User login

Nanshu Lu's picture

TWELVE STEPS TO A WINNING RESEARCH PROPOSAL

By George A. Hazelrigg, National Science Foundation

I have been an NSF program director for 18 years. During this time, I have personally administered the review of some 3,000 proposals and been involved in the review of perhaps another 10,000. Through this experience, I have come to see that often there are real differences between winning proposals and losing proposals. The differences are clear. Largely, they are not subjective differences or differences of quality; to a large extent, losing proposals are just plain missing elements that are found in winning proposals. Although I have known this for some time, a recent experience reinforced it.

THE MOST CITED SCIENTIFIC PAPERS IN SOLID AND COMPUTATIONAL MECHANICS

I posted this survey in Applied Mechanics Research and Researchers on 16 April 2006, based on a survey of Web of Science. A paper making the list satisfied the following conditions:

  • It is in the areas of solid mechanics, mechanics of materials, or computational mechanics, and
  • It has at least 1000 citations.

This list may not be complete. If anyone finds a missing entry, please leave a comment below.

The cited number has been updated up to 18 Dec. 2006.

Biomaterials faculty position at Lehigh University

I am chairing the search for a new faculty member in the Materials Science and Engineering Department at Lehigh. As you will see in the ad below, the position is in the Biomaterials area. I would like to encourage more applications from candidates with interests in biomechanics (so I will have good opportunities to collaborate), and would like to invite applicants from this forum. If you are not personally in a position to apply, please pass the announcement along to anyone you know who might be suitable.

Xiaodong Li's picture

Nanostructured Metals Reveal Their Secret Strengthening Mechanisms

It is well known that metals are hardened by deformation and soften by annealing. How about nanostructured metals? Can we reply on conventional metal-working lore?

Nicolas Cordero's picture

Max Planck Society: Independent Junior Research Group Leader positions

The Max Planck Society (MPS) aims at promoting young international scientists by enabling them to perform their research (in all fields pursued by the MPS) at a Max Planck Institute of their choice.

The MPS offers Independent Junior Research Group Leader positions (W2; equivalent to associate professor level without tenure) granted for a period of 5 years with the option for prolonging twice for 2 years. The deadline for application is January 10, 2007.

MechTube - applied mechanics outreach for children

Hello everyone,

Professor Suo suggested that I share this speculative idea that I once posted on Applied Mechanics News here on iMechanica!

In the future, we would like to reach out to children as early as their elementary school years to get them excited about topics drawn from Applied Mechanics. One approach to this goal takes inspiration from the successful "Le main a la pate", or "hands-in-dough", program in France (http://www.lamap.fr/ ), but extends the idea of hands-on science to take advantage of the internet.

Some dates of iMechanica

  • 30 March 2007. At a suggestion of Henry Tan, an RSS feed for comments is added as a button"comment at a glance" on the right side of iMechanica.
  • 29 March 2007. An aggregator, "Random readings", is added to the rightside of iMechanica.
  • 7 March 2007. Michelle Oyen posted an entry "Making iMechanica a better global forum".

Intracellular CalciumWaves in Bone Cell Networks Under Single Cell Nanoindentation

In this study, bone cells were successfully cultured into a micropatterned network with dimensions close to that of in vivo osteocyte networks using microcontact printing and self-assembled monolyers (SAMs). The optimal geometric parameters for the formation of these networks were determined in terms of circle diameters and line widths. Bone cells patterned in these networks were also able to form gap junctions with each other, shown by immunofluorescent staining for the gap junction protein connexin 43, as well as the transfer of gap-junction permeable calcein-AM dye.

CFRAC 2007 International Conference on Computational Fracture and Failure of Materials and Structures

If you are interested by the computational aspects of fracture and failure of materials and structures,there is a dedicated conference for you : CFRAC 2007, which will be held in Nantes, France, 11-13 June 2007. It is an thematic conference of the European Community in Computational Methods in Applied Sciences (ECCOMAS). The for abstract is now closed. This conference wil involve a certian number

No need to worry about gravity at the atomic-/nano-scale

When a metal is grown onto a substrate of itself (homoepitaxy), the growth front is typically smooth, or at most is roughened by the formation of shallow hills (called surface mounds). The underlying reason for the roughening has been recognized to be of kinetic nature: Atoms landed on an upper terrace do not have enough time to overcome the "road blocks" provided by the steps and fill all the valleys (known as the Villian instability).

Molecular and Cellular Biomechanics Journal

A new journal dedicated to the field of Molecular and Cellular Biomechanics has been formed for about a year. Many members in this community (such as Ning Wang, Cheng Zhu, Phil LeDuc) are on the board of editors. You may want to check it out....

