User login

You are here

Geometric mechanics

Arash_Yavari's picture

The Geometry of Discombinations and its Applications to Semi-Inverse Problems in Anelasticity

The geometric formulation of continuum mechanics provides a powerful approach to understand and solve problems in anelasticity where an elastic deformation is combined with a non-elastic component arising from defects, thermal stresses, growth effects, or other effects leading to residual stresses. The central idea is to assume that the material manifold, prescribing the reference configuration for a body, has an intrinsic, non-Euclidean, geometric structure. Residual stresses then naturally arise when this configuration is mapped into Euclidean space.

Arash_Yavari's picture

Non-Metricity and the Nonlinear Mechanics of Distributed Point Defects

We discuss the relevance of non-metricity in a metric-affine manifold (a manifold equipped with a connection and a metric) and the nonlinear mechanics of distributed point defects. We describe a geometric framework in which one can calculate analytically the residual stress field of nonlinear elastic solids with distributed point defects. In particular, we use Cartan's machinery of moving frames and construct the material manifold of a finite ball with a spherically-symmetric distribution of point defects.

Arash_Yavari's picture

PhD Position in Geometric Mechanics at Georgia Tech

I am looking for a new Ph.D. student to work on discretization of nonlinear elasticity using geometric and topological ideas. Requirements for this position are a strong background in solid mechanics and some background in differential geometry and analysis. If interested please email me your CV.

Arash_Yavari's picture

A Geometric Structure-Preserving Discretization Scheme for Incompressible Linearized Elasticity

In this paper, we present a geometric discretization scheme for incompressible linearized elasticity. We use ideas from discrete exterior calculus (DEC) to write the action for a discretized elastic body modeled by a simplicial complex. After characterizing the configuration manifold of volume-preserving discrete deformations, we use Hamilton's principle on this configuration manifold. The discrete Euler-Lagrange equations are obtained without using Lagrange multipliers.

Arash_Yavari's picture

Affine Development of Closed Curves in Weitzenbock Manifolds and the Burgers Vector of Dislocation Mechanics

In the theory of dislocations, the Burgers vector is usually defined by referring to a crystal structure. Using the notion of affine development of curves on a differential manifold with a connection, we give a differential geometric definition of the Burgers vector directly in the continuum setting, without making use of an underlying crystal structure.

Arash_Yavari's picture

Geometric Growth Mechanics

This paper presents a geometric theory of the mechanics of growing bodies.

This paper is dedicated to the memory of Professor Jim Knowles.

http://lanl.arxiv.org/abs/0911.4671

Subscribe to RSS - Geometric mechanics

Recent comments

More comments

Syndicate

Subscribe to Syndicate