phase transformation

mohsenzaeem's picture

Postdoctoral position in computational materials science

A postdoctoral position is available in the area of phase field modeling of solidification/phase transformation in the Department of Materials Science and Engineering at Missouri University of Science and Technology (formerly University of Missouri-Rolla). MSE program at Missouri S&T is one of the largest and most respected MSE programs in the US
(http://mse.mst.edu).


Temperature–pressure-induced solid–solid 〈100〉 to 〈110〉 reorientation in FCC metallic nanowire

 I would like to share our recent research work on FCC metallic nanowires, which is published in Journal of Physics : Condensed Matters (IOP) . The abstract of the paper is given below. Further details can be found at


Amit Acharya's picture

Coupled phase transformations and plasticity as a field theory of deformation incompatibility

(to appear in International Journal of Fracture; Proceedings of the 5th Intl. Symposium on Defect andMaterial Mechanics)

Amit Acharya and Claude Fressengeas

The duality between terminating discontinuities of fields and the incompatibilities of their gradients is used to define a coupled dynamics of the discontinuities of the elastic displacement field and its gradient. The theory goes beyond standard translational and rotational Volterra defects (dislocations and disclinations) by introducing and physically grounding the concept of generalized disclinations in solids without a fundamental rotational kinematic degree of freedom (e.g. directors). All considered incompatibilities have the geometric meaning of a density of lines carrying appropriate topological charge, and a conservation argument provides for natural physical laws for their dynamics. Thermodynamic guidance provides the driving forces conjugate to the kinematic objects characterizing the defect motions, as well as admissible constitutive relations for stress and couple stress. We show that even though 'higher-order' kinematic objects are involved in the specific free energy, couple stresses may not be required in the mechanical description in particular cases. The resulting models are capable of addressing the evolution of defect microstructures under stress with the intent of understanding dislocation plasticity in the presence of phase transformation and grain boundary dynamics.


Stress-induced martenstic phase transformation in Cu-Zr nanowires

Hi Friends

I want to share some of our recent research work on the stress induced phase transformation of CuZr nanowire which is published in Materials Letters.

http://dx.doi.org/10.1016/j.matlet.2009.02.064


Xiaodong Li's picture

Nanoindentation of the a and c domains in a tetragonal BaTiO3 single crystal

Can we map the eastic modulus of a and c domians? Can we mechanically switch the domains and let them function as nanoactuators and sensors?


Lath martensite

Does any one knows a good reference about lath martensite?

Why we see the retained austenite? why doesn't it transformto martensite? What's its effect on the phase transformation? Does the plasticity change the morphology of the transfromation? How about the speed of the transfromation? When should we expect to see the lath martensite? What's the effect of the diagonal terms in the transformation matrix? What's the effect of the shear components? Is there any difference between 2d and 3d simulations, and which one is more realistic?


Austenite Martensite transformation

Does any one knows a good reference about lath martensite?

Why we see the retained austenite? why doesn't it transformto martensite? What's its effect on the phase transformation? Does the plasticity change the morphology of the transfromation? How about the speed of the transfromation? When should we expect to see the lath martensite? What's the effect of the diagonal terms in the transformation matrix? What's the effect of the shear components? Is there any difference between 2d and 3d simulations, and which one is more realistic?


Syndicate content