User login

Navigation

You are here

Modeling the Hydrophobicity of Nanoparticles and Their Interaction with Lipids and Proteins

Ali Ramazani's picture

We present a method of modeling nanoparticle (NP) hydrophobicity using coarse-grained molecular dynamics (CG MD) simulations, and apply this to the interaction of lipids with nanoparticles. To model at a coarse-grained level the wettability or hydrophobicity of a given material, we choose the MARTINI coarse-grained force field, and determine through simulation the contact angles of MARTINI water droplets residing on flat regular surfaces composed of various MARTINI bead types (C1, C2, etc.). Each surface is composed of a single bead type in each of three crystallographic symmetries (FCC, BCC, and HCP). While this method lumps together several atoms (for example, one cerium and two oxygens of CeO2) into a single CG bead, we can still capture the overall hydrophobicity of the actual material by choosing the MARTINI bead type that gives the best fit of the contact angle to that of the actual material, as determined by either experimental or all-atom simulations. For different MARTINI bead types, the macroscopic contact angle is obtained by extrapolating the microscopic contact angles of droplets of eight different sizes (containing Nw = 3224–22978 water molecules) to infinite droplet size. For each droplet, the contact angle was computed from a best fit of a circular curve to the droplet interface extrapolated to the first layer of the surface. We then examine how small nanoparticles of differing wettability interact with MARTINI dipalmitoylphosphotidylcholine (DPPC) lipids and SP-C peptides (a component of lung surfactant). The DPPC shows a transition from tails coating the nanoparticle to a hemimicelle coating the water-wet NP, as the contact angle of a water droplet on the surface is lowered below ∼60°. The results are relevant to developing a taxonomy describing the potential nanotoxicity of nanoparticle interactions with components in the lung.

AttachmentSize
PDF icon paper7.14 MB
PDF icon SI1.39 MB
Subscribe to Comments for "Modeling the Hydrophobicity of Nanoparticles and Their Interaction with Lipids and Proteins"

Recent comments

More comments

Syndicate

Subscribe to Syndicate