User login

You are here

software

software of interest to mechanicians

SIMULIA's picture

Filament Wound Composite Pressure Vessel Analysis with Abaqus

Filament winding has become a popular construction technique in a wide variety of industries for creating com-posite structures with high stiffness-to-weight ratios. The difficulty in accurately analyzing the structural behavior of a filament wound body derives from the continually vary-ing orientation of the filaments. The standard capabilities of commercial finite element codes are inadequate to model the spatial variation of fiber orientation in a practical way.

SIMULIA's picture

Fracture Mechanics Study of a Compact Tension Specimen Using Abaqus/CAE

Abaqus/CAE includes modeling and postprocessing capabilities for fracture mechanics analyses. These features provide interactive access to the contour integral fracture mechanics technology in Abaqus/Standard. Several fracture-specific tools are available, such as those for creating seam cracks, defining singularities, selecting the crack front and crack tip, defining q-vectors or normals to the crack front, and creating focused meshes. With these tools models can be created to estimate J-integrals, stress intensity factors, and crack propagation directions.

SIMULIA's picture

Low-cycle Thermal Fatigue of a Surface-mount Electronics Assembly

The solder joints of surface-mount electronic devices may fail because of low-cycle fatigue. Combined with differences in thermal expansion properties for the various components of the assembly, cyclic thermal loading induces stress reversals and the potential accumulation of inelastic strain in the joints. Predicting solder joint fatigue life requires a thorough understanding of the deformation and failure mechanisms of the solder alloy and an accurate

SIMULIA's picture

Creep Analysis of Lead-Free Solders Undergoing Thermal Loading

Lead and its compounds have been widely used for many years in the electronics industry. However, the global demand to reduce the use of hazardous materials has compelled electronics manufacturers to consider the use of lead-free materials in future products. This transition has heightened the necessity for new finite element material models that can be used to evaluate the reliability of lead-free solders.

SIMULIA's picture

Electro-Mechanical Analysis of MEMS Devices with CoventorWare and Abaqus

The computational analysis of MEMS (Micro Electro Me-chanical systems) devices poses distinctive challenges, requiring software that provides flexible modeling tools, enables the coupling of multiple physical phenomena, and considers the integration of the devices into their macro-scale surroundings. To meet these requirements, Abaqus partners with developers of commercially available MEMS software by providing the necessary finite element analy-sis capabilities to these packages.

SIMULIA's picture

Drop Test Simulation of a Cordless Mouse

Portable, hand-held electronic devices have become commonplace due to their small size and light weight. It is inevitable that such devices will occasionally experience the shock loading associated with being dropped. Ac-counting for this loading scenario in the design process, both analytically and experimentally, allows for the devel-opment of more durable products. The ability to simulate drop-type loading reliably reduces the dependency on experimental testing.

SIMULIA's picture

Modeling the Interaction of Subsea Pipelines with the Seabed

The interaction of a subsea pipeline with the seabed is a complex phenomenon. Operational  loads can cause a subsea pipeline to buckle or “walk” over the seabed, leading to very high pipeline stresses. In some cases however, the buckling phenomena can be beneficially used to
relieve excessive stresses by allowing the pipeline to deform at pre-determined locations. The understanding and prediction of these phenomena is therefore crucial for subsea pipeline design.

SIMULIA's picture

Helical Buckling of Coiled Tubing in Directional Oil Wellbores

Coiled tubing is used in a variety of oil well operations including drilling, completions, and  remedial activities. For each of these applications coiled tubing offers the benefits of reduced costs, speed, and reduced environmental impact. Coiled tubing possesses a limitation  however, in that it may buckle in service. In this situation the tubing may be damaged, and operations may be delayed or disrupted. In this Technology Brief, we provide a methodology for evaluating the buckling behavior of coiled wellbore tube.

