User login

You are here

mullins effect

Mesoscale Constitutive Modeling of Non-Crystallizing Filled Elastomer

We have just published a new paper, 1st in the series, that presents a computational model to understand the microstructural changes in the filled elastomers as a consequence of mechanical forces. A heterogeneous (or multiphase) constitutive model at the mesoscale explicitly considering filler particle aggregates, elastomeric matrix and their mechanical interaction through an approximate interface layer is presented. An innovative lego-set method is discussed for generation of random microstructures that can be used for simple stochastic analysis.

LECAM's picture

Cyclic volume changes in rubber

This is a study dealing with the volume variation in filled crystallizable natural (F-NR) and uncrystallizable styrene butadiene (F-SBR) rubbers subjected to cyclic loadings. During their deformation, such materials exhibit volume variation induced by the cavitation phenomenon and the decohesion between particles and the rubber matrix.

Subscribe to RSS - mullins effect

Recent comments

More comments


Subscribe to Syndicate