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Abstract In a nanostructured material, the interface-to-
volume ratio is so high that the interface energy, which is
usually negligible with respect to the bulk energy in solid
mechanics, can no longer be neglected. The interfaces in a
number of nanomaterials can be appropriately characterized
by the coherent interface model. According to the latter, the
displacement vector field is continuous across an interface in
a medium while the traction vector field across the same inter-
face is discontinuous and must satisfy the Laplace–Young
equation. The present work aims to elaborate an efficient
numerical approach to dealing with the interface effects des-
cribed by the coherent interface model and to determining the
size-dependent effective elastic moduli of nanocomposites.
To achieve this twofold objective, a computational technique
combining the level set method and the extended finite ele-
ment method is developed and implemented. The numerical
results obtained by the developed computational technique
in the two-dimensional (2D) context are compared and dis-
cussed with respect to the relevant exact analytical solutions
used as benchmarks. The computational technique elabora-
ted in the present work is expected to be an efficient tool
for evaluating the overall size-dependent elastic behaviour
of nanomaterials and nano-sized structures.
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1 Introduction

Nanostructured materials and systems are of fundamental
interest. Indeed, as compared with their microstructured
counterparts, they often exhibit superior mechanical and phy-
sical performances [1]. The main tool currently used to study
the mechanical behaviour of nanomaterials and nanosystems
is the molecular dynamics (MD) simulation [2–4], which is
suitable for studying objects consisting of only a few atoms
or when the phenomena under investigation occur at a so
small length scale that the standard framework of continuum
mechanics is no longer valid. At the same time, there is a
range of fine scales where the number of atoms involved is
relatively important, so that the mechanical fields of inter-
est are smooth enough to fall within the scope of continuum
mechanics upon taking into account additional effects which
are negligible at the usual macroscopic scale. Such enri-
ched continuum approaches have the definite advantage of
avoiding the treatment of large clusters of atoms, which is
computationally expensive, and of preserving the applica-
bleness of widespread powerful numerical techniques such
as the finite element method (FEM). One of the non-classical
effects which should be taken into account in the conti-
nuum mechanics modelling of nanomaterials and nanostruc-
tures is the interface (or surface) effect. In fact, the high
interface-to-volume ratio of a nanomaterial or nanostructure
makes its interface energy comparable to or dominant over
its bulk energy. One consequence of this fact is that the ove-
rall behaviour of a nanomaterial or nanostructure becomes
size-dependent [5,6]. The objective of the present work is
twofold. First, it has the purpose of elaborating an efficient
computational approach to modelling surface/interface
effects by combining the extended finite element method
(XFEM) and the level set method (LSM). Second, it aims
to apply the elaborated computational approach to determine
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the size-dependent effective elastic properties of a
composite made of a matrix reinforced by nanoparticles or
nanofibers.

A wide range of interface effects can be suitably described
by imperfect interface models. By definition, an interface in
a medium is perfect if both the displacement and traction
vector fields across it are continuous; otherwise, it is said
to be imperfect. Among a great number of imperfect inter-
face models constructed and justified to account for different
interface effects [7], the coherent and spring-layer interface
models are the two most important ones and also the mostly
widely used ones. In the coherent interface model, the displa-
cement vector field is continuous across an interface while
the traction vector field across the same interface is discon-
tinuous and has to verify the Laplace–Young equation [5].
In the spring-layer interface model [8], the traction vector
field is continuous across an interface and proportional to
the jump of the displacement vector field across the same
interface. In the present work, the coherent interface model
is adopted since it is appropriate for modelling the interface
effect in nanomaterials [9–12].

Different works using the coherent interface model have
recently been carried out to estimate the overall elastic
properties of nanocomposites and nano-sized structural
elements. In [9,10,13,14], Sharma and Ganti extended
Eshelby’s original formalism to nano-inclusions and obtai-
ned the closed-form expressions of Eshelby’s tensor for sphe-
rical and circular cylindrical nano-inclusions. Le Quang and
He proposed an extended version of the classical generali-
zed self-consistent method to determine the size-dependent
effective thermoelastic properties of nanocomposites with
cylindrical and spherically anisotropic phases [15,16]. In
[12], Duan et al. derived closed-form expressions for the bulk
and shear moduli as functions of the interface properties, and
analyzed the dependence of the elastic moduli on the size
of the inhomogeneities. Chen et al. [11] showed that exact
size-dependent connections exist between the overall elastic
moduli of unidirectional nanocomposites. Dingreville et al.
[17] have developed a framework to calculate analytically
the size-dependent overall properties of nano-sized structu-
ral elements. In all the works reported in the literature and
aiming at determining analytically the overall properties of
nanomaterials and nano-sized structural elements, the shapes
of nano inhomogeneities and structural elements are requi-
red to be very simple and the sizes of nano inhomogeneities
have to be uniform. The computational approach elaborated
in this paper is a general one, which has not these limitations.