SIMULIA's picture

Coupled Thermal-Structural Analysis of the Shippingport Nuclear Reactor Using Adaptive Remeshing in Abaqus/CAE

Mesh construction is a key consideration in the course of building a finite element model. The quality of the analysis results depends on the quality of the mesh; arriving at an acceptable solution requires judicious meshing choices. Specifically, the analyst must consider the type of ele-ments and the density of the mesh, which is often varied throughout the model, with more refinement in critical re-gions. These considerations need to be balanced against the desire to minimize analysis cost in terms of preproc-essing effort, analysis run time, and computer resources.

SIMULIA's picture

Earth Penetration Simulation using Coupled Eulerian-Lagrangian Analysis

In earth penetration events the projectile generally strikes the target at an oblique angle. As a result, the projectile is subjected to a multi-axial force and acceleration history through impact. The effectiveness of an earth penetration system is enhanced by the ability to withstand severe

SIMULIA's picture

Dynamic Design Analysis Method (DDAM) Response Spectrum Analysis with Abaqus

The Dynamic Design Analysis Method (DDAM) is a U.S. Navy methodology for qualifying shipboard equipment and supporting structures for survival of shock loading due to
underwater explosions (UNDEX). The DDAM is a regimented collection of procedures that utilize estimates of the peak linear dynamic response of ship equipment and structures

SIMULIA's picture

Shock Response and Acoustic Radiation Analysis

Accurate numerical modeling of the shock response of marine structures is of considerable importance in their design since the cost associated with physical testing is often prohibitive. Along with the shock response calibra-tion, designers often have to grapple with opposing fac-tors while trying to optimize performance during operating conditions. Abaqus allows for the analysis of both the structural integrity and acoustic radiation in such cases.

SIMULIA's picture

Warping and Residual Stress Analysis using the Abaqus Interface for Moldflow

Residual stresses may be introduced into plastic parts produced by the injection molding process. As a result, the part may warp or experience a reduction in strength. The design of an injection molded product can be improved if the effect of residual stresses on the final shape and performance of the product are predicted accurately. Abaqus and Moldflow can be used for this purpose. The residual stresses generated by the solidifi-cation of the plastic material are computed by Moldflow and transferred to Abaqus using the Abaqus Interface for Moldflow.

SIMULIA's picture

Bottle Conveying System Analysis

A key factor in the design of bottles and packaging con-tainers is performance during conveying. The ability of a bottle to remain standing while traveling through a con-veying plant for production, cleaning, filling, packaging, etc. allows that plant to be automated. If bottles fall or jam during conveying then human intervention is required to correct the situation. Finite element analysis can be used to verify new bottle designs and ensure that changes to current designs will not cause a reduction in conveying performance.

SIMULIA's picture

Two-Pass Rolling Simulation

Hot rolling is a basic metal forming technique that is used to transform preformed shapes into final products or forms that are suitable for further processing. The process typically involves passing heated stock pieces through multiple sets of forming rolls until the desired cross-sectional shape is achieved. The important aspects of this manufacturing operation are the elongation and spread of the material during the rolling process.

SIMULIA's picture

Simulation of the Quasi-static Crushing of a Fabric Composite Plate

Composite structures often have a higher capacity for ab-sorbing energy than their metal counterparts. The crush-ing behavior of composite materials is complex, and the inclusion of composite components in vehicles for crash protection can necessitate expensive experimental test-ing. The ability to computationally simulate the crushing response of composite structures can significantly shorten the product development cycle and reduce cost in the aerospace, automotive, and railway industries.

SIMULIA's picture

Simulation of Airbag Deployment Using the Coupled Eulerian-Lagrangian Method in Abaqus/Explicit

The uniform pressure method (UPM) approach to simulat-ing airbag deployment has been widely used in the auto-mobile safety industry. The defining assumption of UPM, specifically that pressure in the airbag is spatially uniform during inflation, makes the approach most applicable for „in-position‟ (IP) analyses with fully inflated airbags. In contrast, an analysis may be characterized as „out-of-position‟ (OoP) if the occupant interacts with the airbag before it is fully deployed.

