User login

You are here

flexible electronics

Nanshu Lu's picture

Call For Abstracts: 2016 SES Symposium D-12 Mechanics, Materials, and Manufacture of Flexible and Stretchable Electronics

Dear colleagues,

You are cordially invited to submit abstract(s) to Symposium D-12 Mechanics, Materials, and Manufacture of Flexible and Stretchable Electronics at the 2016 SES meeting to be held at the University of Maryland-College Park during October 2-5, 2016. Abstracts can not be more than 350 words and are due on Wednesday, June 15, 2016.

mortezaamjadi's picture

Computational analysis of metallic nanowire-elastomer nanocomposite based strain sensors

Possessing a strong piezoresistivity, nanocomposites of metal nanowires and elastomer have been studied extensively for its use in highly flexible, stretchable, and sensitive sensors. In this work, we analyze the working mechanism and performance of a nanocomposite based stretchable strain sensor by calculating the conductivity of the nanowire percolation network as a function of strain. We reveal that the nonlinear piezoresistivity is attributed to the topological change of percolation network, which leads to a bottleneck in the electric path.

mortezaamjadi's picture

Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites

Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation networksilicone rubber nanocomposite thin films. The applicability of the
strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (e > 100%) are required, has been explored. The sensitivity of the strain

Nanshu Lu's picture

Call for papers: Soft Robotics - a new journal dedicated to soft machines

Dear colleagues and friends, 


On behalf of the editorial board, I would like to introduce our new Journal, Soft Robotics (SoRo) to the mechanics community. SoRo is an innovative peer-reviewed journal dedicated to the science and engineering of soft materials in mobile machines. The Journal breaks new ground as the first to answer the urgent need for research on robotic technology that can safely interact with living systems and function in complex natural or human-built environments.

Jianliang Xiao's picture

A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology

In this paper recently feature on the cover of Science Translational Medicine, we report the development of a class of mechanically flexible silicon electronics for multiplexed measurement of signals in an intimate, conformal integrated mode on the dynamic, three-dimensional surfaces of soft tissues in the human body. Mechanics model shows that the strain in the fragile materials, e.g. silicon, is several orders of magnitude smaller than the fracture strain, when wrapped onto the curvilinear cardiac surface.

Teng Li's picture

Symposium on Materials and Devices for Flexible and Stretchable Electronics at 2009 MRS Spring Meeting

Call for papers

2009 MRS Spring Meeting, San Francisco, CA, April 13-17

Symposium PP: Materials and Devices for Flexible and Stretchable Electronics

Abstract Deadline: 3 November 2008

Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates

In this paper, we report comprehensive experimental and theoretical
studies of bending in structures relevant to inorganic flexible electronics.
Different from previous mechanics models of related systems, our analysis does not
assume the thin film to cover the entire substrate, thereby explicitly
accounting for effects of edges and finite device sizes, both of which play
critically important roles in the mechanics and bending properties. These
thin-film islands give nonuniform stress, with maxima that often appear at the
edges and spatially non-uniform shear and normal stresses along the film/substrate
interface. Although these results are generally applicable to all classes of

Rui Huang's picture

Influence of Interfacial Delamination on Channel Cracking of Brittle Thin Films

H. Mei, Y. Pang, and R. Huang, International Journal of Fracture 148, 331-342 (2007).

Following a previous effort published in MRS Proceedings, we wrote a journal article of the same title, with more numerical results. While the main conclusions stay the same, a few subtle points are noted in this paper.

Nanshu Lu's picture

Co-evolution of local thinning and debonding

A 1um-thick Cu film was deposited on Kapton 50HN substrate, with a thin Cr interlayer to improve adhesion. The specimen was in-situ annealed at 200oC for 30min after deposition.

This FIB image was taken after the specimen was uniaxially stretched to 50% and released.

jhchen's picture

jianhao chen

Hi, I'm a Physics grad student working with Dr. Ellen Williams. My job is basically making nanoelectronic devices, measuring their characteristics and trying to understand the underlying "Physics".

ENME489X - Introduction (V.Tsai)

What I want to gain from this course is to come to know how flexible macroelectronics are approached and researched. An increasing trend of "thin" applications poses new challenges in terms of low power usage and durability.

Daniel Min's picture

Daniel Min

My name is Daniel Min.  I am a senior mechanical engineering student at the University of Maryland.  I am currently enrolled in Dr. Teng Li's flexible macroelectronics course.  I chose to enrol

James Wang's picture

James Wang

I am Yong Wang, currently a PhD student in the Mechanical Engineering department at the University of Maryland. I got my Bachelor degree from the University of Science and Technology of China and Master degree from the Hong Kong University of Science and Technology. I am enrolled in Dr. Teng Li's class on flexible macroelectronics in this semester.

Kurt Vargas

My name is Kurt Vargas. I am an international student from Costa Rica, currently attending the University of Maryland at College Park. I am a Christian who loves the Lord and serves Him full time. I also love reading my Bible!

adamlr's picture

Adam Rutherford

My name is Adam Rutherford and I am currently a senior mechanical engineering student at the University of Maryland. I am enrolled in Dr. Teng Li's class on flexible macroelectronics. I chose this course out of the selection of electives because I feel that flexible macroelectronics will have a large impact on the consumer electronics industry in the near future.

Josh Crone's picture

Josh Crone

My name is Josh Crone and I am an undergraduate student in Mechanical Engineering at the University of Maryland. I am in the BS/MS program with a focus in mechanics and materials. My current research interests are in atomic force microscopy.

Nathan_Vickey's picture


My name is Nathan and I am a Masters student in my second year at the University of Maryland, College Park studying mechanical engineering.  I was born and raised in Erie, PA.  For my undergraduate studies, I attended the University of Pittsburgh in Pittsburgh, PA where I also studied mechanical engineering.  When I am not engineering, I enjoy running, playing the piano, and following the stock market. 


Subscribe to RSS - flexible electronics

More comments


Subscribe to Syndicate