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  Pressure    

 So far we have been mainly concerned with a system of a single 

independent variable:  energy (http://imechanica.org/node/291).  The 

thermodynamics of such a system is fully specified by giving entropy as a 

function of energy,  US .  The function stands for the logarithm of the number of 

quantum states of the system isolated at a particular value of energy, and can be 

determined by experimental measurement.  Once the function  US  is known, all 

other thermodynamic relations of the system can be calculated.  The temperature 

T of the system is defined by   dUUdST //1  , and the heat capacity C of the 

system is defined by   dUUdTC //1  .  Both T and C are also functions of U.  

 We now consider a system of two independent variables:  energy and 

volume.  The thermodynamics of such a system is fully specified by giving 

entropy as a function of energy and volume,  VUS , .  The temperature T and the 

pressure p of the system are defined by   UVUST  /,/1  and 

  VVUSTp  /,/ .  These expressions lead to an experimental procedure to 

determine the function  VUS ,  for a given system.  Once the function  VUS ,  is 

known, all other thermodynamic relations of the system can be calculated.     

 The laws of ideal gases and osmosis are derived.  They illustrate entropic 

elasticity. 

 For a system in contact with a heat reservoir and subject to a force, the 

conditions of equilibrium can be represented graphically in the three 

dimensional space with S, U and V as axes.  This graphical representation is 

applied to a pure substance, leading to a theoretical understanding of salient 

experimental observations of coexistent phases. 

 For any system characterized by variable energy and volume, the 

thermodynamic model of the system can also be represented by functions other 

than  VUS , .  Alternative representations include the energy  VSU , , the 

enthalpy  pSH , , the Helmholtz function  TVF ,  , and the Gibbs function 

 pTG , .  These alternative representations add no physical content to the theory, 

but may provide mathematical convenience.   

 Several other mathematical ideas are described in Appendices, including 

the linearized equations of state, Hessian, Legendre transformation, and Maxwell 

relations.  

 

 A system with variable energy and volume.  A half bottle of wine is 

a system.  The system contains several species of molecules, and separates into 
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two phases, liquid and gas.  Both phases in 

the half bottle of wine are included when 

we refer to “the wine”.   

 The wine interacts with the rest of 

the world in two modes.  The bottle is 

sealed with a piston.  We can fix the 

position of the piston, and add heat to the 

wine by bringing the wine into thermal 

contact with a heat reservoir.  Alternatively, 

we can thermally insulate the wine, and do 

work to the wine by moving the piston 

down with a weight.   

 We can place the wine under weights of different forces, and in thermal 

contact with heat reservoirs of different temperatures.  We can add heat and do 

work to the half bottle of wine in sequence and in combination.  We can arrange 

the sequence to convert heat into work, or the other way around.  That is, we can 

make the half bottle of wine into a thermomechanical transducer—an engine or a 

refrigerator. 

 We block all other modes of interaction.  For example, the molecules of 

the wine do not escape from the bottle.  A system is called a closed system if it 

can exchange energy with the rest of the world by receiving work and heat, but 

does not exchange matter with the rest of the world.  In the example of the half 

bottle of wine, the work is done by the weight.   

 

 Thermodynamic model of the wine.  We model the half bottle of 

wine as a system of two independent variables: energy U and volume V.  The 

energy and the volume account for the contributions from both the liquid and the 

gas.  When U and V are fixed to a pair of values, the wine becomes an isolated 

system, flipping among a set of quantum states.  When U and V are fixed to 

another pair of values, the wine becomes another isolated system, flipping among 

another set of quantum states.  

 Let  VU ,  be the number of quantum states of the half bottle of wine 

isolated at energy U and volume V.  This function constitutes the thermodynamic 

model of the wine. When we speak of having a thermodynamic model of a system, 

we mean that we know the function  VU , .  We will describe how this function 

may be determined experimentally, how this function is used to calculate other 

thermodynamic relations, and how this function is used to understand 

phenomena such as phase transition. 
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 We will keep calling the quantity  logS  the entropy.  The entropy of 

the half bottle of wine isolated at energy U and volume V is a function   

   VUSS , .   

According to calculus, when the energy of the wine varies by U  and the volume 

of the wine varies by V , the entropy of the wine varies by 

  
   

V
V

VUS
U

U

VUS
S 











,,
. 

 

 Experimental determination of  VUS , .  In the lecture on 

temperature (http://imechanica.org/node/291), one partial derivative has been 

related to the temperature T: 

  
 

U

VUS

T 




,1
. 

In this lecture, the other partial derivative will be related to the temperature T 

and pressure p: 

  
 

V

VUS

T

p






,
.  

 Given a system, we can experimentally measure U, V, p, T, and then 

integrate the above equation to obtain the function  VUS , .  You need be patient 

in such an experiment.  Whenever you vary the loading parameters—the 

temperature of the heat reservoir and the force due to the weight—you must wait 

until the reservoir, the weight and the wine equilibrate.     

 Historically, the most prominent effort of this kind has been to determine 

the function  VUS ,  for water.  The experimental results are presented as tables 

and contour plots.  Even a cursory look at these tables and plots will give you an 

appreciation of the thoughts gone into presenting data in concise and useful ways.    

 Today, the function  VUS ,  is available online for many substances.  For 

example, NIST maintains a website,  http://webbook.nist.gov/chemistry/fluid/. 

 

 Thermodynamic model of the heat reservoir.  A heat reservoir 

maintains a fixed temperature RT , and interacts with the rest of the world in only 

one manner:  exchanging energy.  When the energy of the reservoir varies by 

RU , the entropy of the reservoir varies by  

  
R

R
R

T

U
S


  . 
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 Thermodynamic model of the weight.  The weight exerts on the 

piston a fixed force, weightf .  Now how is such a statement used in 

thermodynamics?  We need to describe a thermodynamic model of the weight.  

The weight interacts with the rest of the world in only one manner:  moving up 

and down.  The weight has a fixed internal energy weightU   and a fixed entropy 

weightS .  That is, weightU  and weightS  are independent of the height of the weight, h.  