SIMULIA's picture

Full Vehicle NVH Analysis with Rolling Tires

In a traditional automobile noise, vibration and harshness (NVH) analysis, stationary tires are defined and subjected to vertical dynamic loading. The actual operating condi-tions of a tire involve rolling however, and the vibration characteristics of rolling tires are considerably different from those of stationary tires. Abaqus offers a methodology to include the pre-loading and gyroscopic effects of rolling tires in a forced response dynamic analysis of the moving vehicle.

SIMULIA's picture

Nonlinear Kinematics and Compliance Simulation of Automobiles

In the automobile industry, kinematics and compliance (K&C) testing is used to evaluate the ride and handling performance of an automobile. The traditional approach to numerical simulation of K&C testing involves the use of multi-body dynamics software, which simplifies the phys-ics by introducing rigid body assumptions. In this Technology Brief, a new methodology for K&C simulation is demonstrated using Abaqus/Standard.

SIMULIA's picture

High Fidelity Anti-Lock Brake System Simulation Using Abaqus and Dymola

Accurate simulation of an anti-lock brake system (ABS) requires detailed modeling of separate subsystems in dif-ferent physical domains. Creating refined models of the brake, wheel, and control components with a single analy-sis tool is difficult, if not impossible. The strategy of co-simulation can be adopted to meet this challenge; differ-ent simulation tools can be used simultaneously to create multi-disciplinary and multi-domain coupling. In this Technology Brief, a co-simulation approach using Abaqus and Dymola is used to achieve a realistic system-level simulation of an ABS.

SIMULIA's picture

Abaqus BioRID-II Crash Dummy Model

The Biofidelic Rear Impact Dummy (BioRID-II) hardware model has been developed to measure automotive seat and head restraint system performance in low-speed rear end crashes. It has also been used to further the under-standing of whiplash injuries. This technology brief fo-cuses on the Abaqus BioRID-II finite element model, which has been developed in cooperation with the Ger-man Association for Research in Automobile Technology FAT. The capabilities of the model will be described, and a comparison with experimental data is shown.

SIMULIA's picture

Vibration Characteristics of Rolling Tires

Tires are the only load transfer mechanism between a vehicle’s suspension and the road. Consequently, tire vibration has a significant impact on ride quality and vehicle interior noise.

SIMULIA's picture

Prediction of B-Pillar Failure in Automobile Bodies

The B-pillar is an important load carrying component of any automobile body. It is a primary support structure for the roof, and is typically a thin-walled, spot-welded, closed-section structure made from high strength steels. As part of the validation process, the B-pillar can be ex-perimentally loaded at quasi-static rates until failure†. The force and displacement of the impactor are measured to get valuable insight into the stiffness characteristics of the structure.

SIMULIA's picture

Iterative Design Evaluation Process in Abaqus for CATIA V5

During product development, design engineers often have the freedom to modify a number of parameters. However, any design modification requires validation to ensure the satisfaction of requirements for all load cases. With Abaqus for CATIA V5 (AFC), nonlinear finite element technology is made available within the CATIA environment, allowing design engineers to efficiently incorporate accurate stress analysis into the design process. In this Technology Brief two approaches are described to illustrate the productivity gains possible with AFC.

SIMULIA's picture

Noise, Vibration, and Harshness (NVH) Analysis of a Full Vehicle Model

This technology brief illustrates typical mode-based noise, vibration, and harshness (NVH) analyses of a full automobile model using the Abaqus product suite. Abaqus/AMS, the automatic multi-level substructuring eigensolver, is used to compute the eigensolution. A steady-state dynamic analysis is then performed in Abaqus/Standard. The significant performance benefit of using Abaqus/AMS and the SIM-based linear dynamics architecture will be demonstrated for uncoupled structural and coupled structural-acoustic analyses.

Pages

Subscribe to RSS - software

Recent comments

More comments

Syndicate

Subscribe to Syndicate