User login

You are here


Henry Tan's picture

Journal of the Mechanics and Physics of Solids, 2007

This blog focuses on the papers in Journal of Fluid Mechanics, 2007.

Is it possible to obtain (without modeling) the fracture strength of defect-free nanotubes or nanowires by tensile loading?

What boundary conditions would allow failure to occur in the gauge length and not at or near the clamps? One is not allowed (in suggesting ways of overcoming stress concentation at the clamps) to create defects in the nanotube or nanowire, to configure the region where failure will occur.  Thus, it is not possible (or is it?)  to create an analog of dog-bone specimens by, e.g., milling away part of the nanowire with a focused ion beam, etc., because this creates defects in the nanowire.

Plastic Deformation Recovery in Freestanding Nanocrystalline Aluminum and Gold Thin Films

Science 30 March 2007:
Vol. 315. no. 5820, pp. 1831 - 1834
DOI: 10.1126/science.1137580
Jagannathan Rajagopalan, Jong H. Han, M. Taher A. Saif*
In nanocrystalline metals, lack of intragranular dislocation sources leads to plastic deformation mechanisms that substantially differ from those in coarse-grained metals. However, irrespective of grain size, plastic deformation is considered irrecoverable. We show experimentally that plastically deformed nanocrystalline aluminum and gold films with grain sizes of 65 nanometers and 50 nanometers, respectively, recovered a substantial fraction (50 to 100%) of plastic strain after unloading. This recoverywas time dependent and was expedited at higher temperatures. Furthermore, the stress-strain characteristics during the next loading remained almost unchanged when strain recovery was complete.These observations in two dissimilar face-centered cubic metals suggest that strain recovery might be characteristic of other metals with similar grain sizes and crystalline packing.

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Jinglei Yang's picture

Self-healing polymers - an introduction

I'm now working on the preparation and characterization of self-healing polymers, a promising branch in materials science. The following is a general conception of this kind of materials system. (Pasted from our group website I may introduce some of my current work later.

Mohsin Hamzah's picture

Boundary Element Method for Hyperelastic Materials

I am interested in using the Boundary Element Method for the hyperelastic materials. The objective of this work  is to simulate the behaviour of elastomeric or rubber-like materials parts. I am now in the derivation stage, and I intened to use Ogden constitutive model with this derivation.

Ph.D. Studentships in Spacecraft Design, Dynamics and Control

The Department of Aerospace Engineering at Ryerson University has a strong and vibrant research programme involving the development of pico- and femto-satellites (weighing less than 1 kilogram) under Dr.

Arash_Kheradvar's picture

Characterization of myocardial viscoelastic behavior based on ventricular harmonic motion

Our current ability to accurately measure ventricular global contractile behavior remains unsatisfactory due to the lack of quantitative diagnostic indexes that can assess the mechanical properties of myocardial tissue.

Mohsin Hamzah's picture


Elastomers, or rubber like materials, have many engineering applications due to their wide availability and low cost. They are also used because of their excellent damping and energy absorption characteristics, flexibility, resiliency, long service life, ability to seal against moisture, heat, and pressure, and non-toxic. It can be easily molded into almost any shape. Applications of elastomers include solid propellant, biomechanics and medical/dental, tires, gaskets, and engine mounts.

A posteriori error estimation (indication) for extended finite element methods (XFEM)

Choose a channel featured in the header of iMechanica: 

Extended finite element methods (XFEM) have been employed in computational fracture mechanics contexts since their inception in 1999. Although some work has been performed, leading to the first adaptive strategies for the generalised finite element method (GFEM), little or no work has been published on error estimation and adaptive approximations for XFEM. A first attempt at this challenging problem is published here: 

Thickness dependent critical strain in Cu films adherent to polymer substrate

For the polymer-supported metal thin films that are finding increasing applications, the critical strain to nucleate microcracks ( εc ) should be more meaningful than the generally measured rupture strain. In this paper, we develop both electrical resistance method and microcrack analyzing method to determine εc of polymer-supported Cu films simply but precisely. Significant thickness dependence has been clearly revealed for εc of the polymer-supported Cu films, i.e., thinner is the film lower is εc . This dependence is suggested to cause by the constraint effect of refining grain size on the dislocation movability.