In [18], Gao et al. proposed a finite element method using
surface elements to take into account for the surface effects.
Nevertheless, a major concern in dealing with a strongly
inhomogeneous material is the generation of a mesh mat-
ching the interfaces. Within the standard framework of FEM

and especially in the 3D case, such an operation is nume-
rically very difficult when inhomogeneities are numerous
or/and of arbitrary shapes. To avoid this burden, the present
work uses the level-set method [19] to describe every inter-
face in a regular mesh as the zero-level set of a scalar field.
In implementing the coherent interface model, the term asso-
ciated to the traction vector jump is then introduced by enri-
ching the finite element approximation with discontinuous
functions constructed on the level-set basis. This novel way
of dealing numerically with imperfect interfaces is reminis-
cent of the XFEM proposed by Belytschko and Black [20],
Moës et al. [21] and Sukumar et al. [22,23] to treat cracks
and perfect interfaces. However, the coherent imperfect inter-
faces treated in our work are rather different from cracks in
nature. First from the mechanical point of view, the imperfect
interfaces studied by us are characterized by the continuity
of the displacement vector (which implies the continuity of
the surface strains owing to Hadamard’s theorem) and the
jump of the traction vector which is governed by the Young–
Laplace equations; the cracks as treated in previous paper on
XFEM are characterized by by the discontinuity of the dis-
placement vector and the discontinuity of the tractions. From
the numerical standpoint, the imperfect interfaces treated in
our work give rise to a contribution to the stiffness matrix
while this contribution is absent in the case of cracks. To
our knowledge, it is the first time that the coherent imperfect
interface is treated by XFEM/level-set.

The paper is organized as follows. In Sect. 2, a curved
interface is geometrically defined as a level set and some
projection and differential operators associated to the inter-
face are introduced in a coordinate-free way. In Sect. 3, we
consider a solid made of a linearly elastic inhomogeneous
material with the interfaces being described by the coherent
interface model. The local equations governing the boundary
value problem of the solid are first specified and a variatio-
nal formulation of the problem suitable for a finite element
approximation is then provided. Due to the coherent inter-
faces between the matrix and inhomogeneities, an additional
stiffness term appears. In Sect. 4, we present the discretisa-
tion technique combining level-set method and XFEM. For
simplicity, the technique is specified and implemented in the
two-dimensional (2D) context and more precisely for plane
strain and axisymmetric problems. In Sect. 5, the numerical
approach elaborated in the previous sections is applied to
computing the size-dependent effective elastic properties of
nanocomposites. A good few numerical examples are provi-
ded and compared with the relevant analytical exact solutions
taken as benchmarks for testing the validity of the develo-
ped numerical approach. Further applications are illustrated
for size-dependent overall properties of nanostructures with
random distributions or shapes. In Sect. 6, a few concluding
remarks are drawn.
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2 Geometric preliminaries

Let ΓI be an interface between two neighbouring domains,
which is taken to be a smooth 2D or 3D surface. A general
method in differential geometry to describe such a smooth
surface is to define it by an implicit function (see, e.g., [24,
25]). This method is in close relation with the level-set method
[19], which is a numerical technique for tracking moving sur-
faces/interface and which is based on the idea of representing
a surface as a level set of a higher dimension function. In the
case of static interfaces, the two ideas coincide. In the present
work we only consider static interfaces. In this context, ΓI

is defined as the zero level-set of a function φ : R
d → R:

ΓI =
{

x ∈ R
d | φ(x) = 0

}
, (1)

where d is the dimension of the space under consideration. In
the following, φ is assumed to be continuously differentiable
and to have the property that ∇φ(x) �= 0 for all x ∈ ΓI .
Thus, the unit normal vector field n(x) on ΓI is defined by

n(x) = ∇φ(x)
‖∇φ(x)‖ , (2)

where ‖.‖ denotes the Euclidian norm and ∇(.) denotes the
gradient operator. Next, we introduce two orthogonal com-
plementary projection operators:

P⊥(x) = n(x)⊗ n(x), P(x) = I − n(x)⊗ n(x), (3)

where I is the second order unit tensor. Geometrically, P⊥(x)
describes the projection along the unit vector n(x) normal to
ΓI at x while P characterizes the projection on the plane
tangent to ΓI at x.

