Skip to main content

Fan Xu's blog

Strain stiffening retards growth instability in residually stressed biological tissues

Submitted by Fan Xu on

Soft biological tissues often exhibit notable strain stiffening under increasing stretch, and this can have significant effects on tissue growth and morphological development, such as causing symmetry breaking in growing airways and leading to mucosal folding and airway hyperresponsiveness. To investigate the role of strain stiffening and the multifactorial control in growth and remodeling, we consider a growing tubular structure with strain-stiffening effects caused by increased and tightened collagen.

Curvature-Regulated Multiphase Patterns in Tori

Submitted by Fan Xu on

Biological functions in living systems are closely related to their geometries and morphologies. Toroidal structures, which widely exist in nature, present interesting features containing positive, zero, and negative Gaussian curvatures within one system. Such varying curvatures would significantly affect the growing or dehydrating morphogenesis, as observed in various intricate patterns in abundant biological structures.

Wrinkling of twisted thin films

Submitted by Fan Xu on

Thin films usually exhibit instabilities and yield intricate wrinkles when two clamped ends are twisted. Here, we explore the wrinkling behavior and pitch-fork bifurcation of twisted thin films experimentally and theoretically. To quantitatively predict the post-buckling evolution of twist-induced wrinkling morphology, we develop a refined finite-strain plate model derived from 3D field equations and then solve it by using the finite element method with COMSOL. We examine the effects of aspect ratios and pre-tension on the wrinkling profile.

Chiral topographic instability in shrinking spheres

Submitted by Fan Xu on

Many biological structures exhibit intriguing morphological patterns adapted to environmental cues, which contribute to their important biological functions and also inspire material designs. Here, we report a chiral wrinkling topography in shrinking core–shell spheres, as observed in excessively dehydrated passion fruit and experimentally demonstrated in silicon core–shells under air extraction. Upon shrinkage deformation, the surface initially buckles into a buckyball pattern (periodic hexagons and pentagons) and then transforms into a chiral mode.

A 3D hard-magnetic rod model based on co-rotational formulations

Submitted by Fan Xu on

Hard-magnetic soft materials have attracted broad interests because of their flexible programmability, non-contact activation and rapid response in various applications such as soft robotics, biomedical devices and flexible electronics. Such multifunctional materials consist of a soft matrix embedded with hard-magnetic particles, and can exhibit large deformations under external magnetic stimuli. Here, we develop a three-dimensional (3D) rod model to predict spatial deformations (extension, bending and twist) of slender hard-magnetic elastica.

Mechanics of tension-induced film wrinkling and restabilization: a review

Submitted by Fan Xu on

Wrinkling of thin films under tension is omnipresent in nature and modern industry, a phenomenon which has aroused considerable attention during the past two decades because of its intricate nonlinear behaviors and intriguing morphology changes.

A consistent finite-strain plate model for wrinkling of stretched anisotropic hyperelastic films

Submitted by Fan Xu on

Stretch-induced wrinkles usually occur in a thin, clamped-clamped, hyperelastic film and eventually disappear upon excess stretching, with wrinkling direction being perpendicular to the stretching direction within isotropic elasticity framework. Here, we consider in-plane anisotropy induced by infilling fibers in thin films, which significantly affects the orientation and amplitude of wrinkles.

Competition between Mullins and curvature effects in the wrinkling of stretched soft shells

Submitted by Fan Xu on

A highly stretched hyperelastic shell exhibits a coupling behavior of local wrinkling and global bending within the stability boundary, and curvature resists and can even suppress surface wrinkles beyond a critical threshold. Here, we report a novel phenomenon that smooth surface maintains upon stretching a soft shell, while wrinkles emerge upon unloading, which implies a nonlinear interplay between curvature and Mullins (stress softening and residual strain) effects in the entire loading-unloading cycle.

Buckling of an elastic layer based on implicit constitution: Incremental theory and numerical framework

Submitted by Fan Xu on

A general class of implicit bodies was proposed to describe elastic response of solids, which contains the Cauchy–Green tensor as a function of Cauchy stress. Here, we consider the buckling of solids described by such a subclass of implicit constitutive relation. We present a general linear incremental theory and carry out bifurcation analysis of a uniaxially compressed rectangular layer described by an implicit constitution. We then provide general governing equations regarding the mixed unknowns, i.e., displacement and stress fields, within the framework of finite strain deformation.