User login

Liu's picture

Positioning on nanometer scale: fighting friction

Most friction models for automatic control are targeted for the macro world, and are of questionable value for the motion control of the high precision positioing stages. We published a paper recently in Technishes Messen (TM) on a study of the friction behavior in the moving range of micrometers. It provides info for the development of friction models targeted for the motion control in high precision engineering.

The following is the abstract, and the full paper can be downloaded from http://www.atypon-link.com/OLD/doi/abs/10.1524/teme.2006.73.9.500

ABSTRACT Most friction models for automatic control are targeted for the macro world, and are of questionable value for the motion control of the nanopositioning and nanomeasuring machine (NPM) system. We present the frictional behaviour of some selected materials, coatings, lubricants, and bearings tested under running conditions similar to a NPM system. Continuous change of surface properties results in various friction characteristics, which substantiate the further development of tribological coatings, particularly for vacuum applications. We emphasize the system engineering approach in developing friction models, which combines fundamental knowledge of surface science, materials science, and its applications in design, construction and automatic control.

2006 Timoshenko Medal Acceptance Speech by Kenneth L. Johnson

Kenneth L. JohnsonPresented at the Applied Mechanics Dinner of the 2006 Winter Annual Meeting of ASME, Hilton Chicago Hotel, 9 November 2006.

First and formost, I must acknowledge with gratitude the honour of being selected for the Timoshenko medal for 2006.   But since a speech is now expected, I realise that this is not free lunch.  If you know a good pub, this would be a good time to slip away.

When I received  Virgil  Carter's letter informing me that I had been selected,  I could not believe it.  There must have been a mistake;  after all Johnson is a very common name.   I am reminded of my first meeting with  Bernie Budiansk from Harvard,  also a Timoshenko  medallist.   He asked, "Did you write that book on vibration with Bishop?" "No. That was Dan Johnson";  " Did you edit that British Journal of mechanical sciences?":  "No. That was Bill Johnson";   "Who the hell are you!"

Choose a channel featured in the header of iMechanica: 

A Recent Book: Meshfree Particle Methods, by Shaofan Li and Wing-Kam Liu

Meshfree Particle Methods is a comprehensive and systematic exposition of particle methods, meshfree Galerkin and partition of unity methods, molecular dynamics methods, and multiscale methods. It presents theoretical foundation, numerical algorithms, as well as applications. Since it was published in 2004, the first print has been sold out. The publisher is preparing the second print.

Mogadalai Gururajan's picture

Eshelby and his two classics (and some more on the side)

Eshelby and the inclusion/inhomogeneity problems

Any materials scientist interested in mechanical behaviour would be aware of the contributions of J.D. Eshelby. With 56 papers, Eshelby revolutionised our understanding of the theory of materials. The problem that I wish to discuss in this page is the elastic stress and strain fields due to an ellipsoidal inclusion/inhomogeneity - a problem that was solved by Eshelby using an elegant thought experiment.

In two papers published in the Proceedings of Royal Society (A) in 1957 and 1959 (Volume 241, p. 376 and Volume 252, p. 561) Eshelby solved the following problem ("with the help of a simple set of imaginary cutting, straining and welding operations"): In his own words,

MichelleLOyen's picture

S. Germain, "Memoir on the Vibrations of Elastic Plates"

I have not read the above-mentioned paper, as I have never been able to find it. However it is said to be "a brilliantly insightful paper which was to lay the foundations of modern elasticity." However, I believe it is also noteworthy for being one of the major contributions by a female mechanician prior to the modern era. For a great biography of Sophie Germain, including a fantastic quote from a letter from Carl Gauss on discovering that she was female--and not "Monsieur Le Blanc"--visit this site (from which the above quote, on the impact of her paper, came).

There are no female mechanicians listed on http://en.wikipedia.org/wiki/Mechanicians but I believe it could be argued that Germain deserves a mention!

Cai Wei's picture

New Book: Computer Simulations of Dislocations, by Vasily V. Bulatov and Wei Cai

Companion web site http://micro.stanford.edu ISBN:0-19-852614-8, Hard cover, 304 pages, Nov. 2006, US $74.50.

