the moist environment constitute a composite system.  The 
total free energy of the composite system, Π , is the sum of the free energy of the constituents.  
The variation of the total free energy is 
   ∫ ∫∫∫ −−−=Π CdVdVxTdVxBWdV iiii δµδδδδ . 
When the weights and the chemical potential are held constant, the field of deformation and 
concentration become internal variables, and Π  is a functional of the fields  and ( )Xx ( )XC . 
 Inserting the expression for Wδ  into the above, and applying the divergence theorem, we 
obtain that 

  

∫∫

∫∫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

+−

dVx
F
W

X
dAxN

F
W

F
W

dVx
F
W

XX
x

F
W

X
dV

X
x

F
W

i
iKK

iK
iKiK

i
iKKK

i

iKKK

i

iK

δδ

δδδ

. 

The surface integral extends over the area of all interfaces.  Consequently, the variation of the 
total free energy is 
 

∫∫∫ ⎥⎦
⎤

⎢⎣
⎡ −
∂
∂

++⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=Π
+−

CdV
C
WdVxB

F
W

X
dAxTN

F
W

F
W

ii
iKK

iiK
iKiK

δµδδδ  

 In equilibrium, the total free energy vanishes for arbitrary virtual deformation and virtual 
changes in the concentration.  Thus, we obtain the equilibrium conditions: 

  ( )
C

CW
∂

∂
=

,Fµ  

in the volume,  

  0=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

i
iKK

B
F
W

X
 

in the volume, and 

  iK
iKiK

TN
F
W

F
W

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−

, 

on an interface.  These equations express momentum balance in every current state in terms of 
the nominal fields, and is well known in continuum mechanics. 
 We may as well identify the nominal stress and chemical potential with the differential 
coefficients of the free energy function:  
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  ( )
iK

iK F
CWs

∂
∂

=
,F ,  ( )

C
CW

∂
∂

=
,Fµ . 

 Because the chemical potential in the environment is prescribed, and the same value is 
reached inside the body, it will be convenient to regard µ  as an independent variable.  Take the 
Lagendre transformation: 
  µCWW −=~ , 
so that 
  δµδδ CFsW iKiK −=~ , 
and 

  ( )
iK

iK F
Ws
∂

∂
=

µ,~ F ,  ( )
µ
µ

∂
∂

−=
,FWC .  

 Invariance under rigid-body rotation.  When the entire system in the current state 
undergoes a rigid-body rotation, the nominal electric displacement D~  is invariant, but the 
deformation gradient, , varies.  To ensure that W is invariant under rigid-body rotation, we 
invoke the Lagrangian strain 

iKF

  ( )KMiMiKKM FFL δ−=
2
1 , 

which is invariant when the entire system in the current state undergoes a rigid-body rotation.  
Consequently, a conservative dielectric is characterized by the energy function ( )DL ~,W .  The 
nominal stress and the nominal electric field are obtained from partial derivatives: 

   ( ) ( )
KM

iMiK L
CWFCs

∂
∂

=
,, LL ,  ( ) ( )

C
CW

∂
∂

=
,~, LDLµ . 

 Isotropic material.  For an isotropic material, a reference state exists such that the 
energy density is a function of the invariants formed by the tensor  and the scalar C: L
   CLLLLLL MKNMKNKNKNKK ,,, .
 
 Diffusion in a rigid network.  We now review diffusion of a molecular species through 
a rigid network.  We name a material particle in the network by the coordinate of the particle, X.  
Consider a block of the network around X, of volume ( )XdV .  The network may contain 
interfaces between dissimilar parts.  Let ( ) ( )XX dAN K  be an area element of an interface, where 

 is the area of the element, and ( )XdA ( )XKN  is the unit vector normal to the element. 
 The number of molecules is conserved.  Imagine a field of pumps attached to the network, 
injecting molecules into the body.  On a geological scale, for example, such a pump can be a 
well.  Let the number of the molecules injected into a volume element be , and into 
an interface element be .  The molecules also diffuse in the network.  Let 

( ) (XX dVtr , )
)( ) (XX dAtj , ( )tJK ,X  

be the flux of the molecules, namely, the number molecules per unit time crossing per unit area 
in direction .  We assume that no chemical reaction occurs, so that the number of the 
molecules is conserved, namely, 

KX

  ( ) ( ) ( tr
X

tJ
t

tC
K

K ,,, XXX
=

∂
)∂

+
∂

∂   

in the volume, and 
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  ( ) ( )( ) ( ) ( )tjtNtJtJ KKK ,,,, XXXX =− −+ .  
on an interface. 
 Fick’s law.  The diffusion flux is taken to be proportional to the concentration gradient: 

  ( ) ( )
K

K X
tCDtJ

∂
∂

=
,, XX . 

