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Abstract

This paper presents a new multi-scale method for the homogenization analysis of hyperelastic solids undergoing finite
strains. The key contribution is to use an incremental nonlinear homogenization technique in tandem with a model reduc-
tion method, in order to alleviate the complexity of multiscale procedures, which usually involve a large number of non-
linear nested problems to be solved. The problem associated with the representative volume element (RVE) is solved via a
model reduction method (proper orthogonal decomposition). The reduced basis is obtained through pre-computations on
the RVE. The technique, coined as reduced model multiscale method (R3M), allows reducing significantly the computation
times, as no large matrix needs to be inverted, and as the convergence of both macro and micro problems is enhanced.
Furthermore, the R3M drastically reduces the size of the data base describing the history of the micro problems. In order
to validate the technique in the context of porous elastomers at finite strains, a comparison between a full and a reduced
multiscale analysis is performed through numerical examples, involving different micro and macro structures, as well as
different nonlinear models (Neo-Hookean, Mooney-Rivlin). It is shown that the R3M gives good agreement with the full
simulations, at lower computational and data storage requirements.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Homogenization of heterogeneous solids in a geometrically and physically non-linear regime is a chal-
lenging problem in computational mechanics [52,11]. Furthermore, the question of characterizing the behav-
iour of heterogeneous media undergoing finite deformations arises in many modern applications, such as
biological tissues [24], and reinforced rubbers [56]. Whereas homogenization techniques have been widely
used and have proved to be efficient tools in the context of linear heterogeneous materials, most of them
are not suitable to deal with large deformations, complex loading paths, and cannot account for an evolving
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micro-structure. Foundations of the homogenization of heterogeneous materials are outlined in Willis [63],
Suquet [59], Müller [45], Nemat-Nasser and Hori [46], Ponte Castañeda and Suquet [52] and Miehe et al.
[41], among others. Determining an effective energy-density function for describing the overall behaviour
of composites was extended to finite deformation elasticity in the pioneering works of Hill [19], Hill and
Rice [20] and Ogden [48].

Analytical approaches are in many circumstances restricted, especially with regard to the geometry of the
representative micro-structure and its constitutive response which is often assumed to be linearly elastic. In the
context of hyperelastic media, some estimates exist for special loadings [18]. Other estimates have been pro-
posed, based on various types of ad hoc approximations, mostly for low-density foams (see i.e., [10,12]).
Bounds on the overall strain energy-density functions of geometrically nonlinear composites were determined
by Ogden [49] and Ponte Castañeda [51]. More recently, Ponte Castañeda [53] and Lopez-Pamies and Ponte
Castañeda [35] developed a variational procedure for determining the effective properties of composites under-
going finite deformations and obtained some specific results for the class of transversely isotropic composites,
and generated estimates for effective behaviour and loss of ellipticity in hyperelastic porous materials with ran-
dom microstructures subjected to finite deformations. deBotton et al. [4] have considered the response of a
transversely isotropic fiber-reinforced composite made out of two incompressible Neo-Hookean phases under-
going finite deformations. They developed an expression for the effective energy density function of the com-
posites in terms of the volume fractions of the phases.

Modelling heterogeneous materials by meshing the whole structure, including all heterogeneities, leads to
giant computations. Such an approach may be practicable for some very specific structures where the heter-
ogeneities are quite big, and where the material is linear. Recently, some attempt have been made to re-
formulate this global problem and consequently to try to reduce the computational cost [29].

Alternatively, computational or incremental homogenization techniques have been developed, which are
essentially based on the solution of two (nested) boundary value problems, one for the macroscopic and
one for the microscopic scale. In techniques of this type, e.g. [58,16,61,14,57,41,42,38,8,9,62,15,28], among
others, the macroscopic deformation (gradient) tensor is calculated for every material point of the macrostruc-
ture and is next used to formulate kinematic boundary conditions to be applied on the associated microstruc-
tural representative volume element (RVE). After the solution of the microstructural boundary value problem,
the macroscopic stress tensor is obtained by averaging the resulting microstructural stress field over the vol-
ume of the microstructural cell. As a result, the (numerical) stress–strain relationship at every macroscopic
point is readily available.

Techniques of this type offer the following advantages: (a) large deformations and rotations on both micro
and macro level can be incorporated; (b) arbitrary behaviour, including physically non-linear and time-depen-
dant behaviour can be used to model the micro level; (c) detailed microstructural information, including a
physical and/or geometrical evolution of the microstructure, can be introduced in the macroscopic analysis;
(d) different discretization techniques (finite element, meshfree methods, boundary element methods, etc.)
can be used at both levels.

Most of these techniques are called first-order, in which the assumption that the microstructural length
scale is infinitely small compared to the characteristic macro structural size. Second-order homogenization
have been proposed by Kouznetsova et al. [28] to handle problems where both length scales become compa-
rable, or when highly localized deformations occur. A similar approach have been proposed by Feyel in [9].
Direct micro-to-macro transitions based on finite element formulations of inelastic heterogeneous materials in
the large-strains context have recently been considered for example by Smit et al. [57], Miehe et al. [41], Kouz-
netsova et al. [27] and Miehe et al. [44].

Even though the cost is far less expensive than the brute force approach, these techniques still lead to large
computations, as many non-linear problems have to be solved, while the data necessary for the incremental
resolution have to be stored for each problem, generating a large database. One solution is the use of parallel
computations [8].

Alternatively, model reduction can significantly reduce time and data storage requirements. In [39,40],
Michel and Suquet proposed an approximate model for describing the overall hardening of elastoplastic or
elastoviscoplastic composites using non uniform transformation fields, generalizing the idea of Dvorak [6].
This analysis delivers effective constitutive relations for nonlinear composites expressed in terms of a reduced
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number of internal variables which are the components of the microscopic plastic field over a finite set of
plastic modes. In the mentioned work, the plastic modes were chosen as actual plastic fields in the composite
under some specific loadings.

The proper orthogonal decomposition (POD) is a powerful and elegant method for data analysis, aimed at
obtaining low-dimensional approximate descriptions of a higher-dimensional process. The POD provides a
basis for the modal decomposition of an ensemble of functions, such as data obtained in the course of exper-
iments or numerical simulations. The most striking feature of the POD is its optimality: it provides the most
efficient way of capturing the dominant components of an infinite-dimensional process with only a finite num-
ber of modes, often surprisingly few modes [3,22]. The technique seems adapted to the aforementioned multi-
scale approaches, where numerous non-linear problems have to be solved repeatedly.