This book presents a broad collection of models and computational methods - from atomistic to continuum - applied to crystal dislocations. Its purpose is to help students and researchers in computational materials sciences to acquire practical knowledge of relevant simulation methods. Because their behavior spans multiple length and time scales, crystal dislocations present a common ground for an in-depth discussion of a variety of computational approaches, including their relative strengths, weaknesses and inter-connections. The details of the covered methods are presented in the form of "numerical recipes" and illustrated by case studies. A suite of simulation codes and data files is made available on the book's website to help the reader "to learn-by-doing" through solving the exercise problems offered in the book. This book is part of an Oxford Series on Materials Modelling.

jqu's picture

New Book: Fundamentals of Micromechanics of Solids, by Jianmin Qu and Mohammed Cherkaoui

Fundamentals of Micromechanics of Solids, Jianmin Qu, Mohammed Cherkaoui
ISBN: 0-471-46451-1, Hardcover, 400 pages, August 2006, US $120.00

PART I: LINEAR MICROMECHANICS AND BASIC CONCEPTS

Chapter 1 INTRODUCTION

  • 1.1 Background and Motivation
  • 1.2 Objectives
  • 1.3 Organization of Book
  • 1.4 Notation Conventions
  • References

Chapter 2 BASIC EQUATIONS OF CONTINUUM MECHANICS

Jie Wang's picture

The Eighth International Conference on Fundamentals of Fracture

The Eighth International Conference on Fundamentals of Fracture (ICFF VIII) is the successor of the previous seven held at NBS, Gaithersburg (USA, 1983), Gatlinburg (USA, 1985), Irsee (Germany, 1989), Urabandai (Japan, 1993), NIST, Gaithersburg (USA, 1997), Cirencester (UK, 2001), and Nancy (France, 2005). You are warmly invited to participate in ICFF VIII which will be held 3-7 January 2008 in Hong Kong University of Science and Technology, Hong Kong, and in Guangzhou, China. As the previous conferences, ICFF VIII provides an international forum for presentation and discussion of the latest scientific and technological development in fundamentals of fracture. The general theme of ICFF VIII is to cover all aspects of fracture at a fundamental level, including contributions from those working in the disciplines of Continuum Mechanics, Physics, Chemistry, Bioscience, Metallurgy, Ceramics, Polymer Science, etc. You are cordially invited to submit an abstract to join in this memorable event.

History of mechanics

Anyone interested in the history of mechanical technology might find interesting the series that I have published in Mechanical Engineering magazine.

Galileo’s Telescope Lenses

http://www.memagazine.org/oct06/features/clearas/clearas.html

Atmospheric Railway

http://www.memagazine.org/backissues/feb06 /features/tallyho/tallyho.html

Juil Yoon's picture

Why Do Freezing Rocks Break?

As you know, the volumetric expansion by 9% during the water-to-ice transition can generate tremendous pressure in a confined space is a common sense. As a result, one may expect freezing water to also fracture rocks.

However, in a recent article in Science, Bernard Hallet explains the power of the 9% water-to-ice expansion in confined spaces is undeniable, but it may rarely be significant for rocks under natural conditions, because it requires a tight orchestration of unusual conditions. Unless the rocks are essentially saturated with water and frozen from all sides, the expansion can simply be accommodated by the flow of water into empty pores, or out of the rock through its unfrozen side.

I think it may be of interest to mechanics. Read more
I hope to hear opinions from people who know about the breaking mechanics of rocks.

Joost Vlassak's picture

Plastic deformation of freestanding thin films: Experiments and modeling

This is a paper we recently published in JMPS on a study of the mechanical properties on thin films comparing experimental results with discrete dislocation simulations. It provides insight in the strengthening that occurs in thin metal films when surface or interface effects become important.

The abstract is below; the full paper can be downloaded from here

Abstract - Experimental measurements and computational results for the evolution of plastic deformation in freestanding thin films are compared. In the experiments, the stress–strain response of two sets of Cu films is determined in the plane-strain bulge test. One set of samples consists of electroplated Cu films, while the other set is sputter-deposited. Unpassivated films, films passivated on one side and films passivated on both sides are considered. The calculations are carried out within a two-dimensional plane strain framework with the dislocations modeled as line singularities in an isotropic elastic solid. The film is modeled by a unit cell consisting of eight grains, each of which has three slip systems. The film is initially free of dislocations which then nucleate from a specified distribution of Frank–Read sources. The grain boundaries and any film-passivation layer interfaces are taken to be impenetrable to dislocations. Both the experiments and the computations show: (i) a flow strength for the passivated films that is greater than for the unpassivated films and (ii) hysteresis and a Bauschinger effect that increases with increasing pre-strain for passivated films, while for unpassivated films hysteresis and a Bauschinger effect are small or absent. Furthermore, the experimental measurements and computational results for the 0.2% offset yield strength stress, and the evolution of hysteresis and of the Bauschinger effect are in good quantitative agreement.