The coefficient of diffusion, D, is often taken to be constant. 
 The conservation of molecules and Fick’s law together provide a complete set of PDEs.  
For many problems, one can set 0=r .  A combination of the above gives the well known 
diffusion equation: 

  ( ) ( )
KK XX
tCD

t
tC

∂∂
∂

=
∂

∂ ,, 2 XX . 

 On the boundary of the network, one needs to prescribe boundary conditions.  Examples 
include 

• Prescribe flux j.  For example, when the network is sealed, no molecules can enter or 
escape. 

• Prescribe concentration C.  If molecules can enter, or escape from, the body, diffusion 
inside the network may take much longer time than the process on the surface, so that the 
molecules are in local equilibrium at the surface.  That is, the chemical potential of the 
molecules in the environment is the same as the chemical potential of the molecules in 
the network near the surface.  The former is taken to be given, and the latter is a function 
of the concentration.  Another way to say this is that the concentration on the surface 
equals the solubility in equilibrium with the environment. 

• Prescribe reaction kinetics. If the process of molecules entering or escaping is slow, the 
chemical potential of the molecules in the solid near the surface may be different from 
the chemical potential in the environment.  The difference drives the process of entering 
or escaping.  One can prescribe the reaction kinetics by giving a relation between j and 
the difference in the chemical potentials. 

 
 The diffusion equation is linear.  Dimensional analysis shows that, for an event on a 
length scale L to occur, the time scale is 

  
D
L2

=τ . 

This is the single most significant result in the theory of diffusion.  Much of the qualitative 
understanding of phenomena revolves around this result, and requires no detailed solution of the 
initial and boundary value problems.   
 You can, however, find solutions for many boundary and initial value problems in 
textbooks.  Here are a few good ones: 

• E.L. Cussler, Diffusion, 2nd edition. Cambridge University Press, 1997. 
• J. Crank, The mathematics of diffusion, 2nd edition, Clarendon Press, Oxford, 1994. 
• H.S. Carslaw and J.C. Jaeger, Conduction of heat in solids, Clarendon Press, Oxford, 

1959. 
• M.E. Glicksman, Diffusion in solids, John Wiley, 2000. 
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 Fluid infiltrating a rigid network.  When the pores in a network are much larger than 
the molecular dimension, the migration of molecules in the network may as well be thought of 
fluid flowing in a pipe, driven by the gradient in the pressure.   
 Darcy’s law.  The flux of fluid is proportional to the pressure gradient: 

  ( )
K

K X
tp

V
kJ

∂
∂

−=
,X

η
 , 

where  is the pressure in the fluid, ( tp ,X ) η  the viscosity of the fluid, V  is the volume per 
molecule, and k has the dimension of length squared.  k depends on the size and arrangement of 
the pores, but is independent of the fluid. 
 The fluid is taken to be compressible. Let the concentration and the pressure be related by 
a thermodynamic function , so that  ( )pCC =

  ( ) ( ) ( )
t

tp
dp

pdC
t

tC
∂

∂
=

∂
∂ ,, XX . 

A combination of the conservation of molecules, Darcy’s law, and compressibility gives 

  ( ) ( ) ( )
KK XX
tp

V
k

dp
pdC

t
tp

∂∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂
∂

−
,, 21

XX
η

. 

The pre-factor is often taken to be a constant, so that the equation looks the same as the diffusion 
equation.  The solutions will also be similar to those of the diffusion equation. 
 
