User login

Navigation

You are here

semiconductor

a12najafi's picture

Senior Application Engineer - Electronics Reliability

Join the Ansys Customer Excellence team to partner with our customers to engineer what's ahead, solve their real-world engineering problems, deploy Ansys software in their design workflows, and grow Ansys’ business. As a hands-on subject matter expert, you will use expert-level engineering knowledge to provide technical advise, perform professional services, and help translate customer requirements into exciting new product features.

mohsenzaeem's picture

A new planner BCN lateral heterostructure with outstanding strength and defect-mediated superior semiconducting to conducting properties

Motivated by the recent synthesis of boron-carbon-nitride (BCN) monolayers with different atomic compositions, we propose a novel planar BCN lateral heterostructure with a combination of graphene and hexagonal boron nitride (h-BN) counterparts. Density functional theory (DFT) and classical molecular dynamics (CMD) simulations are integrated to examine the effects of defects (vacancy and Stone-Wales (SW) defects) and temperature on the physical properties of the BCN heterostructure.

Is Strain Gradient Elasticity Relevant for Nanotechnologies?

Determination of Strain Gradient Elasticity Constants for Various Metals, Semiconductors, Silica, Polymers and the (Ir) relevance for Nanotechnologies

Strain gradient elasticity is often considered to be a suitable alternative to size-independent classical elasticity to, at least partially, capture elastic size-effects at the nanoscale. In the attached pre-print, borrowing methods from statistical mechanics, we present mathematical derivations that relate the strain-gradient material constants to atomic displacement correlations in a molecular dynamics computational ensemble. Using the developed relations and numerical atomistic calculations, the dynamic strain gradient constants have been explicitly determined for some representative semiconductor, metallic, amorphous and polymeric materials. This method has the distinct advantage that amorphous materials can be tackled in a straightforward manner. For crystalline materials we also employ and compare results from both empirical and ab-initio based lattice dynamics. Apart from carrying out a systematic tabulation of the relevant material parameters for various materials, we also discuss certain subtleties of strain gradient elasticity, including: the paradox associated with the sign of the strain-gradient constants, physical reasons for low or high characteristic lengths scales associated with the strain-gradient constants, and finally the relevance (or the lack thereof) of strain-gradient elasticity for nanotechnologies.

Subscribe to RSS - semiconductor

Recent comments

More comments

Syndicate

Subscribe to Syndicate