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  Stress-Strain Curve of a Metal 
 
 Two length scales. A body is made of atoms, each atom is made of 
electrons, protons and neutrons, and each proton is made of...  This kind of 
description is too detailed for us.  We will not go very far in helping the engineer 
if we keep thinking of a bridge as a pile of atoms.  Instead, we will develop a 
continuum theory.  This theory is effective whenever we can identify two widely 
separated length scales.  
 The deformation of the body is in general inhomogeneous—that is, the 
amount of deformation varies from one part of the body to another part.  We may 
identify two length scales: 

• length scale over which the macroscopic variation of deformation occurs 

• length scale over which the microscopic process of deformation occurs. 
For example, when a rubber eraser is bent, the macroscopic field of deformation 
varies over a length scaled with the thickness of the eraser (several millimeters).  
The rubber is a network of molecular chains.  The microscopic process of 
deformation occurs over the length scaled with the length of an individual 
molecular chain (several nanometers). 
 

Representative elementary volume.  In many applications, the two 
length scales are widely separated.  If they are, we can describe the behavior of 
the material by using a volume much larger than the size characteristic of the 
microscopic process of deformation, but much smaller than the size characteristic 
of the macroscopic deformation.  Such a volume is known as a representative 
elementary volume (REV).   

In the rubber eraser, for example, the microscopic process is the thermal 
motion of individual polymer chains, the body is the whole eraser, and the REV 
can be a small part of the eraser.  

As another example, consider an airplane wing made of aluminum.  The 
microscopic process can be activities of dislocations in aluminum, the body can 
be the entire wing, and the REV can be a tensile specimen of the aluminum. 

The size of REV should be selected well between the two lengths scales.  If 
a volume is too small, the volume cannot be treated as a continuum.  If a volume 
is too large, the shape of the body affects the behavior of the volume.  
 
 Division of labor.  To analyze the inhomogeneous deformation in the 
body, the continuum theory regards the body as a sum of many small pieces.  
Each small piece evolves in time through a sequence of homogeneous 
deformations. All the pieces are then put together to represent the 
inhomogeneous deformation of the entire body.  The division of labor results in 
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two distinct tasks. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 First, we describe the evolution of homogeneous deformation. We relate 
the history of stress to the history of deformation.  Such a relation is known as a 
material model, constitutive law, equation of state, rheological model, or 
rheological equation of state.  The material model is material-specific, and often 
relies on experimental measurements and microscopic modeling.  However, the 
main quantities—stress and deformation—are applicable to all materials. 
 
 Second, we analyze the inhomogeneous deformation of a body.  The 
continuum theory regards the body as a sum of many small pieces. Different 
small pieces communicate following general principles: 

• Deformation preserves compatibility. 

• Deformation conserves mass. 

• Deformation conserves linear momentum. 

• Deformation conserves angular momentum. 
 
 This division of labor is applicable to many materials, but not all materials.  
For example, some material models involve both strain and strain gradient.  
Materials that can be described by homogeneous deformation only are known as 
simple materials.  This phrase, however, is not widely adopted.  The phrase 
complex material is undefined in continuum theory, and is meaningless. 
 A simple type of the representative elementary volume 

Inhomogeneous 
deformation 

Homogeneous 
deformation 
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Subject to a load, the representative elementary 
volume undergoing homogeneous deformation.  
This homogeneous deformation is mediated by 
microscopic processes.  Examples of simple 
loading conditions 

• Uniaxial tension and compression 

• Shear 

• hydrostatic stress 
 
 A metal bar subject to a uniaxial 
force.  When the bar is not subject to any force, 
the cross-sectional area is A  and the length is L .  
We will call this state the reference state.  The 
bar is then subject to an axial force P, and 
deforms to a new state, cross-sectional area a 
and length l.  We will call this state the current 
state.  The experimentalist records the force as a 
function of the length. 
   
    Strain. Define the engineering strain by the elongation of the bar in 
the current state divided by the length of the bar in the reference state: 

  e =
elongation

length in the reference state
=
l −L
L

. 

 Another type of strain is defined as follows.  Deform the material from a 
current length l by a small amount to ll δ+ . Define the increment in the strain, 

δε , as the increment in the length of the bar divided by the current length of the 
bar, namely, 

   δε =
increment in length

length in the current state
=
δl
l

. 

This equation defines the increment of natural strain.  Integrating from L to l, 
we obtain that  

  ε = log
l
L
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 There seems to be no lack of ingenuity to invent yet another definition of 

strain. All these definitions contain the same information:  the ratio Ll / .  The 

two definitions of strain relate to each other as  

  ε = log 1+e( )  

When deformation is small, namely, 1<<e , the true strain and the engineering 
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strain are approximately equal, ε ≈ e . 
  
 Stress.  When dealing with finite deformation, we must be specific about 
the area used in defining the stress.  Define the nominal stress, s, as the force 
applied to the bar in the current state divided by the cross-sectional area of the 
bar in the reference state: 

  s =
force in the current state
area in the reference state

=
P
A

. 

The nominal stress is also known as the engineering stress, or the first Piola-
Kirchhoff stress. 
 Define the true stress, σ , as the force in the current state divided by the 
area in the current state, namely, 

  σ =
force in the current state
area in the current state

=
P
a

. 

The true stress is also known as the Cauchy stress 
 You should not be misled by the names.  The true stress is no truer than 
the nominal stress.  The engineering stress is no less scientific.  They are just 
different definitions of stress, and we need to have different names for them. 
 