Mohsin Hamzah's picture

Finite Element Method for Rubber or Rubber-Like Materials

Hello, I need help for using finite element method in modelling rubber or rubber-like materials?

Thanks in advance

Mohsin Hamzah's picture

Constitutive Modelling of Elastomers

Rubber or rubber-like materials, or generally elastomers, sustain large elastic deformations. The problems of such cases are non-linear, the non-linearity came from two sources, the first one due to materials, and the second is geomertrical non-linearity. Elastomers are, also, viscoelastic, i.e. time and temperature dependent.

Nanshu Lu's picture

Delamination of stiff islands patterned on stretchable substrates

As another celebration of March Journal Club of Mechanics of Flexible Electronics, this paper has just been submitted.


In one design of flexible electronics, thin-film islands of a stiff material are fabricated on a polymeric substrate, and functional materials are grown on these islands. When the substrate is stretched, the deformation is mainly accommodated by the substrate, and the islands and functional materials experience relatively small strains. Experiments have shown that, however, for a given amount of stretch, the islands exceeding a certain size may delaminate from the substrate. We calculate the energy release rate using a combination of finite element method and complex variable method. Our results show that the energy release rate diminishes as the island size or substrate stiffness decreases. Consequently, the critical island size is large when the substrate is compliant. We also obtain an analytical expression for the energy release rate of debonding islands from a very compliant substrate.

Mogadalai Gururajan's picture

Elastic stress driven phase inversion

A typical two phase microstructure consists of a topologically continuous `matrix' phase in which islands of `precipitate' phase are embedded. Usually, the matrix phase is also the majority phase in terms of volume fraction. However, sometimes this relationship between the volume fraction and topology is reversed, and this reversal is known as phase inversion. Such a phase inversion can be driven by an elastic moduli mismatch in two-phase solid systems. In this paper (submitted to Philosophical magazine), we show phase inversion, and the effect of the elastic moduli mismatch and elastic anisotropy on such inversion.

Mogadalai Gururajan's picture

Elastic stress driven rafting

During solid-solid phase transformations elastic stresses arise due to a difference in lattice parameters between the constituent phases. These stresses have a strong influence on the resultant microstructure and its evolution; more specifically, if there be externally applied stresses, the interaction between the applied and the transformation stresses can lead to rafting.

verron's picture

Definition of a new predictor for multiaxial fatigue crack nucleation in rubber

From an engineering point of view, prediction of fatigue crack nucleation in automotive rubber parts is an essential prerequisite for the design of new components. We have derived a new predictor for fatigue crack nucleation in rubber. It is motivated by microscopic mechanisms induced by fatigue and developed in the framework of Configurational Mechanics. As the occurrence of macroscopic fatigue cracks is the consequence of the growth of pre-existing microscopic defects, the energy release rate of these flaws need to be quantified. It is shown that this microstructural evolution is governed by the smallest eigenvalue of the configurational (Eshelby) stress tensor. Indeed, this quantity appears to be a relevant multiaxial fatigue predictor under proportional loading conditions. Then, its generalization to non-proportional multiaxial fatigue problems is derived. Results show that the present predictor, which covers the previously published predictors, is capable to unify multiaxial fatigue data.

On the crack growth resistance of shape memory alloys

With the increasing use of shape memory alloys in recent years, it is important to investigate the effect of cracks. Theoretically, the stress field near the crack tip is unbounded. Hence, a stress-induced transformation occurs, and the martensite phase is expected to appear in the neighborhood of the crack tip, from the very first loading step. In that case, the crack tip region is not governed by the far field stress, but rather by the crack tip stress field. This behavior implies transformation toughening or softening.

Arash_Yavari's picture

On the geometric character of stress in continuum mechanics

This paper shows that the stress field in the classical theory of continuum mechanics
may be taken to be a covector-valued differential two-form. The balance laws and other funda-
mental laws of continuum mechanics may be neatly rewritten in terms of this geometric stress. A


Subscribe to RSS - research

Recent comments

More comments


Subscribe to Syndicate