 Thermodynamics of nonequilibrium processes.  The above theories seem somewhat ad 
hoc.  A more potent recipe to concoct such theories is the thermodynamics of nonequilibrium 
process.   
 Imagine a field of pumps attached to the network, injecting a species of molecules into 
the body.  Let ( t,X )µ  be the chemical potential at which the molecules are injected.  The power 
delivered by the pumps is   
  ∫∫ + jdArdV µµ . 
This is also the rate at which the free energy of the pumps decreases. 
 The fluid-infiltrated network is characterized by a free energy function .  The rate 
of change in the free energy is 

( )CW

  

( )

dVr
C
WdAj

C
WdV

C
W

X
J

dVr
C
WdVJ

C
W

X
dV

C
W

X
J

dVr
C
WdV

X
J

C
WdV

t
tC

C
WdV

t
W

K
K

K
KK

K

K

K

∫∫∫

∫∫∫

∫∫∫∫

∂
∂

+
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=

∂
∂

+
∂
∂

∂
∂

−=
∂

∂
∂
∂

=
,X

δ
δ

. 

We have used the conservation of molecules and the divergence theorem. 
 The composite of the body and the pumps is a system in thermal contact with a reservoir.  
The free energy of the composite system changes at the rate 
  

  ∫∫∫ −−=
Π jdArdVdV

t
W

t
µµ

δ
δ

δ
δ .  
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Due to diffusion, the composite system is out of equilibrium.  According to thermodynamics, the 
free energy of the composite system cannot increase, namely, 

  0≤
Π
tδ

δ , 

or 

  0≤⎟
⎠
⎞

⎜
⎝
⎛ −
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ −
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

∫∫∫ jdA
C
WrdV

C
WdV

C
W

X
J

K
K µµ . 

This inequality must hold for any arbitrary fluxes r, j and . We will assume local equilibrium, 
so that the last two terms vanish, namely, 

KJ

  
C
W
∂
∂

=µ . 

To ensure the above inequality for any diffuse flux, we need to ensure that the first term be 
negative.  One common way to do this is to adopt a kinetic law 

  ( ) ( )
K

K X
tMtJ

∂
∂

−=
,, XX µ  

where M is a positive quantity, known as the mobility. 
 This kinetic law includes both Fick’s law and Darcy’s law as special cases.  When the 
solution is an ideal solution, the chemical potential is 
  ( ) ( ) ( )00 /log CCTCC += µµ . 
Inserting this expression into the above kinetic law, we obtain that 

  ( ) ( )
K

K X
tC

C
TMtJ

∂
∂

−=
,, XX . 

A comparison with Fick’s law gives that 

  
T

CDM = . 

This is Einstein’s relation. 
 When the solvent is an incompressible fluid, the chemical potential is 
  pV=µ . 
Inserting this expression into the kinetic law, we obtain that 

  ( ) ( )
K

K X
tpVMtJ

∂
∂

−=
,, XX . 

A comparison with Darcy’s law gives that 

  2V
kM

η
= . 

• I. Prigogine, Introduction to thermodynamics of irreversible processes.  Wiley, New York. 
• S.R. de Groot and P. Mazur, Non-equilibrium thermodynamics, Dover reprint, 1984. 
• B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat 

conduction and viscosity.  The Archive for Rational Mechanics and Analysis 13, 167-178 
(1963).   

  Nonlinear poroelasticity.  Let W  be the free energy in a block in the current state 
divided by the volume of the block in the reference state.   The free energy is taken to be a 
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function of the deformation gradient and the concentration, ( )CW ,F .  Associated with any 
virtual changes, iKFδ  and Cδ , the free energy of the material element of volume changes by 

  ( ) ( ) C
C

CWF
F

CWW iK
iK

δδδ
∂

∂
+

∂
∂

=
,, FF . 

Associated with a virtual rate of molecular injection, r and j, as well as the virtual velocity 
txi δδ / , the total free energy of the composite system of the body, the weights and the pumps 

changes at the rate  

  dAjdVrdA
t
xTdV

t
xBdV

t
W

t
i

i
i

i ∫∫∫∫∫ −−−−=
Π µµ

δ
δ

δ
δ

δ
δ

δ
δ . 