 Work. When the bar elongates from length l to length ll δ+ , the force P 

does work lPδ .   Recall one pair of definitions of stress and strain: 

  sAP = ,     Ll λ= .  
Consequently the work done by the force is 
  δλδ ALslP = . 
Since AL is the volume of the bar in the reference state, we note that  

  sδλ =
incrementof work in the  currentstate

volumein thereferencestate
. 

We say that the nominal stress and the stretch are work-conjugate.  Also note 
that δλδ =e , so that the nominal stress is also work-conjugate to the engineering 
strain. 
 Recall another pair of definitions of stress and strain: 
   P =σa ,    δl = lδε .   
The work done by the force is  
  σδεδ allP = .   

Since al  is the current volume of the bar, we note that  

  σδε =
incrementof work in the  currentstate

volumein thecurrent state
. 
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That is, the true stress is work-conjugate to the natural strain. 
  
 Stress-strain curve.  Loading, unloading, reloading. 
 Elasticity.  When the applied stress is low, dislocations are 
immobile.  Elastic deformation is due to distortion of atomic bonds, and atoms 
do not change neighbors.  Upon unloading, the distortion disappears, and the 
stress-strain curve exhibits no hysteresis.  Atomic bonds behave like 
springs.  Elastic modulus reflects the stiffness of the atomic bonds. 
 
 Yield.  When the applied stress exceeds some value, dislocations are 
mobile.  Plastic deformation is due to the slips of crystalline lattice mediated by 
the movements of the dislocations.  Atoms across the slip plane change 
neighbors.  Upon unloading, the slips remain, and the stress-strain curve exhibits 
hysteresis. 
 
 Non-hardening.  After yielding, the slope of the stress-strain curve is 
much smaller than Young’s modulus.  Plastic deformation of metal is similar to 
viscous flow of a liquid.  Atoms change neighbors, but new neighbors do not 
change the kind of atomic bonds.  Thus the amount of deformation has (nearly) 
no effect on stress needed for deformation.  An excellent model for most 
applications is non-hardening model.   
  
 True stress accounts for the change in area in tension and compression.  
The increment of the natural strain disregards the initial reference 
state.  Using true stress and natural strain, the tension and compression stress-
strain curves often look identical.  In the ideal plasticity, they look exactly the 
same.   
 
 Work hardening (or strain hardening).  Now we add a refinement for 
the description.  Plastic deformation of a metal is not exactly the same as viscous 
flow of a liquid.  After yielding, the applied stress increases somewhat in order to 
increase strain.  More and more dislocations are generated.  The movements of 
one dislocation is resisted by other dislocations.  That is, the microstructure of a 
metal evolves during plastic deformation.  By contrast, the microstructure of a 
liquid remains the same during viscous flow. 
 
 Power law hardening.  A model to fit experimentally measured stress-
strain curve.  For a metal undergoing large, plastic deformation, the stress-strain 
curve (without unloading) is often fit to a power law in terms of the true stress 
and the natural strain:  



Plasticity http://imechanica.org/node/17162  Z. Suo 

September 14, 2014  Stress-strain curve 6   

  σ = KεN , 
where K and N are parameters to fit experimental data. Some representative 
values:  N = 0.15-0.25 for aluminum, N = 0.3-0.35 for copper, N = 0.45-0.55 for 
stainless steel.  K has the dimension of stress; it represents the true stress at 
strain 1=ε .  Representative values for K are 100 MPa – 1GPa.   
 
 Unloading after plastic deformation.  Dislocations remain 
immobile.  The spacing between dislocations is much larger than the spacing 
between atoms.  Dislocation is a line defect, and only affect the behavior of atoms 
in the core of the dislocation.  Elastic modulus is the same as measured during 
loading. 
 
 Hysteresis.  On the stress-strain diagram, the unloading curve does not 
go along the loading curve.  The area enclosed by the hysteresis curve is the work 
done by the loading machine.  This work is mostly dissipated as heat, through 
motion of dislocations.  Only tiny fraction of the work is used to create new 
dislocations. 
 
 Plastic strain.  Offset yield point.  In most experiments, we don’t try 
to watch the motion of dislocations.  We just record the stress-strain curves.  It is 
often hard to identify the yield point on the stress-strain curve.  A practical 
procedure is to unload, and define the yield point by plastic strain of, say, 0.2%. 
 

Reverse plastic flow.  Isotropic hardening.  Bauschinger 
effect.  Reloading.  The yield strength in the opposite direction is less than it 
would be if the strain had continued in the initial direction.  Dislocations pile up 
at barriers.  Back stress. 

 
Effect of loading rate. Effect of temperature.  Modulus is 

insensitive to loading rate and temperature, but strength can be sensitive.  We 
should look at numbers.  For many applications, the ranges of loading rate and 
temperature are not large, and we may neglect the effect of the loading rate and 
temperature on the stress-strain curve. 
 
Hydrostatic stress does not affect plastic deformation 

• Hydrostatic stress only causes elastic deformation.  Hydrostatic stress 
cannot move dislocation. 

• Plastic deformation changes the shape, not the volume. 
• When a hydrostatic stress is superimposed upon a uniaxial stress, the 

yield strength and plastic strain remain unchanged.  Hydrostatic stress 
does not even change the mobility of dislocations. 
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• Under hydrostatic tension, a metal undergoes no plastic flow until cavities 
form. 

These experimental observations may be interpreted in terms of dislocation 
picture.  In most engineering applications, the hydrostatic component of the 
stress is at most a few times of yield strength.  This stress is too small to affect the 
dislocation core. 
 
 
 