Qing Ma's picture

MEMS Switch Reliability

It is well-recognized that MEMS switches, compared to their more traditional solid state counterparts, have several important advantages for wireless communications.  These include superior linearity, low insertion loss and high isolation.  Indeed, many potential applications have been investigated such as Tx/Rx antenna switching, frequency band selection, tunable matching networks for PA and antenna, tunable filters, and antenna reconfiguration. 

However, none of these applications have been materialized in high volume products to a large extent because of reliability concerns, particularly those related to the metal contacts.  The subject of the metal contact in a switch was studied extensively in the history of developing miniaturized switches, such as the reed switches for telecommunication applications.  While such studies are highly relevant, they do not address the issues encountered in the sub 100mN, low contact force regime in which most MEMS switches operate.  At such low forces, the contact resistance is extremely sensitive to even a trace amount of contamination on the contact surfaces.  Significant work was done to develop wafer cleaning processes and storage techniques for maintaining the cleanliness.  To preserve contact cleanliness over the switch service lifetime, several hermetic packaging technologies were developed and their effectiveness in protecting the contacts from contamination was examined.  

I share the vision of iMechanica, but am not ready to post anything, should I register?

To post anything in iMechanica, you need to register for a free account and log in.

iMechanica is open: anyone can read any post without registering. Even if you do not post anything, by registering you make a statement: you encourage fellow mechanicians to explore communication online. A large, active user list will attract more and better posts. That is, by registering for a free account, you will have better posts to read, and you contribute to promoting mechanics.

A method to analyze dislocation injection from sharp features in strained silicon structures

Stresses inevitably arise in a microelectronic device due to mismatch in coefficients of thermal expansion, mismatch in lattice constants, and growth of materials. Moreover, in the technology of strained silicon devices, stresses have been deliberately introduced to increase carrier mobility. A device usually contains sharp features like edges and corners, which may intensify stresses, inject dislocations into silicon, and fail the device.

Zhigang Suo's picture

Mechanics of climbing and attachment in twining plants

In a recent article in Physical Review Letters, Alain Goriely and Sébastien Neukirch offer a mechanical model of how the free tip of a twining plant can hold onto a smooth support, allowing the plant to grow upward. The model also explains why these vines cannot grow on supports of too large a diameter. Read more.

The mechanics involves large deflection and bifurcation of a rod. I hope to hear opinions from people who know about the mechanics of plants.

MichelleLOyen's picture

Hibbitt Lectureship in Solid Mechanics at Cambridge University Engineering Department

Applications are invited from suitably qualified candidates for a University Lectureship in Solid Mechanics, which falls within the Mechanics, Materials and Design Division of the Engineering Department. The successful candidate will take up the appointment as soon as possible.

The lectureship has recently been endowed by David and Susan Hibbitt, and the aim is to attract a high calibre researcher with a record of scholarship and research in experimental, computational and/or theoretical solid mechanics. Expertise is required in the mechanics of materials (structural, biological or energy materials, for example) and the successful candidate is expected to make a significant contribution to the Department’s teaching and research activities and to build a strong, externally funded research programme. The activity will fit within the Cambridge Centre for Micromechanics, which is an inter-departmental, inter-disciplinary research group housed within the Engineering Department.

MichelleLOyen's picture

Thoughts on Integration of Biomechanics and Applied Mechanics

Biomechanics is a reasonably well-developed field of study, with a modern history usually linked to the pioneering work of Prof. Y.C. Fung in the 1960s. There are a number of dedicated biomechanics journals (including but not limited to the Journal of Biomechanics and the Journal of Biomechanical Engineering). The field is well-enough established to have several generations of researchers working on the subject at universities across the world.

MichelleLOyen's picture

MRS Symposium: Mechanics of Biological and Bio-Inspired Materials

Symposium DD at the upcoming Materials Research Society Annual Meeting (Nov. 26-Dec. 1, Boston, MA) will be the latest in a series of MRS symposia on the mechanics of biological materials and materials designed following natural principles ("biomimetic" or "bio-inspired").   The full program is available at the MRS website (www.mrs.org).  This topic was also the subject of the August, 2006 focus issue of the Journal of Materials Research, which contained over 30 articles on the subject.

