User login

You are here

biomechanics

Zhigang Suo's picture

Mechanics of climbing and attachment in twining plants

In a recent article in Physical Review Letters, Alain Goriely and Sébastien Neukirch offer a mechanical model of how the free tip of a twining plant can hold onto a smooth support, allowing the plant to grow upward. The model also explains why these vines cannot grow on supports of too large a diameter. Read more.

The mechanics involves large deflection and bifurcation of a rod. I hope to hear opinions from people who know about the mechanics of plants.

MichelleLOyen's picture

Thoughts on Integration of Biomechanics and Applied Mechanics

Biomechanics is a reasonably well-developed field of study, with a modern history usually linked to the pioneering work of Prof. Y.C. Fung in the 1960s. There are a number of dedicated biomechanics journals (including but not limited to the Journal of Biomechanics and the Journal of Biomechanical Engineering). The field is well-enough established to have several generations of researchers working on the subject at universities across the world.

MichelleLOyen's picture

MRS Symposium: Mechanics of Biological and Bio-Inspired Materials

Symposium DD at the upcoming Materials Research Society Annual Meeting (Nov. 26-Dec. 1, Boston, MA) will be the latest in a series of MRS symposia on the mechanics of biological materials and materials designed following natural principles ("biomimetic" or "bio-inspired").   The full program is available at the MRS website (www.mrs.org).  This topic was also the subject of the August, 2006 focus issue of the Journal of Materials Research, which contained over 30 articles on the subject.

MichelleLOyen's picture

Variability in Bone Indentation

A viscous-elastic-plastic indentation model was used to assess the local variability of properties in healing porcine bone. Constant loading- and unloading-rate depth-sensing indentation tests were performed and properties were computed from nonlinear curve-fits of the unloading displacement-time data. Three properties were obtained from the fit: modulus (the coefficient of an elastic reversible process), hardness (the coefficient of a nonreversible, time-independent process) and viscosity (the coefficient of a nonreversible, time-dependent process). The region adjacent to the dental implant interface demonstrated a slightly depressed elastic modulus along with an increase in local time-dependence (lower viscosity); there was no clear trend in bone hardness with respect to the implant interface.

Nanoscale Intracellular Organization and Functional Architecture Mediating Cellular Behavior

Cells function based on a complex set of interactions that control pathways resulting in ultimate cell fates including proliferation, differentiation, and apoptosis. The interworkings of his immensely dense network of intracellular molecules are influenced by more than random protein and nucleic acid distribution where their interactions culminate in distinct cellular function.

Virginia Polytechnic Institute & State University Faculty Positions

The Department of Engineering Science and Mechanics (ESM) at Virginia Tech seeks applications for two tenured or tenure-track faculty colleagues. The ideal candidates are expected to interface mechanics with the domain of biology (cellular mechanics, soft tissue biomechanics, macro-molecular biology, biodynamics, biofluids); the domains of nanotechnology or nanobiotechnology (mechanics of self-assembly, nanocomposites, functional nanodevices, biological and biomedical applications); or the domain of energy, with an emphasis on nanoscale and microscale problems or biological principles (fuel cells, renewable energy, energy conversion, clean energy, energy storage). However, intellectual depth is more important than the specific area of specialization, since ESM faculty members are expected to have a broad scholarly interest in engineering with a special emphasis on the fundamental mechanics.

zishun liu's picture

SNORING: SOURCE IDENTIFICATION AND SIMULATION

Snoring is defined as sounds made by vibrations in the soft palate and their adjacent tissues during sleep. Heavy snoring can result in sleep-related upper airway narrowing, which leads to respiratory flow limitation and increased respiratory effort. If untreated, heavy snoring may be complicated by excessive daytime sleepiness. Hence, snoring has received a great deal of clinical attention in recent years.

zishun liu's picture

SNORING: SOURCE IDENTIFICATION AND SIMULATION

Snoring is defined as sounds made by vibrations in the soft palate and their adjacent tissues during sleep. Heavy snoring can result in sleep-related upper airway narrowing, which leads to respiratory flow limitation and increased respiratory effort. If untreated, heavy snoring may be complicated by excessive daytime sleepiness. Hence, snoring has received a great deal of clinical attention in recent years. We identify the snoring sources and predict the snoring noise levels for a 3D human head model. Our human head model includes the upper part of head, neck, the soft palate, hard palate, tongue, nasal cavity and the surrounding walls of the pharynx. The snoring mechanism is investigated by applying the concept of structural intensity to a 3D finite element model of a human head. Results demonstrated that the vibrations of tissues are mainly in the areas of soft palate and tongue and nasal areas under fluid flow loading.

