User login

Navigation

You are here

fractals

Mike Ciavarella's picture

A comment on "A dimensionless measure for adhesion and effects of the range of adhesion in contacts of nominally flat surfaces" by M. H. Muser

I attach a Letter I sent to the Editor of a tribology journal, concerning adhesion of rough surfaces. 

I contend that some "criteria" that have been proposed based on extrapolation of numerical results are due to the limitations in present numerical sophisticated rough contact simulations, which only span at most 3 orders of magnitude of wavelengths, so typically people simulate from nanometer to micrometer scale.

Mike Ciavarella's picture

Is Tribology Approaching Its Golden Age? Grand Challenges in Engineering Education and Tribological Research

An interesting paper by VL Popov which suggests many problems of tribology are still very far from being remotely solved.  Despite the very detailed theories for example on rough contact using fractal surfaces on which we have debated mainly academically , there is not a single theory for any quantitative prediction of friction coefficient which can vary by 1 order of magnitude and its dependence on many variables, let alone wear coefficient which can vary up to 7 orders of magnitude.  What is left to do, other than measure?   Is tribology bound to be in practice just an experimental area? 

Mike Ciavarella's picture

More replies to Yavari, fractals, strongly emotional disputes, and what really leads to Nobel prize

Dear Yavari

I have promised more replies on Mandelbrot, fractals, strongly emotive discussions in journals, and here is a coincise statement, which I take from a Nobel prize, prematurely passed away last year.  I think it has a lot to teach (including the kind of attitude that leads to Nobel prize, i.e. close to no human weakness), you will recognize the real name of the "Caesar" in this book is somebody with a 58 pages CV on his web site, most likely.

For a better idea of fractals, read please the other attachment.

Regards

Mike

Mike Ciavarella's picture

Contact mechanics of rough surfaces: is Persson's theory better than Greenwood & Willamson?

A recent string of papers originated from Persson's paper in the physics literature contain a number of interesting new ideas, but compare, of the many theories for randomly rough surfaces, only Persson's and Bush et al, BGT. These papers often assume the original Greenwood and Williamson (GW) theory [1] to be inaccurate, but unfortunately do not test it, assuming BGT to be its better version. The original GW however is, I will show below, still the best paper and method today (not surprisingly, as not many papers have the level of 1300 citations), containing generally less assumptions than any other model, including the constitutive equation which does not need to be elastic! I just submitted this Letter to the Editor: On "Contact mechanics of real vs. randomly rough surfaces: A Green's function molecular dynamics study" by C. Campaña and M. H. Müser, EPL, 77 (2007) 38005. C. Campaña and M. H. Müser also make several questionable statements, including a dubious interpretation of their own results, and do not even cite the original GW paper; hence, we find useful to make some comments.

Subscribe to RSS - fractals

Recent comments

More comments

Syndicate

Subscribe to Syndicate