Inserting the expression for Wδ  into the above, and apply the divergence theorem, we obtain 
that 

  

dV
C
W

X
J

dVr
C
WdAj

C
W

dV
t
xB

F
W

X
dA

t
xTN

F
W

F
W

t

K
K

i
i

iKK

i
iK

iKiK

∫

∫∫

∫∫

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+

⎟
⎠
⎞

⎜
⎝
⎛ −
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ −
∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
Π

+−

µµ

δ
δ

δ
δ

δ
δ

 

Thermodynamics dictate that the free energy of the composite system should never increase, 
namely, 

  0≤
Π
tδ

δ . 

This inequality must hold for any arbitrary r, j and , KJ txi δδ / .  We will assume local 
equilibrium, so that the first 4 terms vanish: 

  ( ) ( ) 0,,
=+

∂
∂ tB

X
ts

i
K

iK XX  

in volume, 
  ( ) ( )( ) ( ) ( )tTtNtsts iKiKiK ,,,, XXXX =− +−  
on an interface, and 
 

  ( )
iK

iK F
CWs

∂
∂

=
,F ,  ( )

C
CW

∂
∂

=
,Fµ . 

 To ensure the above inequality for any diffuse flux, we need to ensure that the first term 
be negative.  One common way to do this is to adopt a kinetic law 

  ( ) ( )
K

K X
tMtJ

∂
∂

−=
,, XX µ , 

where M is the positive number, known as the mobility.   
 
 Summary of equations.  The theory evolves the deformation of the network, ( )txi ,X , 
and the concentration of the solvent, ( )tC ,X .  Other choices of basic fields are possible. 
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 Deformation gradient: ( ) ( )
K

i
iK X

tx
tF

∂
∂

=
,

,
X

X  

 
 Conservation of molecules: 

  ( ) ( ) ( tr
X

tJ
t

tC

K

K ,,, XXX
=

∂
)∂

+
∂

∂   

in the volume of the network, and 
  ( ) ( )( ) ( ) ( )tjtNtJtJ KKK ,,,, XXXX =− −+ , 
on an interface. 
 
 Conservation of momentum: 

  ( ) ( ) 0,,
=+

∂
∂ tB

X
ts

i
K

iK XX  

in the volume of the body, and 
  ( ) ( )( ) ( ) ( )tTtNtsts iKiKiK ,,,, XXXX =− +−  
on an interface. 
 

 Local equilibrium: ( )
iK

iK F
CWs

∂
∂

=
,F ,  ( )

C
CW

∂
∂

=
,Fµ . 

 

 Kinetic law: ( ) ( ) ( )
K

K X
tCMtJ

∂
∂

−=
,,, XFX µ . 

 
 Linear poroelasticity.  If disturbance from the reference state is small, we may 
approximate material laws by linear relations.  For example, set the reference state to be a rod 
subject to no weight but is subject to 100% relative humidity.  The chemical potential and the 
water concentration are measured relative to the reference state.  We will also use the 
engineering strain e, instead of the stretch, to represent the deformation.  Assume that the 
function  is a quadratic form: ( µσ ,Ŵ )

  ( )
22

,ˆ
22 βµασµσµ −−−=

E
sW , 

Where E, α  and β  are material constants.  Thus, the material laws are 

  αµσ
+=

E
e  

  βµασ +=C  
The three material constants form a dimensionless parameter 

  
β

αξ E
= . 

This parameter measures the significance of the interaction between elasticity and chemistry.  
 The coefficient α  behaves like the coefficient of thermal expansion, and gives the strain 
associated with unit change in the chemical potential.  Indeed, if we take the unit of temperature 
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and that of chemical potential both as the unit of energy, the coefficient α  will have the same 
unit as that of coefficient of thermal expansion. 
 Generalizing to a tensor form is straightforward: 

  ( ) 2

2
1

2
1,ˆ βµµσασσµ −−−= klklklijijklSsW . 