The potential energy of the weight is the force times the height, namely, 

  hfweightw ieghtofenergy potential  . 

The sum of the potential energy of the weight and the internal energy of the 

weight gives the total energy weightE  of the weight: 

  weightweightweight UhfE   . 

 The force due to the weight and the internal energy of the weight are both 

fixed parameters.  When the height of the weight changes by h , the total energy 

of the weight changes by 

  hfE  weightweight  . 

The quantity hf weight is called the work done by the weight. 

 

 Construct an isolated system with internal variables.  The half 

bottle of wine, the heat reservoir, and the weight together constitute a composite.  

We make the composite into an isolated system, and characterize it with many 

parameters.  The isolated system has two loading parameters: 

 the temperature of the heat reservoir, RT ,  

 the force due to the weight,  weightf .   

For the time being, we fix the values of the two loading parameters.  The isolated 

system has several other fixed parameters:   

 the area of the piston, A,  

 the internal energy of the weight, weightU ,  

 the entropy of the weight, weightS .   

The isolated system has several internal variables:  

 the energy of the wine, U, 

 the volume of the wine, V, 

 the height of the weight, h, 

 the energy of the heat reservoir, RU .   



Thermodynamics http://imechanica.org/node/288  Z. Suo 

March 15, 2011  Pressure-5   

These internal variables are not all independent.  They are constrained by the 

conservation of space and the conservation of energy. 

 

 Conservation of space.  Kinematics.  When the piston moves, the 

volume of the wine changes by V  and the height of the weight changes by h .  

The changes of the two geometric parameters are related as  

  hAV   , 

where A is the area of the piston.  This relation is a consequence of the 

conservation of space:  for the wine to gain volume, the weight has to move up.  

Geometric relations associated with movements of various parts of a system are 

also known as kinematics.    

 

 Conservation of energy. We have made the composite into an isolated 

system.  According to the law of the conservation of energy, the energy of the 

isolated system is constant, independent of the values of the internal variables, so 

that 

  0weight  RUhfU  . 

The law of conservation of energy is also called the first law of thermodynamics:  

the change in the energy of wine, U ,  equals the sum of the work done by the 

weight,  hf weight , and the heat received from the reservoir, RU . 

 

 Maximize the entropy of an isolated system as a function of 

internal variables.  The conservation of space and the conservation of energy 

place two constraints among the variations of the four internal variables, U , 

V , h , RU .  Consequently, only two of the four are independent.  We will take 

the energy of the wine U and the volume of the wine V to be the two independent 

internal variables.  Thus, the composite—the wine, the weight and the heat 

reservoir together—is an isolated system with two independent internal variables:  

the energy of the wine U and the volume of the wine V.   

 The entropy of the composite, compositeS ,  is the sum of the entropies of the 

three parts:  the wine, the weight and the heat reservoir, namely, 

  RSSVUSS  weightcomposite , .  Using the constraints due to the conservation of 

space and the conservation of energy, we write the entropy of the composite as a 

function of U and V: 

   
RR T

Vp

T

U
VUSS weight

composite ,  . 
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We have dropped the additive constants.  We have also substituted the force due 

to the weight by the pressure due to the weight, Afp /weightweight  .   

 When U and V are fixed at particular values, the composite flips among a 

particular subset of quantum states.  The entropy  VUS ,composite  is the logarithm 

of the number of quantum states in this subset.  The fundamental postulate 

requires that, when the wine, the weight and the heat reservoir equilibrate, the 

values of the internal variables  VU ,  maximize the number of quantum states in 

the subset.       

 When the energy of the wine varies by U  and the volume of the wine 

varies by V , the entropy of the composite varies by 
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 Of all values of U and V, the most probable values maximize the function 

 VUS ,composite .  Thus, when the wine, the weight and the heat reservoir 

equilibrate, the number of quantum states becomes stationary,  

   0composite S  

for arbitrary small variations U  and V .   

 Because U  and V  are arbitrary and independent small variations, this 

condition of equilibrium requires that the quantity in front of each variation to 

vanish, leading to two separate equations: 

  
   

V

VUS

T

p

U

VUS

T RR 









,
,

,1 weight . 

The above equations apply when the wine, the weight and the reservoir 

equilibrate.  The equations relate the loading parameters—the temperature of the 

reservoir and the force due to the weight—to the function characteristic of the 

half bottle of wine,  VUS , .  

 In the above, we have regarded RT  and weightp  as fixed loading parameters.  

The above two equations are still valid when we place the wine on another heat 

reservoir of a different temperature, or under another weight with a different 

force, and wait for them to equilibrate.  The two nonlinear algebraic equations 

determine the values of the energy and volume of the wine in equilibrium with 

the new reservoir and weight.   

 When the composite is in equilibrium, we can also speak of the 

temperature of the wine, T, and the pressure of the wine, p .  We write 

  
   

V

VUS

T

p

U
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These two equations constitute the equations of state of the wine once the 

function  VUS ,  is known.  The first equation recovers the definition of the 

temperature, and the second equation interprets the other partial derivative. 

 For a given function  VUSS , , according to calculus, when the energy 

of the system varies by U  and the volume of the system varies by V , the 

entropy of the system varies by 

  
   

V
V

VUS
U

U

VUS
S 




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
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Comparing this equation to the two equations of state, we obtain that  

  V
T

p
U

T
S  

1
. 

 

 Ideal gas. A flask of volume V contains N molecules.  The molecules are 

called an ideal gas under the following conditions. 

1. The kinetic energy of the molecules is so large that intermolecular 

interaction is negligible.   

2. The distance between the molecules is so large that the probability of 

finding a molecule is independent of the location in the flask, and of the 

presence of other molecules.   

Under such conditions, the total number of quantum states of the system is 

proportional to the total number of ways in which the N molecules can be 

distributed.  The latter equals the product of the numbers of ways in which the 

individual molecules can be independently distributed.  With N and U fixed, each 

of these numbers will be proportional to the volume of the flask V.  The number 

of states is proportional to the Nth power of V: 

  NV . 