Jun He's picture

Statistics of Electromigration Lifetime Analyzed Using a Deterministic Transient Model

void due to electromitationThe electromigration lifetime is measured for a large number of copper lines encapsulated in an organosilicate glass low-permittivity dielectric. Three testing variables are used: the line length, the electric current density, and the temperature. A copper line fails if a void near the upstream via grows to a critical volume that blocks the electric current. The critical volume varies from line to line, depending on line-end designs and chance variations in the microstructure. However, the statistical distribution of the critical volume (DCV) is expected to be independent of the testing variables. By contrast, the distribution of the lifetime (DLT) strongly depends on the testing variables. For a void to grow a substantial volume, the diffusion process averages over many grains along the line. Consequently, the void volume as a function of time, V(t), is insensitive to chance variations in the microstructure. As a simplification, we assume that the function V(t) is deterministic, and calculate this function using a transient model. We use the function V(t) to convert the experimentally measured DLT to the DCV. The same DCV predicts the DLT under untested conditions.

MichelleLOyen's picture

Variability in Bone Indentation

A viscous-elastic-plastic indentation model was used to assess the local variability of properties in healing porcine bone. Constant loading- and unloading-rate depth-sensing indentation tests were performed and properties were computed from nonlinear curve-fits of the unloading displacement-time data. Three properties were obtained from the fit: modulus (the coefficient of an elastic reversible process), hardness (the coefficient of a nonreversible, time-independent process) and viscosity (the coefficient of a nonreversible, time-dependent process). The region adjacent to the dental implant interface demonstrated a slightly depressed elastic modulus along with an increase in local time-dependence (lower viscosity); there was no clear trend in bone hardness with respect to the implant interface.

Jeannette Jacques's picture

Environmental Effects on Crack Characteristics for OSG Interconnect Materials

Jeannette M. Jacques, Ting Y. Tsui, Andrew J. McKerrow, and Robert Kraft

To improve capacitance delay performance of the advanced back-end-of-line (BEOL) structures, low dielectric constant organosilicate glass (OSG) has emerged as the predominant choice for intermetal insulator. The material has a characteristic tensile residual stress and low fracture toughness. A potential failure mechanism for this class of low-k dielectric films is catastrophic fracture due to channel cracking. During fabrication, channel cracks can also form in a time-dependent manner due to exposure to a particular environmental condition, commonly known as stress-corrosion cracking. Within this work, the environmental impacts of pressure, ambient, temperature, solution pH, and solvents upon the channel cracking of OSG thin films are characterized. Storage under high vacuum conditions and exposure to flowing dry nitrogen gas can significantly lower crack propagation rates. Cracking rates experience little fluctuation as a function of solution pH; however, exposure to aqueous solutions can increase the growth rate by three orders of magnitude.

Wei Hong's picture

Dynamics of terraces on a silicon surface due to the combined action of strain and electric current

A (001) surface of silicon consists of terraces of two variants, which have an identical atomic structure, except for a 90° rotation. We formulate a model to evolve the terraces under the combined action of electric current and applied strain. The electric current motivates adatoms to diffuse by a wind force, while the applied strain motivates adatoms to diffuse by changing the concentration of adatoms in equilibrium with each step. To promote one variant of terraces over the other, the wind force acts on the anisotropy in diffusivity, and the applied strain acts on the anisotropy in surface stress. Our model reproduces experimental observations of stationary states, in which the relative width of the two variants becomes independent of time. Our model also predicts a new instability, in which a small change in experimental variables (e.g., the applied strain and the electric current) may cause a large change in the relative width of the two variants.

Xi Wang's picture

Laser Annealing of Amorphous NiTi Shape Memory Alloy Thin Films to Locally Induce Shape Memory Properties

Xi Wang, Yves Bellouard, Joost J. Vlassak

Published in Acta Materialia 53 (2005) p4955-4961.

Abstract — We present the results of a crystallization study on NiTi shape memory thin films in which amorphous films are annealed by a scanning laser. This technique has the advantage that shape memory properties can be spatially distributed as required by the application. A kinetics study shows that nucleation of the crystalline phase occurs homogenously in the films. Consequently, the laser annealing process produces polycrystalline films with a random crystallographic texture. The crystallized films have a uniform microstructure across the annealed areas. The material in the crystalline regions transforms reversibly to martensite on cooling from elevated temperature and stress measurements show that a significant recovery stress is achieved in the films upon transformation.

Pages

Subscribe to iMechanica RSS Subscribe to iMechanica - All comments

Recent comments

More comments

Syndicate

Subscribe to Syndicate