  
βµσα

µασ

+=

+=

ijij

ijklijklij

C

Se
 

 For an isotropic material, we need a total 4 material constants:  2 for the compliance 
tensor, 1 for the interaction tensor ikα , and 1 constant β .  The material laws are written as 

  
( )

βµασ

αµδδσνσν

+=

+−
+

=

kk

ijijkkijij

C
EE

e 1
 

There are many ways to regroup these four material constants. 
 We can also use the strains as independent variables: 

  ( )αµ
ν

σ 3
21

−
−

= kkkk eE  

so that 

  ijijkkijij
EeeE αµδ
ν

δ
ν

ν
ν

σ
21211 −

−⎟
⎠
⎞

⎜
⎝
⎛

−
+

+
=  

  µ
ν
αβ

ν
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+
−

=
21

3
21

2EeEC kk  

 When deformation is small, we may disregard the difference between the reference and 
the current state in writing equilibrium equations.  Let ijσ  be the stress, and write the force 
balance in the usual way: 

  0=
∂
∂

j

ij

x
σ

  in volume 

  ijij tn =σ   on surface. 
 We will adopt the linerized displacement-strain relations 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
i

j

j

i
ij x

u
x
ue

2
1 .  

 The kinetic law takes the form 

  
i

i x
MJ

∂
∂

−=
µ . 

The conservation of molecules takes the form 

  0=
∂
∂

+
∂
∂

i

i

x
J

t
C . 

 For an event to occur over time scale L, the time needed scales as 

  2L
M
βτ = . 
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 Stress in a thin film due to change of the humidity in the environment.  A porous 
film can absorb water in a moist environment.  The film may develop a biaxial stress.  Because 
the in plane strain is constrained by the substrate, which does not absorb water, so that the in 
plane strain vanishes: 

  αµσν +
−

=
E

10 , 

Thus, the biaxial stress is 

  
ν
αµσ
−

−=
1
E . 

This result is analogous to the stress due to misfit in the coefficient of thermal expansion.  The 
concentration of water changes by 

  µβ
ν
αβµασ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−=+=

1
22

2EC . 

  
 Stress induced by drying.  A large body is in equilibrium with moisture of a certain 
chemical potential.  When the chemical potential is suddenly changed, the bulk of the body do 
not change dimension rapidly, by the surface layer will change moisture content.  Let the change 
in the chemical potential in the moisture be 0µ .  The chemical potential of water in the body is 
( tz, )µ .  We assume local equilibrium,  

  ( ) 0,0 µµ =t . 
In the interior of the body, far beneath the surface, the chemical potential remains unchanged, 
namely 
   ( ) 0, =∞ tµ . 
 The body is in a state of equal biaxial stress, ( )tz,σ .  The lateral strain everywhere is 
zero, 

  αµσν +
−

==
E

ex
10 , 

so that 

  µ
ν
ασ
−

−=
1
E . 

The concentration is 

  β
ν
αβµββµασ +
−

−==+=
1
2','2

2EC . 

 Inserting this relation into 

  
z

MJ
∂
∂

−=
µ ,  0=

∂
∂

+
∂
∂

z
J

t
C , 

And we obtain that 

  2

2

' z
M

t ∂
∂

=
∂
∂ µ

β
µ . 

This PDE, together with the initial and boundary conditions, yields the distribution of the 
chemical potential: 
  ( ) ( )ζµµ erftz −= 1, 0  
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  ( )∫ −=
ζ

π
ζ

0

2exp2 dsserf  

  
'/2 β

ζ
tM

z
=  

The distribution of stress is similar. 
 
 
 Analysis of a soil test (Biot, 1941).  A column of soil, height h, is saturated with water.  
At time zero, a stress 0σσ =z  is applied to the top surface of the soil.  The column is confined 
laterally in a rigid sheath so that no lateral expansion can occur.  Also, no water can escape 
laterally or through the bottom, while water is free to escape at the top surface by applying the 
load through a very porous slab. 
 Equilibrium state.  After some time, the column will attain equilibrium with the load.  
The chemical potential of water in the soil will become the same as that of the environment, 
which is taken to be the reference, namely, 0=µ  in liquid water under no pressure.  In 
equilibrium, the solid will be in a state of uniform triaxial stress: 
  yxz σσσσ == ,0 . 
The lateral confining stress is determined by setting the lateral strain to be zero: 

  0
10 σνσνε

EE xx −
−

==  

so that 

  01
σ

ν
νσσ
−

== yx . 