The proportional factor will depend on U and N, but not on V.   

 By definition, the entropy is  logS .  Inserting the above expression for 

the number of quantum states into the equation of state involving the pressure,  

  
 

V

VUS

T

p






,
, 

we obtain that 

  
V

N

T

p
 . 

This is the familiar ideal gas law.   

 

 Thermoelasticity of an ideal gas.  A bag of air acts like a spring.  The 

volume decreases when the pressure increases, and recovers when the pressure 
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drops.  This elasticity clearly does not result from distortion of bonds in the 

molecules, but from the fact that the number of quantum states increases with 

the volume.  Such elasticity is known as entropic elasticity. 

 As described above, an ideal gas satisfies 

  NTpV  . 

It is also known that the energy of an ideal gas is given by 

  cNTU  , 

where c is the heat capacity per molecule, and is taken to be a constant for a given 

species of molecules.   

 Inserting the above relations into the fundamental relation 

     V
T

p
U

T
S  

1
, 

we obtain that 

  V
V

N
U

U

cN
S   . 

Integrating, we obtain that 

      









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

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
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


00
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V

V
N

U

U
cNNVUSVUS , 

where 0U  and 0V  are arbitrary reference values.  The number of quantum states 

is 

     
NcN

V

V

U

U
NVUVU 






















00

00 ,,, .   

 

 Osmosis.  Consider N particles dispersed in a bag of water of volume V.  

The particles are different from water molecules, and can be of any size.  When 

the particles are molecules, we call them solutes.  When the particles are 

somewhat larger, say from 10 nm to 10  m, we call them colloids.  The bag is 

immersed in a reservoir of pure water.  The bag is made of a semi-permeable 

membrane:  water can permeate through the membrane but the particles cannot. 

  The physics of this situation is analogous to the ideal gas, provided that 

the concentration of the particles is dilute.  Every particle is free to explore the 

entire volume in the bag.  The number of quantum states of the water-particle 

system scales as  

  NV .   

As water permeates through the membrane, the volume of the bag V changes. 

 Recall  logS  and the defining equation of the pressure, 
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 

V

VUS

T
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


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Inserting the expression NV , we obtain 

that 

  
V

N

T

p
 . 

This pressure is known as the osmotic 

pressure.   

 In equilibrium, the osmotic pressure 

can be balanced in several ways.  For example, 

the tension in the membrane can balance the osmosis pressure.  One can also 

disperse particles in the reservoir outside the bag.  The difference in the 

concentration of particles in the bag and that of particles in the reservoir causes a 

difference in the pressures in the bag and in the reservoir.  The difference  in 

pressures can be balanced by the tension in the membrane.   

 As yet another example, we place a rigid, semi-permeable wall in the 

liquid, with the particles on one side, but not the other.  Water is on both sides of 

the wall, but alcohol is only on one side.  The molecules of the 

liquid can diffuse across the wall, but the particles cannot.  

For the particles to explore more volume, the liquid molecules 

have to diffuse into the side where particles are.  If this 

experiment were carried out the in the zero-gravity 

environment, the infusion would continue until the pure 

liquid is depleted.  In the gravitational field, however, the 

infusion stops when the pressure in the solution balances the 

tendency of the infusion. 

 

 Represent a thermodynamic state as a point in a plane.  We now 

return to the general discussion of a system capable of two independent 

variations, U and V.  Consider a plane with U and V as the coordinates.  The 

volume V has absolute significance, but the energy U is significant up to an 

additive constant.  A point in the plane represents a thermodynamic state of the 

system.  A curve in the plane represents a sequence of thermodynamic states, 

known as a process.  For example, a vertical line represents adding energy to the 

system at a constant volume.  That is, the piston remains fixed in position, the 

weight does no work, and the wine is in thermal contact with the heat reservoir.   

 As another example, we can thermally insulate the wine, but move the 

piston.  This loading path is a curve in the  VU ,  plane, known as an adiabatic 

process. 

Solvent 
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 On the  VU ,  plane, we can plot lines 

of constant entropy, constant temperature, 

and constant pressure.  Such plots give 

graphical forms of the functions  VUS , , 

 VUT , , and  VUp , .  

 

 Represent the function  VUS ,  

as a surface in three dimensions.  

Following Gibbs, we represent the function 

 VUS ,  as a surface in the three-

dimensional space, with  VU ,  as the horizontal plane, and S as the vertical axis.  

The volume V has absolute significance, but the energy U is significant up to an 

additive constant.  We have set S = 0 for the ground state. 

 Recall the equations of state: 

  
   

V

VUS

T

p

U

VUS

T 








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,

,1
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These two equations have clear graphical interpretations.  Consider a plane 

tangent to the surface  VUS , .  The slope of the tangent plane with respect to the 

U axis is T/1 , and the slope of the tangent plane with respect to the V axis is 

Tp/ . 

 While quantitative data are better represented by tables and contour lines 

on a plane, the three-dimensional representation is an extremely valuable tool to 

visualize the landscape of the function  VUS , , and to provide theoretical insight 

into many salient experimental observations. 

V

U

do work 

add heat 

V

U

S

 VUS ,
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 Graphical derivation of the conditions of equilibrium.  We now 

use the three-dimensional representation to re-derive the conditions of 

equilibrium.  For a system—such as a half bottle of wine—capable of two 

independent variations, U and V, the thermodynamics of the system is fully 

specified by the function  VUS , .  The wine is in contact with two loading 

devices:  the weight of a fixed force weightf  and the heat reservoir of a fixed 

temperature RT .  The wine, the weight and the heat reservoirs together 

constitute an isolated system.  The entropy of the composite is  

    
RR T

Vp

T

U
VUSS weight

composite ,  . 

The isolated system has two internal variables U and V.  According to the 

fundamental postulate, when the wine equilibrates with the weight and the heat 

reservoir, the values of U and V maximize the function  VUS ,composite .  

 Following Gibbs (http://imechanica.org/node/654), we interpret the 

above statement geometrically.  The function  VUS ,composite  consists of two parts.  