Taxonomy upgrade extras: 
Konstantin Volokh's picture

Prediction of femoral head collapse in osteonecrosis

OSTEONECROSIS is the death of bone that results in the collapse of the bony structure, leading to joint pain, bone destruction, and loss of function. Destruction of the bone frequently is severe enough to require joint replacement surgery. Osteonecrosis is a common disorder and accounts for 10% or more of the 500,000 total joint replacement procedures performed annually in the United States. Approximately 75% of patients with osteonecrosis are between 30 and 60 years of age.

From the point of view of mechanics, osteonecrosis means deterioration of mechanical properties of the bone. Decrease of the magnitude of the elastic modulus of the bone leads to its inability to bear the external load and culminates in bone damage and fracturing. For a couple of decades the engineers were trying to estimate the critical stress-strain state of the femoral head using the available data on the osteonecrotic bone properties, finite element analysis based on 3D elasticity, and Von Mises stress as a criticality condition. The fact that the cortical shell of the femoral head is significantly stiffer than the underlying cancellous bone did not attract much attention yet. However, from the solid mechanics point of view the difference in the stiffness of the cortical and cancellous parts of the femoral head under both normal and necrotic conditions is important. This difference allows for considering the femoral head as an elastic cortical shell on an elastic cancellous foundation. This, in its turn, suggests the buckling of the cortical shell as a possible starting point of the overall head collapse. The purpose of the study, described here, was to assess the cortical shell buckling scenario as a possible mechanism of the femoral head collapse at the various stages of osteonecrosis.

Konstantin Volokh's picture

Why fingerprints are different

A possible explanation of the variety of fingerprints comes from the consideration of the mechanics of tissue growth. Formation of fingerprints can be a result of the surface buckling of the growing skin. Remarkably, the surface bifurcation enjoys infinite multiplicity. The latter can be a reason for the variety of fingerprints. Tissue morphogenesis with the surface buckling mechanism and the growth theory underlying this mechanism are presented in the attached notes.

Ashkan Vaziri's picture

Deformation of the cell nucleus under indentation: Mechanics and Mechanisms

Computational models of the cell nucleus, along with experimental observations, can help in understanding the biomechanics of force-induced nuclear deformation and mechanisms of stress transition throughout the nucleus. Here, we develop a computational model for an isolated nucleus undergoing indentation, which includes separate components representing the nucleoplasm and the nuclear envelope. The nuclear envelope itself is composed of three separate layers: two thin elastic layers representing the inner and outer nuclear membranes and one thicker layer representing the nuclear lamina. The proposed model is capable of separating the structural role of major nuclear components in the force-induced biological response of the nucleus (and ultimately the cell). A systematic analysis is carried out to explore the role of major individual nuclear elements, namely inner and outer membranes, nuclear lamina, and nucleoplasm, as well as the loading and experimental factors such as indentation rate and probe angle, on the biomechanical response of an isolated nucleus in atomic force microscopy indentation experiment.

Cellular and Molecular Mechanics

Cellular and Molecular Mechanics I was invited by Dr. Zhigang Suo to write a short piece on “Cellular and Molecular Mechanics”. I am writing this informally to introduce this subject matter rather than talk in vernacular such as mechanotransduction, phosphorylation, etc. I have more formal papers if someone is interested in more detailed discussions on this subject area. This is a field in which I have been working for over a decade now and I find it more exciting every day. The question always is how does mechanics affect biological processes. This is a very interdisciplinary subject matter as mechanists, engineers, physicists, chemists, and biologists have been investigating this process from various perspectives. I am obviously not the first to study this process. For most of us, it is realized from an empirical perspective that mechanics matters to biology, but exactly how mechanics specifically alters biochemistry continues to be highly debated today. Mechanics of course matters in many physiological areas. Your blood flows, your heart pumps, your bone and muscle feel mechanics. Not only does the body experience mechanical stimulation, but it reacts biochemically to it. A wonderful example is when people go into space (NASA) for long periods of time. The bone in one’s body begins to resorb in a similar response mode to what one experiences in aging (osteoporosis). This is primarily due to just the change in the gravity (mechanics). Other diseases are related to these issues including the two biggest killers: heart disease and cancer. While biomechanics on this scale has been studied for awhile (Leonardo Da Vinci, who was interested in mechanics, also wrote one of the first texts on anatomy), the movement to the cellular and molecular scales has brought a tremendous amount of excitement. I consider the cell as one of the ultimate smart materials exhibiting these characteristics. The cell has evolved over millions of years and is designed better than almost any system that we can personally build. Just as the biological eye provides a beautiful template for optics based lenses, much can be learned about building technology (“nanotechnology” and “microtechnology”) through examining the behavior of cells and molecules.