The central contribution of this paper is the development of a reduced model multiscale method (R3M),
proposed for homogenization of nonlinear hyperelastic problems at finite strains. In the context of R3M, a
reduced model substitutes the full problem describing the nonlinear micro problem. The reduced basis is
obtained through a POD procedure. For this purpose, pre-computations are performed on the RVE subjected
to different applied loads. The main aim of this work is to evaluate the capabilities of the method in the context
of non-linear hyperelastic problems at finite strains and to compare it with a full computation. For sake of
simplicity, we will focus on problems where no loss of ellipticity occurs.

The layout of this paper is as follows. In Section 2, an overview of proper orthogonal decomposition is pro-
vided. In Section 3, the boundary-value problem associated with non-homogeneous hyperelastic material is
formulated. In Section 4, the reduced model multiscale method (R3M) is presented. Finally, the R3M is eval-
uated through different numerical examples in Section 5.

2. Model reduction using the proper orthogonal decomposition

The proper orthogonal decomposition [37] is obtained by a procedure which goes back at least to the
papers of Pearson [50] and Schmidt [54], and which reappears under a multitude of names, such as the Karh-
unen–Loève transform (KLT) [26,34], principal component analysis [21], proper orthogonal eigenfunctions
[36], factor analysis [17], and total least squares [13]. The singular value decomposition algorithm [13] is a
key to the understanding of these methods.

The POD was initially designed to analyze random process data by introducing new coordinate systems
based on its statistical properties. It does not only provide structures within random data, but also leads to
more efficient way of coordinate description. These characteristics make the POD a suitable tool for various
tasks ranging from data analysis and compression to model order reduction. The POD identifies a useful set of
basis functions and the dimension of the subspace necessary to achieve a satisfactory approximation of the
system. The POD also facilitates the resolution of the partial differential equations through their projection
into a reduced-order model [1].

Applications of this approach are found in many engineering and scientific disciplines, such as random vari-
ables analysis, image processing, signal analysis, data compression, process identification and control in chem-
ical engineering, oceanography, etc. [22]. The POD has been used to obtain approximate, low-dimensional
descriptions of turbulent fluid flows [22,37], structural vibrations and chaotic dynamical systems [7]. Many
recent investigations have examined impacting systems [1,2] and thermics [47].

In particular, the KLT best approximates a stochastic process in the least square sense. It can be formulated
for both continuous and discrete time. In the following, we focus on the discrete KLT for incremental non-
linear mechanical analysis. The mathematical theory of the KLT relies on the properties of Hilbert spaces.
A Hilbert space H is a vector space that is complete as a metric space and has a scalar product Æ.,.æ. The norm
is defined as kwk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hw;wi

p
for w 2 H and the metric is defined as d(w,/) = iw � /i for w,/ 2 H. Without

loss of generality we will consider in his paper Hilbert spaces only in RN . The concept of orthonormality is
crucial for the derivation of the KLT: two vectors wi,wj 2 H are orthonormal if Æwi,wjæ = dij. A basis W of
a Hilbert space is orthonormal if any two distinct vectors wi,wj 2 W are orthogonormal.

We consider a D-dimensional solid subjected to a time-dependent quasi-static loading during a time interval
I = [0, T] discretized by S instants {t1, t2, . . . , tS}. Let qi denote the DN-dimensional vector formed by the dis-
placement components of N points of the solid recorded at an instant ti 2 I.
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Next, we consider a time-dependant vector qRðtÞ 2 RDN and the following expansion:
qRðtÞ ¼ /0 þ
XM

m¼1

/mnmðtÞ ð1Þ
where M < DN, /0 and /m (m = 1, . . . ,M) are constant vectors belonging to RDN , and nm(t) are scalar func-
tions of time t. The time dependent vectors qR(t) given by (1) are required to minimize:
XS

i¼1

kqðtiÞ � qRðtiÞk2 ð2Þ
with the constraints:
h/i;/ji ¼ dij: ð3Þ

Solving this constrained optimization problem gives /0 (see i.e. [31,5]) as:
/0 ¼ �q ¼ 1

S

XS

i¼1

qðtiÞ ð4Þ
and /i (i = 1, . . . ,DN) as the eigenvectors of the eigenvalue problem:
Q/i ¼ ki/i: ð5Þ

Above, Q is the covariance matrix defined by:
Q ¼ UUT; ð6Þ

where the matrix U is a (DN · S) matrix with the centred vectors as columns:
U ¼ fqðt1Þ � �q; qðt2Þ � �q; . . . ; qðtSÞ � �qg: ð7Þ

Note that Q is a semi-definite (DN · DN) matrix, whose eigenvalues ki are decreasingly ordered:

k1 P k2 P� � �kM P� � �P kDN P 0.
A reduced model can be obtained by using only a small number M of basis functions in Eq. (1). If M < DN,

it can be shown (see i.e. [31]) that the error induced by the K–L procedure is given by:
�ðMÞ ¼
XS

i¼1

kqðx; tiÞ � qRðx; tiÞk ¼
XDN

i¼Mþ1

ki

 !1=2

; ð8Þ
where M is the number of selected basis functions.
The number of basis functions M is then chosen such that
PDN

i¼Mþ1ki

� �1=2

PDN
i¼1ki

� �1=2
< d; ð9Þ
where d is a given tolerance error parameter, small compared to one.

3. Formulation of the inhomogeneous hyperelastic material problem

3.1. Macro problem

Let X0 be the open domain in RD that a D-dimensional solid occupies in its reference configuration and let
oX0 denote the boundary of X0. The current configuration and the associated boundary of the solid are
referred to as X(t) and oX(t). We define oX0u and oX0r as the portions of the prescribed displacements and
tractions, respectively. We assume that oX0 = oX0u [ oX0r and oX0u \ oX0r = ø. Let u(t) 2 H1(X0, t) be the
macroscopic displacement field for a given instant t 2 I. The current position vector x(t) of a particle of the
solid at t is related to its reference position X by:
xðX; tÞ ¼ Xþ uðX; tÞ: ð10Þ

Let �F ¼ rX uþ 1 the macroscopic deformation gradient tensor. The macroscopic nominal stress tensor �P is
related to �F by:
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�P ¼ o �Wð�FÞ
o�F

; ð11Þ
where �W represents the strain-energy function describing the homogenized material. At both the micro and
macro scales, W = W(F) is assumed to be continuous and satisfy the principle of frame invariance, i.e.
W(QF) = W(F) for all rotation tensors Q. Furthermore, the reference configuration is taken to be stress-free,
so that W(1) = 0.