One part is the entropy of the wine, which is the nonlinear function  VUS , , 

represented in the three-dimensional space by the surface.   The other part is the 

entropy of the heat reservoir, which is linear in U and V, represented in the three-

dimensional space by an inclined plane passing through the origin of the space, 

with RT/1   being the slope of the inclined plane with respect to the U axis, and 

RTp /weight  being the slope of the inclined plane with respect to the V axis.   

 The vertical distance between the surface  VUS ,  and the inclined plane 

is the function  VUS ,composite .  Thermodynamics dictates that this vertical 

distance  VUS ,composite  should maximize when the wine equilibrates with the 

weight and the heat reservoir.   

 For fixed loading parameters RT  and weightp , the inclined plane is fixed.  A 

plane parallel to the inclined plane may intersect with the surface  VUS ,  along a 

curve.  All states along the curve give the equal value of the vertical distance 

 VUS ,composite .   The vertical distance between the two planes increases when we 

move upward the plane parallel to the inclined plane. From the geometry, the 

vertical distance  VUS ,composite  is maximized when the plane parallel to the 

inclined plane becomes tangent to the surface  VUS , .  This geometric 

interpretation recovers the conditions of equilibrium: 

http://imechanica.org/node/654
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As stated before, at a point on the surface  VUS , , we can form a plane tangent 

to the surface.  The tangent plane has two slopes, in the directions of U and V.  

These slopes correspond to RT/1  and RTp /weight . 

 When the loads, RT/1  and RTp /weight , change gradually, the inclined 

plane rotates, and the associated tangent plane rolls along the surface  VUS ,  

with two degrees of freedom.   

 

 State of equilibrium stable against small perturbation.  Local 

maximization.  To ensure that the vertical distance  VUS ,composite  is maximized 

at  VU , ,  the surface  VUS ,  must be below the tangent plane—that is, the 

surface  VUS ,  is convex at the state  VU , .  The condition for local 

maximization can be expressed in an analytic form.  

 When the state varies by U  and V , the entropy of the composite varies 

by   
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We have expanded the Taylor series of the function  VUS ,  up to terms 

quadratic in U  and V .  In a state of equilibrium, the coefficients of the first-

order variations vanish, recovering the equations of state.  To ensure that this 

state of equilibrium maximizes compositeS , the sum of the second-order variations 

must be negative for arbitrary combination of  U  and V .   

 According to calculus, the cross derivatives of a function are independent 

the order of differentiation, namely, 

 
   

VU

VUS

UV

VUS








 ,, 22

.   

The matrix 

   

   

   



































2

22

2

2

2

,,

,,

,

V

VUS

VU

VUS
UV

VUS

U

VUS

VUH  

is known as the Hessian of the function  VUS , . 
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 A state of equilibrium is stable against arbitrary small perturbation in U 

and V if the Hessian,  VU ,H , is negative-definite.  According to linear algebra, 

the two-by-two matrix is negative-definite if and only if 

 
         

2
2

2

2

2

2

2

2

2

2 ,,,
,0

,
,0

,
















































VU

VUS

V

VUS

U

VUS

V

VUS

U

VUS
. 

When the Hessian is negative-definite at a state  VU , , the function  VUS ,  is 

convex at this state. 

  

 State of equilibrium stable against large perturbation.  Global 

maximization.   If the surface  VUS ,  is globally convex, every tangent plane 

touches the surface at only one point, and only one state of equilibrium is 

associated with a pair of given loads RT/1  and RTp /weight .  By contrast, if part of 

the surface  VUS ,  is concave, a tangent plane may touch the surface at two 

points, and the two states of equilibrium are associated with a pair of given loads 

RT/1  and RTp /weight . 

 For a partially concave surface  VUS , , consider a tangent plane touching 

the surface at two points.   Such a tangent plane can still be rolled and, while 

touching the surface at two points.  But now the tangent plane can only be rolled 

with one degree of freedom.  That is, when two states of equilibrium coexist, the 

two loading parameters RT/1  and RTp /weight  are related. 

 As the tangent plane touching the surface at two points rolls, the two 

points may merge to a single point.  When the tangent plane is rolled beyond this 

special point, the tangent plane will touch the surface at only one point, and the 

tangent plane can be rolled with two degrees of freedom.  This special point is 

known as the critical point. 

 It is possible for a tangent plane touches the surface at three points.  This 

is the condition for the three states of equilibrium coexist.  When the tangent 

plane touches the surface at three points, the tangent plane cannot be rolled 

further, so that the temperature and pressure for the three states to coexist are 

fixed. 

 Unless the surface is peculiar, no tangent plane can touch the surface at 

more than three points. 

 

 Phase diagram of a pure substance.  We have studied a phase 

transition of a substance by using a model of a system with a single independent 

variable: energy (http://imechanica.org/node/4878).  This single-variable model 

http://imechanica.org/node/4878
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does reasonably well when compared with the experimental observation of a 

phase transition such as that from ice to water.  The single-variable model, 

however, does poorly when compared to experimental observations of a 

transition from gas and liquid.  A salient feature of this transition is that the 

volume reduces drastically when the gas condenses into a liquid. 

 

    A two-variable model will accommodate this experimental observation 

and many others.  Some of the other observations are illustrated by a diagram on 

a  pT ,  plane, known as a phase diagram of a substance.  A point in the plane 

represents a given temperature and a given pressure.  A region in the plane 

represents the range of temperature and pressure in which a phase is stable. 

 Between two neighboring regions is a curve, known as a phase boundary.  

When the temperature and the pressure fall on such a curve, two phases coexist. 

 Three regions may share a common point, known as a triple point.  When 

the temperature and pressure fall on precisely this point, three phases coexist. 

 The phase boundary between the gas and liquid terminates in the  pT ,  

plane at a point, known as the critical point.  
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 Phase diagrams for many substances have been determined by 

experiments, and are available online.  The salient features in the phase diagram 

can be understood within the two-variable model. 

 The phase diagram of a 

substance can also be drawn on 

planes of other coordinates.  