Symposium on Mechanics in Biology and Medicine

This symposium will be part of the 2007 ASME Applied Mechanics and Materials Conference, to be held in the University of Texas in Austin, in June 3-6, 2007.

Xi Chen's picture

A molecular dynamics-decorated finite element framework for simulating the mechanical behaviors of biomolecules

Cover of Biophysical JournalOur first paper in biomechanics is featured as the cover of the Biophysical Journal. The paper is attached. Several freelance writers in biophysics have reported this paper in magazines and websites/blogs. This framework is very versatile and powerful, and we are now implementing more details/atomistic features into this phenomenological approach, and the follow-up paper will be submitted soon.

Abstract: The gating pathways of mechanosensitive channels of large conductance (MscL) in two bacteria (Mycobacterium tuberculosis and Escherichia coli) are studied using the finite element method. The phenomenological model treats transmembrane helices as elastic rods and the lipid membrane as an elastic sheet of finite thickness; the model is inspired by the crystal structure of MscL. The interactions between various continuum components are derived from molecular-mechanics energy calculations using the CHARMM all-atom force field. Both bacterial MscLs open fully upon in-plane tension in the membrane and the variation of pore diameter with membrane tension is found to be essentially linear. The estimated gating tension is close to the experimental value. The structural variations along the gating pathway are consistent with previous analyses based on structural models with experimental constraints and biased atomistic molecular-dynamics simulations. Upon membrane bending, neither MscL opens substantially, although there is notable and nonmonotonic variation in the pore radius. This emphasizes that the gating behavior of MscL depends critically on the form of the mechanical perturbation and reinforces the idea that the crucial gating parameter is lateral tension in the membrane rather than the curvature of the

Xi Chen's picture

use NMA to get the elastic properties of loop

(originally written by Yuye Tang) A key procedure of the molecular-dynamics decorated finite element method (MDeFEM) is to determine the effective properties of components of a macromolecule. Here I illustrate how could one use the NMA computed from MD to estimate the elastic properties of loops in mechanosensitive channels, which is related with my research.

Zhigang Suo's picture

Lectureships at Cambridge University

Applications are invited from suitably qualified candidates for three University Lectureships. They should have a proven record of scholarship in experimental and/or theoretical research involving Engineering Materials, Solid Mechanics, Mechanics of Biological Materials or Computational Mechanics. The lecturers will be expected to contribute directly to the research and teaching of the Mechanics, Materials and Design Division of the Engineering Department. This Division enjoys an international reputation for high-quality, innovative research in materials design and characterisation, including novel micro-architectured materials, bulk high-temperature superconducting materials, and increasingly in biological materials.

The posts will involve contributing to the teaching of the undergraduate course in Engineering, leading to the BA and MEng degrees. The successful candidates will take up the appointments 1 October 2006 or as soon as possible thereafter. The appointment will be for 5 years in the first instance with the possibility of reappointment to the retiring age subject to satisfactory performance. The current pensionable scale of stipends is in the range of £25,565-£39,303 per annum.

Further particulars and an application form may be obtained from the Personnel Office, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK (tel +44 (0) 1223 332615, fax +44 (0) 1223 766364, email personnel-appointments@eng.cam.ac.uk).

Applications should be sent to this address no later than by Friday 9 June 2006 and include a completed form, a curriculum vitae, a list of publications, and a one-page statement of research interests and future plans. Informal enquiries may be made to Professor Norman Fleck (telephone +44 (0)1223 332650 or email mj@eng.cam.ac.uk). The University is committed to equality of opportunity

Choose a channel featured in the header of iMechanica: 

Pages

Subscribe to RSS - biomechanics

Recent comments

More comments

Syndicate

Subscribe to Syndicate