User login

Navigation

You are here

Equivalence of virtual element methods and smoothed element methods

http://hdl.handle.net/10993/17316

We revisit the cell-based smoothed finite element method (SFEM) for quadrilateral elements and extend it to arbitrary polygons and polyhedrons in 2D and 3D, respectively. We highlight the similarity between the SFEM and the virtual element method (VEM). Based on the VEM, we propose a new stabilization approach to the SFEM when applied to arbitrary polygons and polyhedrons. The accuracy and the convergence properties of the SFEM are studied with a few benchmark problems in 2D and 3D linear elasticity. Later, the SFEMis combined with the scaled boundary finite element method to problems involving singularity within the framework of the linear elastic fracture mechanics in 2D.

http://hdl.handle.net/10993/17993

We present a promising approach to reduce the difficulties associated with meshing complex curved domain boundaries for higher-order finite elements. In this work, higher-order XFEM analyses for strong discontinuity in the case of linear elasticity problems are presented. Curved implicit boundaries are approximated inside an unstructured coarse mesh by using parametric information extracted from the parametric representation (the most common in Computer Aided Design CAD). This approximation provides local graded sub-mesh (GSM) inside boundary elements (i.e. an element split by the curved boundary) which will be used for integration purpose. Sample geometries and numerical experiments illustrate the accuracy and robustness of the proposed approach.

Subscribe to Comments for "Equivalence of virtual element methods and smoothed element methods"

Recent comments

More comments

Syndicate

Subscribe to Syndicate