Here is a schematic phase 

diagram on the  VU ,  plane.  On 

this plane, each thermodynamic 

state of the substance is 

represented by a distinct point.  

For example, the states in which 

the three phases coexist are 

represented by the shaded 

triangle.  When the three phases 

coexist, both energy and volume 

can still vary.  By contrast, on 

the  pT ,  plane, all the states in 

which the three phases coexist 

are represented by a single point.      

 

   Model a pure substance as a system of two independent 

variables.  A pure substance aggregates a large number of molecules of a single 

species. The entropy S, energy U and volume V of a piece of the substance are 

proportional to the number of molecules in the piece, N.  The entropy, energy 

and volume of the substance per molecule are   

  
N

S
s  ,      

N

U
u  ,       

N

V
v  . 

The thermodynamics of the substance is fully specified by the function  vus , .  

This function is specific to the substance, and is independent of the size and 

shape of the piece.  The temperature and pressure are given by 

  
   

v

vus

T

p

u

vus

T 









,
,

,1
. 

 Analogous to the one-variable model (http://imechanica.org/node/291), 

for the two-variable theory, a single phase at a particular state  vu,  is stable 

against small perturbation if and only if the function  vus ,  is convex at the state 

 vu, .  If the function  vus ,  is nonconvex at the state  vu, , the entropy can be 

increased if the substance separates into different phases.  

V

solid 

liquid 

U

gas 

critical point 

http://imechanica.org/node/291
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 Coexistence of two phases.   Next consider a mixture of two phases, 

A  and A  .  We may regard the two phases as distinct systems, one 

characterized by function  vus  , , and the other by  vus  , .  Let N   be the 

number of molecule in one phase, and N   be the number of molecules in the 

other phase.  When the two phases coexist, molecules can detach from one phase 

and attach to the other.   

 The total number of molecules in the mixture, N, is the sum of the 

numbers of molecules in the two phases:   

  NNN  . 

We neglect energy associated with the phase boundaries, so that the total energy 

of the mixture, U, is the sum of the energies of the two phases:  

  uNuNU  . 

Similarly, the total volume of the mixture, V, is the sum of the volumes of the two 

phases:  

  vNvNV  . 

Similarly, the entropy of the mixture, S, is the sum of the entropies of the two 

phases:  

  sNsNS  . 

The above equations are known as the rules of mixture. 

 The rules of mixture have a simple graphical interpretation in the three-

dimensional space of  VUS ,, .  Given a function  vus  , , the set of points 

 vNuNsN  ,,  is a surface, representing the substance when all molecules are in 

phase A .  Similarly, given a function  vus  , , the set of points  vNuNsN  ,,  

is a surface, representing the substance when all molecules are in phase A  . 

 Now pick one particular point on one surface, and pick another particular 

point on the other surface.  According to the rules of mixture, the energy, the 

entropy and the volume of the mixture correspond to a point   VUS ,,  on the 

straight line through the two points. The straight line connects the two states, 

and is called a tie line.     

 When N, U  and V are fixed, the mixture is an isolated system with 

internal variables:  N  , N  , u , u  , v , v  .  Of all values of the internal variables, 

the most probable ones maximize the entropy of the mixture.  In the  VUS ,,  

space, when the energy and the volume of the mixture are fixed, the entropy of 

the mixture is maximized when the tie line is in a plane tangent to both surfaces.  

As the common tangent plane roll, the plane contacts the two surfaces at 

successive points.   
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 A thermodynamic state of the mixture is 

represented by a point in the  VU ,  plane.  The set 

of tangent points on one surface projects to a curve 

in the  VU ,  plane.  The set of tangent points on 

another surface projects to another curve in the 

 VU ,  plane.  Also projected onto the  VU ,  plane 

are the tie lines, the dashed lines in the figure. 

 From the graphical representation, we can 

directly read off the conditions for two phases to coexist.  The two slopes of the 

tangent plane give the temperature and pressure.  This interpretation recovers 

two facts:  when the two phases equilibrate, both the temperature and the 

pressure are the same in the two phases:   

  
   

u

vus

u

vus








 ,,
, 

  
   

v

vus

v

vus








 ,,
. 

For the two phases to coexist, the composite—the system and the heat reservoir 

together—should have the same entropy in the two phases, namely, 

  
   

 
   

v

vus
v

u

vus
uvus

v

vus
v

u

vus
uvus





















,,
,

,,
, . 

Once the functions  vus  ,  and  vus  ,  are prescribed, the above are three 

nonlinear algebraic equations involving four unknowns: u , u  , v , v  .  

Consequently, for a substance of two independent variations, the mixture of two 

coexistent phases has one degree of freedom.    

 

 Coexistence of three phases.  The three phases may be regarded as 

distinct systems, modeled by three functions:    vus  , ,  vus  , , and  vus  , .  

The three functions correspond to three surfaces in 

the  VUS ,,  space.  Pick one point from each 

surface.  Through the three points draw a plane, 

known as the tie plane.  A point in the tie plane 

represents a mixture of the three phases.  When the 

energy and the volume are fixed for the mixture, the 

entropy of the mixture maximizes when the tie 

plane are tangent to all three surfaces.  The slope of 

this surface defines the pressure and temperature 

for the three phases to coexist, corresponding to the 

V

gas 

solid 

liquid 

U

V
solid 

liquid 
U
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triple point in the phase diagram on the  Tp,  plane.  The tie plane is projected 

onto the  VU ,  plane as the shaded triangle.  

 From the graphical representation, the conditions for the three phases to 

coexist are 

  
     

u

vus

u

vus

u

vus













 ,,,
, 

  
     

v

vus

v

vus

v

vus













 ,,,
, 

  

     

     

     
v

vus
v

u

vus
uvus

v

vus
v

u

vus
uvus

v

vus
v

u

vus
uvus































,,
,

,,
,

,,
,

 

Once the functions  vus  , ,  vus  ,  and  vus  ,  are prescribed, the above are 

six nonlinear algebraic equations involving six unknowns: u , u  , v , v  , vu  , .  