We assume quasi-static deformations of the solid over the time interval I (here the time parametrizes the
loading). The problem to solve is defined as follow:
r � �Pþ �B ¼ 0 and �P�FT ¼ ð�P�FTÞT in X0; ð12Þ

where �B is a body force term. In (12), the second equation is due to the moment equilibrium. The boundary
conditions are defined by:
uðXÞ ¼ �uðXÞ on oX0u;

�PN ¼ �t on oX0r:

�
ð13Þ
At both the macro and micro scales, P is related to the Cauchy stress r by P = JrF�T, J = det(F). The weak
form associated with the balance equation (12) is given as follows:

Find u 2 H1(X0) verifying the boundary conditions u ¼ �u on oX0u such that, "t 2 [0,T]:
Z
X0

�PðtÞ : rX ðduÞ dX ¼
Z

X0

�S : d�E dX ¼
Z

X0

�B � du dXþ
Z

oX0r

�t � du dC 8du 2 H 1
0ðX0Þ ð14Þ
or in a more compact form:
d �W int ¼ d �W ext; ð15Þ

where H1(X0) and H 1

0ðX0Þ are the usual Sobolev spaces. In (14) S denotes the second Piola Kirchhoff stress
tensor, related to P through P = FS, and dE is expressed by:
dE ¼ 1

2
½FTrX ðduÞ þ rX ðduÞTF�: ð16Þ
In order to solve the nonlinear problem (14), an incremental procedure is required, e.g. a Newton–Raphson
procedure, implying the linearization of (14), which leads to the set of linear increments [23]:
DDudW intðu; duÞ ¼
Z

X0

½rX ðduÞ : rX ðDuÞ�Sþ �FTrX ðduÞ : �Ce : �FTrX ðDuÞ� dX; ð17Þ
where �Ce denotes the fourth-order homogenized material elasticity tensor. We note that in the case of inho-
mogeneous hyperelastic materials, �W is not known in general. The elasticity tensor �Ce can thus not be ex-
pressed in closed-form. In order to determine the macroscopic stress–strain relationship, we formulate the
problem describing structure at the microlevel in the former section.

3.2. Micro problem

Let X0
l be a representative volume element at the micro scale in the neighbourhood of a macro point X (see

Fig. 1). We assume that X0
l has a characteristic length much smaller than the characteristic dimension of the

structure. Following similar definitions from former section, and denoting by (Æ)l the micro quantities, we
assume the existence of a strain energy function W(t) such as the microscopic nominal stresses are related
to the microscopic gradient of the transformation by:
P ¼ oWðFÞ
oF

ð18Þ
with F = $Xul + 1. The weak form associated with the balance equation over X0
l is defined by:
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Fig. 1. R3M resolution scheme.
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Find ulðtÞ 2 H 1ðX0
lÞ satisfying ul ¼ �ul on oX0

lu such that "t 2 [0, T]:
Z
X0

l

PðtÞ : rX ðduÞ dX ¼
Z

X0
l

B � du dXþ
Z

oX0
lr

t � du dC 8du 2 H 1
0ðX

0
lÞ; ð19Þ
where B is the local body force term and t are the applied tractions. To complete the problem, we need to
specify some appropriate boundary conditions for the micro problem. This point will be detailed in the next
section. At the microscale, we assume that the behaviour of different constituents is known. In this work, we
consider a porous material with a hyperelastic model describing the behaviour of the matrix. More precisely,
the compressible Mooney-Rivlin model is characterized by the energy function [23]:
W ¼ cðJ � 1Þ2 � d logðJÞ þ c1ðI1 � 3Þ þ c2ðI2 � 3Þ; ð20Þ

where I1, I2 and J are given by:
I1 ¼ TrðCÞ; I2 ¼
1

2
½TrðCÞ2 � TrðC2Þ�; J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ

p
ð21Þ
with C = FTF the right Cauchy–Green tensor. In (20) c, c1 and c2 are material constants and d defines a
(dependent) parameter with certain restrictions. By recalling the assumption that the reference configuration
is stress-free we may deduce from (20) that d = 2(c1 + 2c2). A special case of the strain-energy (20) is found by
taking c2 = 0, leading to the compressible Neo-Hookean model.

Linearization of (19) is obtained by substituting the macro quantities for the micro ones in (17). The asso-
ciated stress tensors and elasticity tensors are given in Appendix A.1 (Eqs. (46) and (50), respectively), in the
special case of the Mooney-Rivlin model (20). The matrix forms obtained through a Galerkin (finite element)
discretization are given in Appendix A.2.

In the micro domain, we assume that the current position of the material points is the superposition of an
average field and a fluctuating field w(Xl) induced by the presence of heterogeneities:
xl ¼ �FXl þ wðXlÞ ð22Þ

we thus have:
F ¼ �FþrX wðXlÞ: ð23Þ
3.3. Coupling between scales

In the present paper, we aim at solving iteratively the problems (14) in the structure and (19) in each macro
integration point. The coupling between the scales is performed in the following way: (a) specific deformation-
driven boundary conditions are imposed on the RVE; (b) after solving the micro problem, the macro stresses
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are recovered by an averaging procedure of the micro stresses. An iterative procedure, e.g. Newton–Raphson
technique, is then used to satisfy (14) and (19) at every integration point. In order to specify the boundary
conditions on the RVE, we note the additional constraint:
�FðXÞ ¼ 1

X0
l

Z
X0

l

FðXlÞ dX; ð24Þ
where �FðXlÞ denotes the homogenized gradient of the transformation associated with the point of the macro-
structure X. Introducing (22) in (24), yields
�FðXÞ ¼ 1

