User login

Navigation

You are here

Application of a Newer Inter-Fiber-Failure Criteria on CFRPs in Aero Engine Development

SIMULIA's picture

Carbon-fiber-reinforced plastics (CFRP) are being used for highly loaded lightweight structural components for many years. Up to now mostly insufficient two-dimensional classical failure criterions, which are embedded into FE-software like Tsai-Wu, Hill, etc. have been used for the dimensioning of composites. To achieve better predictions of the three-dimensional complex composite failure behavior newer, so-called action-plane based failure criterions have been developed, e.g.: PUCK, JELTSCH-FRICKER or LaRC04. In addition to this, the complex step-by-step component failure process including post-failure load redistribution can be accurately simulated using a combination of these newer criterions with a convincing material degradation model. Within this work this new method was implemented into Abaqus to investigate the complex failure behavior of a CFRP flange connection of a Rolls-Royce aero engine. For instance, it is shown, that small radii next to the bolt-connection result in three-dimensional stress states that initialize delamination and gradual component stiffness reduction. The comparison of additional experimental and numerical data confirmed the implementation and prediction quality of new action-plane based failure criteria into Abaqus. Due to this the knowledge about the complex component behavior has been significantly extended, such that finally a cost-reducing design improvement was available.

Subscribe to Comments for "Application of a Newer Inter-Fiber-Failure Criteria on CFRPs in Aero Engine Development"

Recent comments

More comments

Syndicate

Subscribe to Syndicate