Consequently, for a substance of two independent variations, when three phases 

coexist, the mixture has no degree of freedom.  

 Many substances have more than three phases.  For example, ice can be 

in several crystalline structures.  Can four or more phases coexist?  This is 

impossible for a system modeled with two independent variables.  Each phase is 

modeled by a distinct function  vus , , corresponding to a surface in the three 

dimensional space  VUS ,, .  A plane can at most be tangent to three surfaces.    

 

 Critical point.  Thomas Andrews (1869) reported the following 

experimental observation.  At temperatures above 88 F, carbonic acid is a 

homogeneous fluid and undergoes no phase transition, even when a pressure of 

400 atmospheres is applied. 

 Gibbs (1873) noted this experimental 

observation, and made the following theoretical 

interpretation.  The liquid and the gas can be 

modeled by a single function  vus , , but the 

function is nonconvex.  Consequently, when the 

energy and volume of the mixture are in a certain 

region, a plane can make be tangent to the 

surface  vus ,  at two points.  As the tangent 

plane rolls, the plane contacts the surface at two 

V
liquid 

gas 

critical point 

U
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sets of successive points, corresponding to two curves.  The two curves merge at a 

point, and beyond this point the surface  vus ,  is convex.  This point is called the 

critical point.      

 

 A system with variable energy and volume, as well as an 

internal variable.  We return to general discussion to a system capable of two 

independent variations, the energy U and the volume V.  In the case of the half 

bottle of wine, beside adding heat and doing work to the wine, we may be 

interested in an internal variable, for example, the number of molecules in the 

gas phase of the wine.    

 In generic terms, let Y be an internal variable of the system, and model 

the system by a function  YVUS ,, .  When U and V are fixed, but Y is allowed to 

take any value, the system is an isolated system flipping in a set of quantum 

states.  According to the fundamental postulate, all the quantum states are 

equally probable after the system is isolated for a long time.  When the internal 

variable Y is fixed at a particular value, the system can only flip among a subset of 

the quantum states.  The logarithm of the number of quantum states in this 

subset is  YVUS ,, .  When U and V are fixed, of all values of Y , the most 

probable value of Y  maximizes the function  YVUS ,, . 

 

 Energy  VSU , .  Consider a system characterized by a function  VUS , .  

When the volume is fixed, the more energy a system has, the more quantum 

states the system has.  Consequently, the function  VUS ,  can be inverted to 

obtain the function   VSU , .  Of course, the two functions contain the same 

information of the same system:  the half bottle of wine capable of two 

independent variations.  The two functions are represented by the same surface 

in the three-dimensional space  VUS ,, .  

There is no real advantage in choosing one 

set of independent variables over another.  

Whatever preferences we might feel are all in 

our minds, and have nothing to do with the 

half bottle of wine.  

 We can represent the thermodynamic 

states of the system on the plane with 

coordinates S  and V .   A point in the plane 

represents a thermodynamic state, and a 

curve in the plane represents a loading path.   
V

do work 

add heat 

S
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 Thus, a thermodynamic state can be represented by a point on the  VU ,  

plane, or by a point on the  VS,  plane.  The points in the two planes are mapped 

1-to-1 by the function  VUS , . 

 Now we put equations together.  We characterize a system by a function  

   VSUU , .   

According to calculus, when the entropy varies by dS  and the volume varies by 

dV , the energy varies by 

  
   

dV
V

VSU
dS

S

VSU
dU











,,
. 

Recall the expression 

  dV
T

p
dU

T
dS 

1
. 

Solving dU, we obtain that 

  pdVTdSdU  . 

This equation shows the two ways to change energy of the wine.  The first term 

represents adding heat to the wine, and the second term represents doing work 

to the wine. 

 A comparison of the two expressions for dU gives that 

  
 
S

VSU
T






,
,  

 
V

VSU
p






,
. 

The first equation recovers the definition of the temperature.  The second 

equation is also familiar to many of us, probably because we have been told many 

times.   

 The system is capable of two independent variations, S and V.  When S 

and V are specified, U is obtained from the function  VSU , , while T and p are 

obtained from the partial derivatives. 

 In the three-dimensional space 

 VUS ,, , a surface represents the function 

 VSU , .  A point on the surface represents a 

thermodynamic state.  At the point and 

tangent to the surface we can form a plane.  

The two slopes of the tangent plane 

represent p and  T . 

 We can also project the above 

interpretation to the  VS,  plane.  On this 

plane all thermodynamic states of constant 

energy form a curve.  We draw two such 

V

S

U

dUU 

dS

dV
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constant-energy curves, one for U and the other for dUU  .  The gradient of the 

contour lines in one direction gives the temperature, and that in the other 

direction gives the pressure.  

 For a system with an internal variable Y, we can invert the function 

 YVUS ,,  to obtain  YVSU ,, .  The two functions characterize the same system.  

When S and V are fixed, of all values of Y , the most probable value of Y  

minimizes the function  YVSU ,, . 

 

 Helmholtz function  VTF , .  A system, such as a half bottle of wine, is 

characterized by energy U and volume V, as well as by an internal variable Y.  The 

thermodynamics of the wine is specified by the function  YVUS ,, .  Now we 

consider a special case:  the system is in thermal equilibrium with a heat 

reservoir of a fixed temperature T, so that 

  
 

U

YVUS

T 




,,1
. 

This equation defines the function  YVUT ,, .  If T is a monotonic function of U, 

this function can be inverted to obtain the function  YVTU ,, .   

 Recall the following results from the lecture on function 

(http://imechanica.org/node/4878).  Define the Helmholtz function  

  TSUF  .   

When  VT ,  are fixed, of all values of Y , the most probable value of Y  

minimizes the function  YVTF ,, .  

 When Y is held constant, taking differential of the function TSUF  , 

we obtain that  

  SdTTdSdUdF  . 

Recall that pdVTdSdU   when Y is held constant.  The above equation 

becomes that 

  pdVSdTdF  . 

We can regard F as a function of  YVT ,, .  The coefficients in the above 

differential form are the partial derivatives of the function  YVTF ,, : 

  
   

V

YVTF
p

T

YVTF
S











,,
,

,,
 .  