X0
l

Z
X0

l

�FðxÞ dXþ 1

X0
l

Z
X0

l

rX wðXlÞ dX ¼ �FðxÞ þ 1

X0
l

Z
oX0

l

wðXlÞ �N dC ð25Þ
which imposes:
1

X0
l

Z
oX0

l

wðXlÞ �N dC ¼ 0 ð26Þ
with N the unit outward normal on oX0
l. The condition (26) is satisfied for the following local boundary

conditions:
ðiÞ wðXlÞ ¼ 0 on oX0
l and ðiiÞ wþðXlÞ ¼ w�ðXlÞ on oX0

l: ð27Þ
The first condition (27(i)) is satisfied by using homogeneous deformations on the boundary
xl ¼ �FXl 8X l 2 oXl or ul ¼ ½�F� 1�Xl 8X l 2 oXl: ð28Þ
The second condition (27(ii)) states a non-trivial periodicity of the superimposed fluctuation w on oX0
l. Here

the boundary is understood to be decomposed into two parts oX0
l ¼ oXþl [ oX�l with outward normals N+,

N�, N+ = �N� at two associated points Xþl 2 oXþl and X�l 2 oX�l . A third condition can be expressed, asso-
ciated with homogeneous stress t ¼ �PN on the boundary oX0

l � oX0
lr [43].

In this work, we consider only the condition (28) for the sake of simplicity.
The macro stresses are recovered through:
�PðtÞ ¼ 1

X0
l

Z
X0

l

PðXl; tÞ dX: ð29Þ
Using the equilibrium of couples acting on the micro-structure [43]:
Z
oX0

l

tðt� xl � xl � tÞ dC ¼ 0 ð30Þ
and the identity:
�P ¼ 1

X0
l

Z
oX0

l

t� Xl dC ð31Þ
together with (28) we have:
�P�FT ¼ 1

X0
l

Z
oX0

l

ðt� XlÞ�FT dC ¼ 1

X0
l

Z
oX0

l

½�FðXl � tÞ�T dC ¼ 1

X0
l

Z
oX0

l

½ð�FXlÞ � t�T dC

¼ 1

X0
l

Z
oX0

l

½xl � t�TdC ¼ 1

X0
l

Z
oX0

l

t� xl dC:
Using (30) we finally obtain
1

X0
l

Z
oX0

l

t� xl dC ¼ 1

X0
l

Z
oX0

l

½xl � t�T dC



Table 1
Equations of the multilevel analysis

Macro problem Micro problemR
X0

�PðuÞ : rX ðduÞ ¼ d �W ext

R
Xl

0
PðulÞ : rX ðduÞ ¼ dW l

ext

�P ¼ 1
Xl

0

R
Xl

0
PðulÞ dX Boundary conditions on oXl

0 via �FðxÞ
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and thus
�P�FT ¼ ð�P�FTÞT
which confirms the symmetry of the macroscopic Kirchhoff stress by means of the boundary conditions (28).
The coupling between the micro and macro problems is illustrated in Fig. 1. The different equations are

outlined in Table 1.
It is worth noting that there is no practical way of calculating the tangent matrix associated with the macro

non-linear problem. One solution is to approximate this matrix using a perturbation method [8]. Computing
tangent matrix in this way requires the solution of four (2D) or six (3D) finite element problems whose cost is
not negligible. In this work we have used the tangent matrix associated with the homogeneous material
describing the matrix of the porous structure, for the sake of simplicity.

4. The reduced model multiscale method (R3M)

The R3M is a multiscale analysis, in which the problem associated with the lower scale is solved numerically
by using the POD. Following similar approaches [58,16,61,14,57,41,42,38,8,9,62,15,28], the computational
homogenization is performed through a nested solution scheme for the coupled multi-scale numerical analysis.
A numerical computation of the representative volume element is carried out simultaneously in order to obtain
constitutive equations at the macroscopic scale. All non-linearities come directly from the microscale. It
requires simultaneous computation of the mechanical response at two different scales: the macroscopic (which
is the scale of the whole structure) and the underlying microscopic RVE at each macroscopic integration point.
Macroscopic phenomenological relations are unnecessary, even in non-linear case. The macro-mechanical
behaviour arises directly from what happens at the microscopic scale, phenomenological constitutive equations
being written only at this scale. The main contribution of R3M is to alleviate the numerous computations
associated with nonlinear micro problems, by using a model reduction method. The main ingredients of
R3M are given as follow:

(1) Multilevel numerical analysis;
(2) pre-computations on the RVE in order to obtain the reduced basis;
(3) resolution of the micro problem using POD.

The formulation of (1) has been presented in Section 3. A detailed presentation of points (2) and (3) is made
in the next sections.

4.1. Pre-computations of the reduced basis

In order to obtain a reduced basis which approximates reasonably the full model, it is crucial to define pre-
cisely the pre-computations that will generate the basis. Usually, several simulations are performed for differ-
ent values of parameters describing the model, e.g. those associated with boundary conditions, or with
material parameters. In our specific problem, the model is defined by the four parameters associated with
the boundary conditions on the RVE, i.e. the four components of the macroscopic tensor �F. One arising ques-
tion is to determine the different combinations of parameters (evolving in time) that will generate an accurate
solution with the obtained reduced basis. In the present context, we propose a minimal number of sampling
simulations in order to construct the reduced basis. For that purpose, we propose the notion of kinematically

minimal basis, i.e. the one that can reproduce exactly the essential boundary conditions.
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In our specific problem, the boundary conditions on the RVE are defined according to (28). We thus have:
Box

1. F
1
C

U

w
2. C

V

E
3. C

Q

4. S

Q

5. C

U

w

ujoX0
l
¼ ½F� 1�Xl ¼ c11 c12

c21 c22

� �
X 1l

X 2l

� �
: ð32Þ
We then define the following loading tests on the RVE:
F�1 ¼
ðc11 þ 1Þ 0

0 1

� �
; F�2 ¼

1 c12

0 1

� �
; ð33Þ

F�3 ¼
1 0

c21 1

� �
; F�4 ¼

1 0

0 ð1þ c22Þ

� �
: ð34Þ
It is worth noting that the proposed sampling simulations are necessary but not sufficient. This means that it
does not guarantee that each displacement field inside of the micro domain can be reproduced, due to the non-
linear character of the problem. Additional sampling experiments may be carried out, in order to improve the
accuracy of the POD solution, including other combinations of the parameters. As reported in [33], the fo-
cused data sampling leads to a very accurate reduced model, but does not lead to a reduced-order basis that
can accurately capture the solution space for a range of parameter space. It has been shown in (see i.e. [33])
that in the general case the POD cannot be expected to approximate well the response away from the response
paths generated individually by the evolution of the different parameters. For that purpose, an adaptation of
the basis may improve the method. Several techniques have been proposed to alleviate this drawback of POD,
see e.g. [60,55,32]. Such developments are beyond the scope of this study.