 The change in the concentration of water in the soil is 

  01
1 ασ

ν
νασ

−
+

== kkeqC . 

If the applied load is compressive, when the soil equilibrate with the compression, the total 
number of water molecules escaped from the soil is C times the volume of the column. 
 The kinetic process to attain the equilibrium state.  From dimensional analysis, we 
already know the time scale to reach equilibrium scales as  
  .   Mh /2βτ =
Here we can solve for the entire time history.  In this example, the stress state is homogenous at 
all time: 

  0σσ =z ,  01
σ

ν
νσσ
−

== yx . 

The chemical potential, concentration and strain evolve with time.  The concentration is 

  βµασ
ν
νβµασ +

−
+

=+= 01
1

kkC  

Substitute into 

  
z

MJ
∂
∂

−=
µ ,  0=

∂
∂

+
∂
∂

z
J

t
C , 

And we obtain that 
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  2

2

z
M

t ∂
∂

=
∂
∂ µ

β
µ . 

 This is the familiar diffusion equation subject to the following initial and boundary 
conditions.  At time 0=t , the water content everywhere in the soil is still at the level of the 
saturated soil under no stress, which is taken to be the reference, ( ) 00, =zC .  This gives the 
initial value of the chemical potential: 

  ( ) 01
10, σ

β
α

ν
νµ ⎟
⎠
⎞

⎜
⎝
⎛
−
+

−=z  

At the top of the column, , the chemical potential in the soil is maintained by the 
environment, so that 

0=z

  ( ) 0,0 =tµ . 
At the bottom of the column, , water cannot escape, so that hz = ( )thJ ,  = 0, giving 

  ( ) 0, =
∂
∂ th

z
µ . 

 A separation of variable gives the form of the solution: 

  ( ) ∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

n Mh
tn

h
znatz

/2
12exp

2
12sin, 2

2

β
ππµ . 

Inserting into the initial condition, we obtain the coefficients: 

  ( )
( ) 022

1

1
1

12
81 σ

β
α

ν
ν

π
⎟
⎠
⎞

⎜
⎝
⎛
−
+

−
−

−=
+

n
a

n

n . 

The among of water escaped may be calculated from 

  
( ) ( )

( )∑∫ ∞

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

−
+=

1

2

33
eq

0

2
12exp

12
1321

,

n

n
h

tn
nhC

dztzC

τ
π

π
. 

 
 A stationary long crack.  The following two examples are analogous to those given in R. 
Huang, J.H. Prévost, Z. Suo,  Loss of constraint on fracture in thin film structures due to creep. 
Acta Materialia, 50, 4137-4148, 2002.  Consider a long crack in a large body.  When the body is 
equilibrated with the environment, the field chemical potential in the body is homogenous, and 
the body is stress-free.  At time zero, the chemical potential of the environment is suddenly 
dropped by 0µ .  The migration of molecules along the crack is taken to be so fast that the the 
chemical potential in the crack also drops by 0µ .  As water molecules diffuse out from the body 
into the crack, a stress field develops inside the body.  We would like to know the stress intensity 
factor of the crack. 
 Here we will only perform a scaling analysis.  The drop in chemical potential set up a 
stress scale, Eαµσ 00 = .  At time t, diffusion of water molecules inside the body set up a length 

scale β/tM .  The stress intensity factor has the dimension .  
Consequently, the stress intensity factor takes the form 

[ ][ ] 2/1lengthstressK =

  ( ) 4/1
0 / βακµ tMEK = , 

where κ  is a dimensionless function of Poisson’s ratio ν and the interaction parameter 

http://www.deas.harvard.edu/suo/papers/131.pdf
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βαξ /E= . 
 A crack extending at a constant velocity.  Assume that a crack grows at a constant 
velocity.  The stress intensity factor K and the stress level 0σ  form a length scale ( )20/σK .  
Dimensional consideration gives the form of the velocity:    

  
( )20/

/
σ
β

K
Mgv = , 

where  is a dimensionless function of Poisson’s ratio g ν and the interaction parameter 
βαξ /E= . 

     