Zhigang Suo's picture

Some numbers of iMechanica

  • The number of registered users is 6037
  • The number of posts is 2896 (You can see the current number by clicking the newest post).
  • The number of comments is 6943 (You can see the current number by clicking the newest comment.)

Last updated on 19 March 2008

Related post: Some dates of iMechanica

MichelleLOyen's picture

ASME Summer Bioengineering Conference

Abstract submission is now open for the 2007 ASME Summer Bioengineering Conference, 20-24 June, 2007 in Keystone, Colorado. Full details can be found on the conference website. Please note that there is a vibrant and competitive student paper competition for different

The iMechanica Journal Club (iMech jClub)

Choose a channel featured in the header of iMechanica: 

2018 Themes and Discussion Leaders

2017 Themes and Discussion Leaders

Operating Notes for the iMechanica Journal Club

Choose a channel featured in the header of iMechanica: 

Guided by a thread that proposed the Journal Club, we evolve these operating notes. These notes are a work in progress, and will evolve as the iMechanica community and the Web technology evolve. Every moderator and architect can edit these notes. Every user can see the editing history. As always, every registered user can make suggestions by leaving comments.

Mass sensing by using a resonating microcantilever

We recently reported the mass sensing by using resonating microcantilevers. The characterization of mass-sensing and its related sensitivity was suggested on the basis of elasticity theory.

Model Reduction of Large Proteins for Normal Mode Studies

Recently, I reported the model reduction method for large proteins for understanding large protein dynamics based on low-frequency normal modes. This work was pubslihed at Journal of Computational Chemistry (click here).

Coarse-Graining of protein structures for the normal mode studies

Abstracts 

Researcher Spotlight: Professor Lambert Ben Freund (LBF)

L. Ben FreundLambert Ben Freund (LBF) was born on November 23, 1942, in Johnsburg, Illinois, a tiny rural community of a few hundred people in the northeast corner of the state. This part of the Midwest was opened to European settlement by the Black Hawk War of the 1830s. A small delegation of his ancestors arrived in the area in 1841.

Quantum Stability of Metallic Thin Films and Nanostructures

When a metal system shrinks its dimension(s), the conduction electrons inside the metal feel the squeezing, and are forced into (discrete) quantum states. Such confined motion of the conduction electrons may influence the global or local stability of the low dimensional systems, and in the case of a thin film on a foreign substrate this "quantum energy" of electronic origin can easily overwhelm the strain effects in definging the film stability, thereby severely influencing the preferred growth mode (see, e.g., Suo and Zhang, Phys. Rev. B 58, 5116 (1998)).

Hanqing Jiang's picture

Controlled buckling of semiconductor nanoribbons for stretchable electronics

The success of electronic paper, roll-up displays, eye-like digital camera and many other potential applications of flexible and stretchable electronics will mainly depend on the availability of electronic materials to be stretched, compressed and bent. Previous efforts to develop electronic materials that can be mechanically deformed without breaking have mainly focused on small organic molecules and polymers. However, low charge mobility of these organic materials cannot compete with devices made from inorganic materials such as silicon and gallium arsenide.

Ashkan Vaziri's picture

Mechanics and deformation of the nucleus in micropipette aspiration experiment

Robust biomechanical models are essential for studying the nuclear mechanics and can help shed light on the underlying mechanisms of stress transition in nuclear elements. Here, we develop a computational model for an isolated nucleus undergoing micropipette aspiration. Our model includes distinct components representing the nucleoplasm and the nuclear envelope. The nuclear envelope itself comprises three layers: inner and outer nuclear membranes and one thicker layer representing the nuclear lamina.

Xiaoyan Li's picture

Atomistic simulations for the evolution of a U-shaped dislocation in fcc Al

We show, through MD simulations, a new evolution pattern of the U-shaped dislocation in fcc Al that would enrich the FR mechanism. Direct atomistic investigation indicates that a U-shaped dislocation may behave in different manners when it emits the first dislocation loop by bowing out of an extended dislocation. One manner is that the glissile dislocation segment always bows in the original glide plane, as the conventional FR mechanism. Another is that non-coplanar composite dislocations appear owing to conservative motion of polar dislocation segments, and then bow out along each slip plane, creating a closed helical loop. The motion of these segments involves a cross-slip mechanism by which a dislocation with screw component moves from one slip plane into another. Ultimately, such non-coplanar evolution results in the formation of a FR source.

Pages

Subscribe to iMechanica RSS Subscribe to iMechanica - All comments

Recent comments

More comments

Syndicate

Subscribe to Syndicate