We recommend to choose the amplitude of the parameters associated with the boundary conditions such
that they cover the range of applications. The procedure is described below.

We choose the amplitudes of cij by performing a preliminary simulation on the macrostructure. A simula-
tion at the macro scale is carried out using the Mooney-Rivlin model (20) in order to determine �P at each inte-
gration points. We thus store the maximum and minimum values of each components of �F, the amplitudes of
cij are then chosen according to:
cij 2 fF min
ij � dij; F max

ij � dijg ð35Þ

which gives an estimation of the amplitudes associated with the boundary condition parameters. In the above,
cij can be either positive or negative.
1. Pre-computations of the reduced basis

OR each test case a (see Section 4.1)
.1. Solve, for t = t1, t2, . . . , tS, the problem (19) using standard procedures
ollect the centred vectors as columns of the matrix Ua

a ¼ fqðt1Þ � �q; qðt2Þ � �q; . . . ; qðtSÞ � �qg
ith �q ¼ 1

S

PS
i¼1qðtiÞ

ollect the matrix Ua in V such as:

¼ fU1; U2; . . . ; Uag
ND
onstruct the covariance matrix

¼ VVT

olve the eigenvalue problem:

/k ¼ kk/k

onstruct the reduced basis

¼ f/1;/2; . . . ;/Mg
here M is chosen according to (9)
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4.2. Resolution of the micro problems using POD

The discretization of the linearized problem associated with (19) using a Galerkin procedure, i.e. the finite
element method (other methods could alternatively be considered, i.e. meshfree methods or boundary ele-
ments method) leads to the following discrete system of equations, by applying an incremental procedure:
Bo

LO
Kk
lDqkþ1 ¼ fextðlÞ � fk

intðqk
lÞ; ð36Þ
where Kk
l is the tangent matrix computed from (53), fext(l) and fk

int denote the internal and external forces vec-
tors, respectively, computed from (59). In the following, The superscript k denotes the iteration index, while
the subscript n denotes the increment index.

The central contribution of R3M is to reduce the problem (36) into a small system of linear equations using
POD. Let U a set of basis function such as U = {/1,/2, . . . ,/M}, as defined in the former section. The incre-
ment of displacement is expanded, by the Ritz basis of M functions /m, as:
Dqkþ1 ¼
XM

m¼1

/mDnkþ1
m : ð37Þ
Introduction of (37) in (36) leads to:
Kk
lUDnkþ1 ¼ fextðlÞ � fk

intðqk
lÞ; ð38Þ
where n = {n1,n2, . . . ,nM}. Pre-multiplication of (38) with UT leads to:
UTKk
lUDnkþ1 ¼ UT½fextðlÞ � fk

intðqlÞ�: ð39Þ
After resolution of (39), the reduced variables are updated according to:
nkþ1 ¼ nk þ Dnkþ1: ð40Þ

We note that : (a) the resolution of (39) only involves the inversion of a M · M matrix instead of a ND · ND

for the full problem, with M� ND (we recall that N and D denote the number of nodes and the space dimen-
sion, respectively); (b) the storage of nk at each integration point involves only M · P real number table, with
P the number of integration points on the macro structure, P being of the order of N. If three scales are in-
volved, the size of the database in the full multilevel method (i.e. FE2 [8,9]) growths with O(N3), with N the
number of nodes, assumed to be of the same order in the micro and micro problems. In the R3M, the com-
plexity of the database remains O(M2N). It is worth noting that such simulation would still involve large com-
putations in both approaches. Nevertheless, the R3M is fully compatible with parallel approaches, but
remains less expensive than full approaches, as it will be demonstrated in the next section.

4.3. General algorithm of R3M

The general algorithm is outlined in Boxes 1, 2, and 3. A schematic view of the resolution strategy is
depicted in Fig. 1. In Box 2 and 3, q denotes the generalized displacement vector, while u denotes the displace-
ment vector associated with one element containing an integration point.
x 2. Resolution of the MACRO problem

OP over all time steps
Given qn:
Initialize qn+1 = qn:
WHILE iRi > TOL (R = fext � fint)

LOOP over all integration points Xi:
Compute �FðXiÞ ¼ 1þrX ðuk

nþ1Þ
Given [n(Xi)]n, compute �PðXiÞ and [n(Xi)]n+1 from the micro domain;
go to Box 3.



Compute the elementary contributions ½f intðeÞðXiÞ�kþ1
nþ1, ½KT ðeÞðXiÞ�kþ1

nþ1 and assemble them in
½f int�kþ1

nþ1 and ½KT �kþ1
nþ1

END
Solve ½KT �kþ1

nþ1Dqkþ1
nþ1 ¼ fext � ½f int�kþ1

nþ1

Update displacements:
qkþ1

nþ1 ¼ Dqkþ1
nþ1 þ qk

nþ1, k k + 1

END

END
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5. Numerical examples

5.1. Analysis on some various representative volume elements

The main objective of the proposed approach is to solve the microscopic problem using a POD model
reduction method. As described in Section 4.1, the reduced basis is generated by performing some simulations
and then collecting snapshots of the solution so as to select influent modes (see Box 1). Nevertheless, these pre-
computations are carried out for some specific values of parameters describing the model. In the present con-
text, these parameters are the four components of the 2D-macroscopic deformation tensor �F, which define the
boundary conditions on the RVE through the relation (28). In the multiscale analysis (see Boxes 2 and 3), the
a b

c d
Fig. 2. Different RVE used for the analysis: (a) RVE1, 452 dof; (b) RVE2, 744 dof; (c) RVE3, 1056 dof; (d) RVE4, 1612 dof.
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microscopic problem is solved using arbitrary combinations of the boundary conditions, provided by the mac-
roscopic scale, that do not necessarily match the values of the parameters used in the pre-computations. The
aim of this first example is two fold: on one hand, we evaluate the accuracy of the solution provided by the
reduced model, away from the parameter paths used in the pre-computations; on the other hand, we aim at
evaluating the influence of some features of the model on the accuracy of the POD solution and on the number
of selected modes. These features are: (a) the geometrical complexity of the domain; (b) the constitutive model;
(c) the number of pre-computations used to construct the reduced basis.

