User login

You are here

Geometric elasticity

Arash_Yavari's picture

Nonlinear elastic inclusions in isotropic solids

We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space.

Arash_Yavari's picture

A Geometric Structure-Preserving Discretization Scheme for Incompressible Linearized Elasticity

In this paper, we present a geometric discretization scheme for incompressible linearized elasticity. We use ideas from discrete exterior calculus (DEC) to write the action for a discretized elastic body modeled by a simplicial complex. After characterizing the configuration manifold of volume-preserving discrete deformations, we use Hamilton's principle on this configuration manifold. The discrete Euler-Lagrange equations are obtained without using Lagrange multipliers.

Arash_Yavari's picture

A Geometric Theory of Thermal Stresses

In this paper we formulate a geometric theory of thermal stresses.
Given a temperature distribution, we associate a Riemannian
material manifold to the body, with a metric that explicitly
depends on the temperature distribution. A change of temperature
corresponds to a change of the material metric. In this sense, a
temperature change is a concrete example of the so-called
referential evolutions. We also make a concrete connection between
our geometric point of view and the multiplicative decomposition

Subscribe to RSS - Geometric elasticity

Recent comments

More comments

Syndicate

Subscribe to Syndicate