  

  Vp, plane.  Thermodynamic states of the system can be represented on 

the  Vp,  plane.  A point in the plane represents a thermodynamic state, and a 

curve in the plane represents a loading path.  Sketched in the plane is a pressure-

http://imechanica.org/node/4878
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volume curve measured under the condition 

of a constant temperature.  Such a loading 

path is known as an isotherm.  The area 

under this curve determines the change in 

the Helmholtz function of the system when 

compressed under the isothermal condition.  

 

 Second derivatives of the 

Helmholtz function.  Consider a system 

characterized by a Helmholtz function 

 VTF , .    The equations of states are 

  
 
T

VTF
S






,
, 

  
 
V

VTF
p






,
. 

 The equations of state are in general nonlinear, and can be linearized in 

the neighborhood of any particular thermodynamic state.  According to calculus, 

we write 

  
   

V
TV

VTF
T

T

VTF
S 











,, 2

2

2

, 

  
   

V
V

VTF
T

VT

VTF
p 

2

22 ,,









 . 

This procedure is known as linear perturbation, and the above two equations are 

the linearized equations of state. 

 The equations of state interpret the first derivatives of the function 

 VTF , .  The linearized equations of state interpret the second derivatives of the 

function  VTF , .   

 Let us try to interpret    22 /, TVTF   .  The heat capacity is defined as 

  
 
T

VTU
CV






,
. 

That is, the heat capacity is the change in energy of the system associated with a 

unit change in the temperature, while the volume of the system is held constant.  

The subscript indicates that the volume is held constant when the temperature 

changes.  Recall that TSFU  , so that  

  
   

T

VTS
TS

T

VTF
CV











,,
. 

This equation becomes 

V

p

an isotherm 
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 

2

2 ,

T

VTF
TCV




 . 

 We next look at   22 /, VVTF  .  We may define stiffness by 

  
 

V

VTp
VT






,
 . 

Comparing this definition with the second perturbed equation of state, we obtain 

that 

   
 

2

2 ,

V

VTF
VT




 . 

 According to calculus, the cross derivatives of a function are independent 

of the order of differentiation, namely, 

  
   

VT

VTF

TV

VTF








 ,, 22

. 

The cross derivative measures the effect of thermomechanical coupling.   

 

 Enthalpy  pSH , .  When the weight and wine equilibrate, we can speak 

of the pressure of the wine, p, and write 

    
 

V

YVSU
p






,,
. 

This relation defines the function  YVSp ,, .  When S is fixed, assuming p and V 

are 1-to-1, we can invert the function  YVSp ,,  to obtain the function  YpSV ,, . 

 The energy of the combination of the wine and the weight is 

   pVUH  . 

The quantity H is known as the enthalpy of the wine.  The terminology is clearly 

unfair to the weight.  The enthalpy is a function of S and p.  When  pS,  are fixed, 

of all values of Y , the most probable value of Y  minimize the function 

 YpSH ,, . 

 When Y is held constant, taking differential of pVUH  , we obtain 

that  

  VdppdVdUdH  . 

Recall that pdVTdSdU   when Y is held constant.  The above equation 

becomes that 

  VdpTdSdH  . 

When the pressure is fixed, dH is the heat added to the system.  The coefficients 

in the above differential form are the partial derivatives: 
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   

p

YpSH
V

S

YpSH
T











,,
,

,,
 .  

     

 Gibbs function  pTG , .  Define the Gibbs function by 

  pVTSUG  . 

Its differential form is 

  VdpSdTdG  . 

The coefficients in the differential form are defined by the partial derivatives of 

the function  pTG , .  

  
   

p

pTG
V

T

pTG
S











,
,

,
 . 

 In physical terms, this change of variables means that the system can 

change both energy and volume, but not particles.  One can similarly state the 

condition of equilibrium.  When a system is held at fixed temperature and 

pressure, upon lifting a constraint internal to the system, after a long time, the 

more probable value of the internal variable has a smaller value of the Gibbs 

function. 

 

 Use  pT ,  as independent variables.  Because coexistent phases have 

the same temperature and the same pressure, we may wish to use  pT ,  as the 

independent variables to represent the thermodynamic model, and organize 

experimental data.  The phase diagram for 2CO  given above is an example.  In 

the  pT ,  plane, we can indicate individual phases, two-phase boundaries, triple 

point, and critical point.  Within each the region of each phase, we can plot 

contours of experimentally measured energy, volume, and entropy. 

 Let  pTg ,  and  pTg ,  be the Gibbs functions per molecule of the two 

phases. The Gibbs function for the mixture is    

     pTgNpTgNG ,,  . 

The mixture is regarded as a system of fixed values of  pT , , and with an internal 

variable N  .  Thermodynamics requires that G be minimized by varying N  , 

while holding  pT ,  fixed.  We distinguish three situations:   

 When  pTg ,  <  pTg , , all molecules should be in phase  A .   

 When  pTg ,  >  pTg , , all molecules should be in phase  A  .   

 When  pTg ,  =  pTg , , the two phases coexist, namely, some of the 

molecules are in phase A , and other molecules are in phase  A  .   
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Exercise.  Derive an expression of the density of oxygen as a function of 

elevation from the surface of the earth. 

Exercise.  Along a two-phase boundary, show that   

 
vv

ss

dT

dp




 . 

 Exercise.  Find the data for entropies and volumes at the melting point 

of water.  How much shift in the melting point is expected under 1 GPa of 

pressure? 

 Exercise.  Derive an approximate relation between the vapor pressure as 

a function of temperature.  Assume that for the same number of molecules, gas 

occupies much larger volume than liquid.  The gas obeys the ideal gas law.  The 

latent heat is insensitive to temperature.  

 Exercise.  Use  VT ,  as independent variables.  Sketch function  VTF ,  

on the plane  VF ,  for several temperatures around the critical temperature.  

Sketch the corresponding curves on the  Vp,  plane.    