Box 3. Resolution of the MICRO problem
Given �FðXiÞ; ½nðXiÞ�n:
Set nn+1 = nn ” [n(xi)]n:
WHILE iRi > TOL ðR ¼ UTfl

intÞ
Reconstruct displacement field in the micro domain from the reduced basis:
½ql�

r
nþ1 ¼ Unr

nþ1

LOOP over all integration points ½Xl�j � Xl
j :

Compute FðXl
j Þ ¼ 1þrX ð½ul�rnþ1Þ

Compute PðXl
j Þ from constitutive equation

Compute the elementary contributions ½fl
intðeÞðX

l
j Þ�

rþ1
nþ1, ½K

l
T ðeÞðX

l
j Þ�

rþ1
nþ1 and assemble them in

½fl
int�

rþ1
nþ1, ½K

l
T �

rþ1
nþ1

END
Solve the reduced problem and update reduced variables:
UTf½Kl

T �
rþ1
nþ1gUDnrþ1

nþ1 ¼ �UT½fl
int�

rþ1
nþ1

nrþ1
nþ1 ¼ Dnrþ1

nþ1 þ nr
nþ1, r r + 1

END
½nðxiÞ�nþ1 ¼ nrþ1

nþ1

Compute the average stress in the micro domain:
�PðXiÞ ¼ 1

X0
l

R
X0

l
PðXlÞ dX
To test the influence of the geometrical complexity, four models of RVE have been constructed, as depicted
in Figs. 2a–d, with increasing complexity. In the following, these models are referred to as RVE1, RVE2,
RVE3 and RVE4, respectively.

Two material models are used: (a) a Mooney-Rivlin model described by Eq. (20) with parameters
c1 = 6.3 · 105 N/m2, c2 = �0.012 · 105 N/m2 and c = 20 · 105 N/m2 and (b) a Neo-Hookean model described
by Eq. (20) with parameters c1 = 6.3 · 105 N/m2, c2 = 0 N/m2 and c = 100 · 105 N/m2. The second model is
Fig. 3. Evolution of the components of the boundary conditions used in the pre-computations.
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nearly incompressible, and thus involves more geometrical non-linearities. These two models will be used to
determine the influence of the geometrical nonlinearity on the number of selected basis.

Two sampling experiments are carried out to construct the reduced basis. In the first experiment, four sim-
ulations are conducted, in which each of the four parameters describing the boundary conditions varies inde-
pendently. The reduced basis is then constructed using the set of obtained samples, as described in Box 1. In
Fig. 4. First nine modes of the reduced basis using RVE4.

Table 2
Analysis of the reduced basis size

Model Total nb. of dof Four sampling simulations Five sampling simulations

Nb. reduced modes Max. error (%) nb. reduced modes Max. error (%)

RVE 1 Mooney-Rivlin 452 18 1.5 22 1.4
Neo-Hookean 21 7 25 2.5

RVE 2 Mooney-Rivlin 744 19 3 23 2.2
Neo-Hookean 22 8 25 3

RVE 3 Mooney-Rivlin 1056 19 1.8 23 1.5
Neo-Hookean 23 15 26 4.6

RVE 4 Mooney-Rivlin 1612 21 3.1 24 1.8
Neo-Hookean 25 12 29 4.7
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the second experiment, an additional simulation is performed, combining several parameters, whose evolution
is described in Fig. 3. In the second case, the reduced basis is constructed using five samplings. The resutling
numbers of modes for d = 1 · 10�7 in Eq. (9) and c = 0.25 are given in Table 2, c being described in Fig. 3. The
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first nine representative modes associated with sampling experiment 2, RVE4 and Neo-Hookean model, are
depicted in Fig. 4. The associated normalized eigenvalues bi = ki/kmax are indicated.

From Table 2, we can notice that for the proposed example, the number of modes is almost independent of
the number of degrees of freedom of the full model, but is also independent of the geometrical complexity of
the full model. Nevertheless, we can observe that the size of the reduced basis is larger for the Neo-Hookean
model. This can be explained by the fact that an increase in the material parameter c in Eq. (20) induces a
higher level of incompressibility, which leads to more geometrical non-linearities. For both material models,
the number of modes is higher when adding the sampling experiment with the parameter evolution described
in Fig. 3. It is shown that the resulting displacement fields can not be reproduced accurately with the minimal
basis, obtained with independent evolution of the parameters.

In order to test the accuracy of the reduced basis away from the sampling paths, we impose boundary con-
ditions on the different RVE using the evolution of the different parameters �F 11, �F 12, �F 21 and �F 22 as depicted in
Fig. 5. The different curves describing the evolution of the parameters with respect to time have been chosen as
quadratic functions, such as the load passes continuously from a pure biaxial traction state, for t = Tmax/2, to
a complex combined shear/traction loading, for t = Tmax.

The deformed configurations of the RVE 4 with Neo-Hookean model corresponding to full analysis
(1612 dof) and reduced model (29 dof) are compared in Fig. 6. We can observe that the values of stress are
similar. For a more in-depth analysis of the accuracy, the relative error:
e ¼ 100
P full

ij � P reduced
ij

jP full
ij j

ð41Þ
between full and reduced analysis has been computed for each test of Table 2. The results are indicated in
Table 2. We can observe that the reduced model constructed with the first sampling experiment induces higher
errors than with the second sampling experiment, which implies an additional sampling path. A comparison of
the homogenized stresses obtained for a particular case, by choosing RVE 3 and Neo-Hookean model, is pro-
vided in Fig. 7.

From Fig. 7a, we can notice that for t > Tmax/2, there is a divergence between the reduced and full model
solutions, which suggests that the basis generated by the evolution of the parameters can not reproduce accu-
Fig. 9. Deformation of the macro and micro structures.
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rately the solution for the Neo-Hookean model. The reduced basis produced by the additional sampling exper-
iment provides a much better solution, as can be seen in Fig. 7b. A complete study for the different geometrical
and material models is provided in Table 2. The same conclusions can be drawn for the different RVE models.
The error is much smaller for the Mooney-Rivlin model, because the geometrical non-linearities are lower for
this model. Thus, the bi-axial traction state does not give rise to much additional uncorrelated modes.

