Earth Penetration Simulation using Coupled Eulerian-Lagrangian Analysis

SIMULIA's picture

In earth penetration events the projectile generally strikes the target at an oblique angle. As a result, the projectile is subjected to a multi-axial force and acceleration history through impact. The effectiveness of an earth penetration system is enhanced by the ability to withstand severe
lateral loading. Consequently, it is important to understand how such loads develop during an impact event. In this Technology Brief, Abaqus/Explicit is used to simulate the impact of a high-strength steel penetrator into a concrete target. The penetrator/target interaction is analyzed using the coupled Eulerian-Lagrangian methodology. Specifically, the penetrator is modeled in a traditional Lagrangian framework while the concrete target is modeled in an Eulerian framework. It will be shown that Abaqus/Explicit results are in good agreement with published experimental data.


AttachmentSize
Defense-SIMULIA-Tech-Brief-09-Earth-Penetration-Simulation-Full.pdf4.36 MB