 Exercise.  Use  pS,  as independent variables.  Sketch function  pSH ,  

on the plane  SH,  for several pressures around the critical pressure.  Sketch the 

corresponding curves on the  ST ,  plane. 

 Optional reading.  T.D. Wheeler, A.D. Stroock, The transpiration of 

water at negative pressure in a synthetic tree.  Nature 455, 208-212.  

 Optional reading.  K.Z. House, D.P. Schrag, C.F. Harvey, K.S. Lackner.  

Permanent carbon dioxide storage in deep-sea sediments.  PNAS 103, 12291-

12295 (2006). 
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 Appendix A:  Linearized equations of state.  A system, such as a 

half bottle of wine, is modeled by a function  VUS , .  Once the function  VUS ,  

is prescribed, the equations of state are 

  
 

U

VUS

T 




,1
, 

  
 

V

VUS

T

p






,
. 

The system is in equilibrium with a weight and a heat reservoir.  The above 

equations of state suggest that we may regard T/1 and Tp/  as the loading 

parameters, and use U and V to specify thermodynamic states.  Given a pair of 

the loading parameters, the equations of state are algebraic equations that 

determine the thermodynamic state  VU , .   

 The equations of state are in general nonlinear algebraic equations.  If the 

system is in the neighborhood of a particular thermodynamic state  VU , , the 

equations of state can be linearized in this neighborhood, written in an 

incremental form: 

  
   

V
UV

VUS
U

U

VUS

T


















 ,,1 2

2

2

, 

  
   

V
V

VUS
U

VU

VUS

T

p


2

22 ,,


















. 

The increments of the loads,  T/1  and  Tp/ , are linear in the increments of 

U  and V .  This procedure is known as linear perturbation, and the above two 

equations are the linearized equations of state. 

 A thermodynamic state of the wine can be represented by a point in the 
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 VU ,  plane, as well as by a point in the  Tp,  plane.  For the same state of the 

system, the point in the  VU ,  plane is mapped to the point in the  Tp,  plane by 

the equations of state.  The mapping may not always be invertible.  That is, given 

a pair of the loads  Tp, , the equations of state may not be invertible to 

determine a pair  VU , .  For example, the perturbed equations of state are not 

invertible when the Hessian is a singular matrix,  

  0det H .   

This singularity may be understood in terms of thermodynamics.   

 

 Appendix B:  Legendre transformation.  In the body of the text we 

have changed variables many times. Some of the changes of variable can be done 

by a mathematical procedure known as the Legendre transformation.    We 

illustrate this procedure as follows. 

 Start with a function  

   VSUU , , 

and the symbols we give to its partial derivatives  

  
 
S

VSU
T






,
,  

 
V

VSU
p






,
. 

Thus, the small changes are related as 

  pdVTdSdU  . 

 Define a function by 

  pVUH  . 

For small changes in the variables, we obtain that 

   pVddUdH  . 

Recall pdVTdSdU   and an identity in calculus   VdppdVpVd  .  We 

obtain that 

  VdpTdSdH  . 

Consequently, H is a function of S and p.  The coefficients in the differential form 

can be deified by partial derivatives of the function  pSH , : 

  
   

p

pSH
V

S

pSH
T











,
,

,
 . 

In this example, the Legendre transformation replaces V by p as an independent 

variable. 
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 Appendix C:  Maxwell relations.  Recall an identity in calculus:  given 

a differential function  yxf , , the partial derivatives are indifferent to the order 

by which they are taken.  Thus, 

  
   

xy

yxf

yx

yxf








 ,, 22

. 

 Applying this identity to the two variables in the function  VSU , , we 

obtain that 

  
   

SV

VSU

VS

VSU








 ,, 22

, 

or 

  
   

S

VSp

V

VST








 ,,
. 

This equation is known as a Maxwell relation.  The procedure can be applied to 

any other functions. 

 The significance of the relation can be appreciated as follows.  When the 

entropy varies by S  and the volume varies by V , the temperature and the 

pressure varies by 

  
   

V
V

VST
S

S

VST
T 











,,
  

  
   

V
V

VSp
S

S

VSp
p 











,,
. 

Thus, the variations  pT  ,  are linear in the variations  VS  , .  The Maxwell 

relation ensures that the mapping matrix is symmetric. 

     

 Appendix D:  Analysis of two phases in equilibrium.  When the 

internal variables vary, the total number of molecules N  in the mixture is 

conserved, so that  

  0 NdNd . 

Similarly, the total energy in the mixture U is conserved, so that  

  0 udNNduudNNdu . 

The total volume of the mixture V is conserved, so that 

  0 vdNNdvvdNNdv . 

The three laws of conservation place three constrains among the six variations 

Nd  , Nd  , ud  , ud  , vd  , vd  . 

 When the internal variables vary, the entropy of the mixture 

   vusNvusNS  ,,  varies by 



Thermodynamics http://imechanica.org/node/288  Z. Suo 

March 15, 2011  Pressure-29   

  
 

 
 

  Ndusud
ud

usd
NNdusud

ud

usd
NdS 









  

We regard Nd    and ud   as independent variations, and eliminate Nd   and ud   

by using the laws of conservation.  The variation in entropy is 

  

   

   

           
Nd

v

vus
vv

u

vus
uuvusvus

vd
v

vus

v

vus
N

ud
u

vus

u

vus
NdS


























































,,
,,

,,

,,

 

 When the two phases equilibrate in the mixture, the entropy is maximized.  

Because ud   , vd   and  Nd    are independent variations, the factor in front of 

each variation must vanish, giving 

  
   

u

vus

u

vus








 ,,
, 

  
   

v

vus

v

vus








 ,,
, 

       
 

 
 

v

vus
vv

u

vus
uuvusvus











,,
,, . 

These three equations recover the graphic representation.  Once the fundamental 

thermodynamic functions of the two phases,  vus  ,  and  vus  ,  are 

prescribed, these are three nonlinear algebraic equations involving four 

unknowns: u , u  , v , v  .  Consequently, for a substance characterized by two 

independent variations, when two phases of the substance coexist, the mixture 

can still have one independent variation.   