5.2. Traction test

In the former example, no coupling between the micro and macro scales has been considered. Here a com-
plete multi-scale analysis is carried out. A porous material whose matrix is characterized by the compressible
Mooney-Rivlin model (20) considered. The following numerical parameters are chosen: c1 = 6.3 · 105 N/m2,
c2 = �0.012 · 105 N/m2 and c = 20 · 105 N/m2.

The diameters of the holes are taken to be very small compared to the characteristic length of the specimen.
The macro structure consists of a two-dimensional square plate submitted to plane strains traction, as depicted
in Fig. 8a. Due to the symmetry of the problem, only a quarter of the plate is modelled. The FE model of the
macrostructure is depicted in Fig. 8b, and consists in 400 nodes and a total of 722 integration points.

In order to perform a multiscale analysis, we associate a representative volume element (RVE) with each
integration point of the macrostructure FE model. The FE model of the RVE is shown in Fig. 2. The porosity
of the material is 0.03. The full FE model of the RVE involves 832 dof. Displacements on the boundary
(X2 = L/2) of the macrostructure are imposed, corresponding to stretches ranging from 0% to 40%.
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In order to obtain the reduced basis, preliminary computations are performed on the RVE, obtained by the
POD procedure described in Section 2 and Box 1. Here, the reduced basis has been constructed using only the
minimal number of sampling experiments proposed in Section 4.1. The number of basis is determined by
choosing d = 10�7 in (9). For this particular problem, 20 modes are selected, which remain much smaller than
the 832 dof of the full model.

A full multiscale computation is performed, according to the procedure described Section 4.3. We carry out
two simulations, one using the full RVE model, which will be used as a reference solution, and one using the
reduced model, implying only 20 modes. The deformation of the macrostructure and of the microstructures
associated with points A, B and C (see Fig. 8b) are plotted in Fig. 9.

We compare for the points A, B and C the homogenized stresses �P 11, �P 12, �P 21 and �P 22 obtained through
the full and reduced approaches, during the simulation. The stresses are plotted versus the deformation
of the macroscopic structure defined by: � ¼ 2�uyðx2 ¼ HÞ=L. We recall that the same reduced basis is used
for the resolution of problems associated with all the integration points of the macrostructure. The results
are depicted in Figs. 10a, 11a and 12a. The relative error in percent is given in Figs. 10b, 11b and 12b.

Remarkably, the same reduced basis is able to reproduce accurately the kinematics associated with the
arbitrary linear boundary conditions, as defined in (27(i)). Less than 0.25% error was observed for the points
studied, which are representative of the different loads in the structure.

To evaluate the accuracy of the solution with respect to the number of basis functions, a convergence anal-
ysis is carried out. We have computed, for point C, the cumulated error:
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eðMÞ ¼
Z T

0

kP red
ij ðMÞ � P full

ij k dt ð42Þ
with respect to the number of basis functions M. The values of d (see Eq. (9)) are also indicated. The results are
depicted in Fig. 13.
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From Fig. 13 we can observe that the error decreases quickly with the number of basis functions. Above 20
modes (d = 10�7), the gain in accuracy is not significant. Nevertheless, the value of d is obviously problem-
dependent. The question of deciding which modes should be preserved in the model has been evocated in Lall
et al. [30]. Typically, the low-frequency modes are kept. However there are many situations where this is not
the best choice: in particular, in control systems where the frequency at which an accurate model is necessary is
at crossover, and may not correspond to the low frequency modes of the system. It has also been reported in
Joyner et al. [25] that in some cases, that further increase of number of eigenfunctions up to the optimal num-
ber of empirical eigenfunctions does not improve accuracy and may even deteriorates accuracy because the
eigenfunctions with small eigenvalues are contemned with round-off errors.

The time computations as well as the size of the database needed to describe the history of the macroprob-
lems are given in Table 3. The times are normalized with respect to the minimum value.
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Table 3
Comparison between full and reduced analysis

Reduced (20 dof) Full (832 dof)

Nb. of iterations until convergence in each micro problem 2 5
Minimum nb. increment with stable solution for the whole solution at the macro level 10 40
Relative CPU time (whole simulation) 1 16.8
Size of the database (history of microproblems) 115 kb 4.8 Mb
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We observe from Table 3 and Fig. 14 that the time computations associated with the global micro/macro
analysis are significantly reduced as well as the size of the database. This gain in CPU time is mainly due (a) to
the inversion of much smaller matrices in the resolution of the successive nonlinear problems associated with
the RVE; (b) the Newton–Raphson algorithm converges faster using the reduced basis, i.e. less iterations are
needed to find the solution of the nonlinear micro problems; (c) larger time steps can be used at the macrolevel,
which saves a large amount of microproblems to be solved. In this example, only 10 loading increments were
necessary to achieve the whole simulation using R3M, against 40 for the full approach. The minimum time
steps length was chosen such that no divergence occurs at the microlevel. The time associated with each macro
iteration decreases as the solution converges for both approaches, (see Fig. 14). When the solutions of the
microproblems begin to converge, less iterations are involved at the macrolevel.
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Fig. 16. Geometry of the elastomer bushing problem.

Fig. 17. Deformation of the macro and micro structures.
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Finally, we have computed the forces acting on the upper surface (X2 = L/2) of the macrostructure during
the deformations, according to
pðtÞ ¼
Z

CðX 2¼LÞ
PðtÞN dC: ð43Þ
The X2-component of p(t) is depicted in Fig. 15 for the porous hyperelastic material, using full analysis and
R3M. Excellent agreement is observed compared to the full solution. As a comparison, the response of an
homogeneous material using the Mooney-Rivlin model (20) is also plotted.

5.3. Compression of elastomer bushing

An annular bushing composed of a metal inner sleeve, an outer metal sleeve, and an elastomer layer, is sub-
jected to a vertical prescribed displacement as shown in Fig. 16. The annular bushing constitutes the macro
structure. Due to the relatively higher stiffness of the metal sleeves, only the elastomer layer is modelled with
the outer surface completely fixed and the inner surface moved as a rigid surface in the vertical direction. The
elastomer is modelled as a Neo-Hookean hyperelastic material, with properties of Eq. (20) given as c1 =
6.3 · 105 N/m2, c2 = 0 N/m2 and c = 100 · 105 N/m2. Due to symmetry conditions, only a half of the structure
is modelled. The finite element model consists of 126 nodes and a total of 204 integration points.
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Here again, we consider a porous material and the model of the RVE is identical as in former example. New
pre-computations are performed for this new model in order to construct the reduced basis, considering the
different parameters of the model, and the values of the stress in the macrostructure. For this problem, 29
modes are selected, when d = 10�7 is used. The higher number of basis functions can be explained by the fact
that an increase in the material parameter c in (20) induces a higher level of incompressibility, which intro-
duces more geometrical non-linearities, as already noted in the example of Section 5.1.

A multiscale analysis is performed, using a full (reference solution) and reduced approach. The deformation
of the macrostructure and some representative microstructures are depicted in Fig. 17. This model involves
larger deformations at the microscale.

In this work, no contact algorithm was implemented in order to take into account the auto-contact of the
hole boundaries during compression. We thus have stopped the simulation so that no interpenetration of the
hole boundary occurs.

The comparison of homogenized stresses �P 11, �P 12, �P 21 and �P 22 is shown in Figs. 18a, 19a and 20a. The asso-
ciated relative errors are depicted in Figs 18b, 19b and 20b.

The Von Mises stress field associated with the porous material in the current configuration is computed
according to:
�ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
�rD : �rD

r
; ð44Þ
where �rD is the deviatoric part of �r, �rD ¼ �r� 1
3
Trð�rÞ. The associated field representation is depicted in Fig. 21.

Good agreement between full and reduced (R3M) approaches is noticed.
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6. Conclusion

A reduced model multiscale method for the nonlinear homogenization of hyperelastic media in large defor-
mations has been presented. A reduced model procedure has been used to solve the nonlinear problems asso-
ciated with the microscale. A significant gain in time saving is observed, mainly due to (a) only small matrices
are inverted; (b) in the context of the Newton–Raphson, the reduced solution of the micro problem converges
faster than the full solution; (c) larger time steps (loading increments at the macro level) can be used while
maintaining convergence of micro problems, which saves a great amount of nonlinear problems to be solved
at the micro level. Moreover, the database describing the evolution of the micro domains is drastically
reduced, as the solution can be expressed by a small number of reduced variables.

In this study, the effectiveness of R3M has been examined through porous hyperelastic problems, involving
tension, compression and shear at the microlevel at finite strains. A comparison with the full solution, which is
used as a reference solution, proves the good accuracy of R3M for different examples with complex loadings at
the micro level. A systematic study has been performed to determine the factors affecting the size of the
reduced basis. In the present context of hyperelastic media, it seems that the number of selected modes is
almost independent of the geometrical complexity as well as the total number of degrees of freedom of the
full model. Nevertheless, the size of the reduced basis increases with the geometrical non-linearities of a model
(i.e. the level of incompressibility). We have also shown that the choice of the pre-computations used to con-
struct the basis is crucial for obtaining an accurate solution.

Possible improvements of the method entails the development of a reduced basis adaptation procedure, in
order to handle more sever nonlinearities, more complex boundary conditions, or path-dependent problems.
These topics are currently being actively investigated.

Appendix A

A.1. Stress and elasticity tensor for the Mooney-Rivlin models

The second Piola–Kirchhoff stress tensor is related to C by:
S ¼ 2
oWðCÞ

oC
: ð45Þ
Using (20) and (45) we find, after some manipulations:
S ¼ 2ðc1 þ c2I1Þ1� 2c2Cþ ½2cJðJ � 1Þ � d�C�1: ð46Þ

The first Piola–Kirchhoff stress tensor is related to S through:
P ¼ FS: ð47Þ

The fourth-order elasticity tensor in the material description Ce is defined by:
Ce ¼ 2
oSðCÞ

oC
¼ oSðEÞ

oE
¼ 4

o
2W

oC oC
ð48Þ
for the elasticities in the material description, with the major symmetries:
Ce ¼ CeT or Cijkl ¼ Cklij: ð49Þ

Using (20) and (48) we obtain the following form of the elasticity tensor Ce for the compressible Mooney-Riv-
lin model:
Ce ¼ 4c21� 1þ 2cJð2J � 1ÞC�1 � C�1 � 2½2cJðJ � 1Þ � d�C�1 	 C�1 � 4c2I ð50Þ

with
ðC�1 	 C�1Þijkl ¼
1

2
ðC�1

ik C�1
jl þ C�1

il C�1
jk Þ ð51Þ
and Iijkl = dikdjl.



366 J. Yvonnet, Q.-C. He / Journal of Computational Physics 223 (2007) 341–368
A.2. Matrix forms

The incremental nonlinear problem requires solving:
KT Du ¼ fext � f int ð52Þ

with:
KT ¼ KM þ KG; ð53Þ

KM
IJ ¼

Z
X0

BM
I DBM

J dX; ð54Þ

KG
IJ ¼

Z
X0

BF
I TBF

J dX; ð55Þ

BM
I ¼

F 11
oNI
oX F 21

oNI
oX

F 11
oNI
oY F 21

oNI
oY

F 12
oNI
oX F 22

oNI
oX

F 12
oNI
oY F 22

oNI
oY

2
66664

3
77775 BF

I ¼

oNI
oX 0
oNI
oY 0

0 oNI
oX

0 oNI
oY

2
66664

3
77775; ð56Þ

T ¼

S11 S12 0 0

S21 S22 0 0

0 0 S11 S12

0 0 S21 S22

2
6664

3
7775; ð57Þ
where oNI
oX denote the spatial derivatives of the shape functions associated with node I.
D ¼

C1111 C1112 C1121 C1122

C1211 C1212 C1221 C1222

C2111 C2112 C2121 C2122

C2211 C2212 C2221 C2222

2
6664

3
7775; ð58Þ

f int
I ¼

Z
X0

BF
I N dX; fext

I ¼
Z

X0

NIB dXþ
Z

oX0

NI t dX; ð59Þ
where N is a matrix containing the shape functions and:
N ¼

P 11

P 12

P 21

P 22

2
6664

3
7775: ð60Þ
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