Then, any vector function w admits the following decom-
position:

w = wn + ws, (4)

with

wn = P⊥w, ws = Pw. (5)

Furthermore, when w is differentiable,

∇w = ∇nw + ∇sw, ∇nw = ∇wP⊥, ∇sw = ∇wP. (6)

Given any second-order tensor function T, one defines its
normal and tangential parts by

Tn = P⊥TP⊥, Ts = PTP. (7)

Whenever T is differentiable, the divergence of T admits the
following decomposition:

div(T) = divn(T)+ divs(T), (8)

where

divn(T) = ∇(T) : P⊥ , divs(T) = ∇(T) : P. (9)

Wherever applicable, the indices n and s will denote nor-
mal and surface (tangential) components, respectively. It is
worth noting that the operator P does not involve any basis
change: the reader has to keep in mind that ws and Ts denote
the components of the projection of the associated vector and
tensor, respectively, on the surface ΓI . Thus ws and Ts do
not denote the components relative to the basis of the tangent
plane to the surface. This projection tensor elegantly allows
one to mix bulk and surface quantities in an equation.

3 Governing equations

In this section, we formulate the boundary value problem of
a linear elastostatic solid containing an interface described
by the coherent interface model. Both the strong and weak
formulations are provided.

3.1 Strong form

Without loss of generality, we assume that ΓI divides Ω
into several domains Ω(i), i = 1, 2, . . . ,M such that Ω =⋃

i=1,...,MΩ
(i) ∪ ΓI ,

⋂
i=1,...,MΩ

(i) = Ø. Let ∂Ω be the
external boundary of Ω and ∂Ω(i) the external boundary of
each subdomain Ω(i), such that ∂Ω(i) = ¯∂Ω(i) ∪ ΓI . Let
n(i) the unit vector normal to ∂Ω(i) pointing intoΩ(i). Thus,
n(i) is also the normal to ΓI pointing into the domain Ω(i).
For the sake of simplicity, we consider in the following only
two domains. The equilibrium equations are then given by

div(σ (i))+ b = 0 in Ω(i), (10)

divsσ s = −�t� = (σ (2) − σ (1))n(1) on ΓI . (11)

In the above, σ denotes the bulk Cauchy stress tensor, b
being a volumetric force term. Equation (10) is associated
with bulk equilibrium, while Eq. (11) refers to the Laplace–
Young equation resulting from the interface equilibrium. In
particular, σ s is the surface stress tensor and divs(.) is defined
in Eq. (9). The notation �.� denotes the jump across ΓI . The
boundary conditions are described by

{
σn = −F on ∂ΩF ,

u = ū on ∂Ωu,
(12)

where F and ū are prescribed tractions and displacements,
respectively, and ∂ΩF and ∂Ωu are the Dirichlet and Neu-
mann boundaries, respectively, such that ∂Ω = ∂ΩF ∪∂Ωu ,
∂ΩF ∩ ∂Ωu = Ø.

According to the coherent interface model, the displace-
ment jump across ΓI is null:

�u� = 0 on ΓI . (13)
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The displacement vector is continuous across the interface
but the strain tensor is discontinuous according to the
Hadamard relation:

�ε� = a ⊗ n + n ⊗ a, (14)

where ε is the infinitesimal strain tensor, and a is a real-valued
vector. It follows from Eq. (14) that tangent or surface strains
are continuous across ΓI :

�εs� = �PεP� = 0. (15)

3.2 Weak form

The weak form associated with Eqs. (10)–(12) is given in
each domain as follows:

Find u ∈ D = {
u = ū on ∂Ωu, u ∈ H1(Ω(i))

}
, such

that
∫

Ω(i)

σ (i)(u) : ε(i)(δu)dΩ +
∫

Γ
(i)
I

σ (i)n(i) · δudΓ

−
∫

Ω(i)

b · δudΩ −
∫

∂Ω̄
(i)
F

F · δudΓ = 0 (16)

for all δu ∈ H1
0 (Ω

(i)) = {δu ∈ H1(Ω(i)), δu =
0 on ∂Ωu}. In the above, Γ (i) is the side of ΓI associated
with the domain Ω(i).

Adding the contributions of both the domains Ω(1) and
Ω(2), and by using n(1) = −n(2) and �δu� = 0 on ΓI , we
obtain
∫

Ω

σ (u) : ε(δu)dΩ +
∫

ΓI

(σ (1) − σ (2))n(1) · δudΓ

=
∫

Ω

b · δudΩ +
∫

∂ΩF

F · δudΓ. (17)

Invoking the Laplace–Young equation, it yields

∫

Ω

σ (u) : ε(δu)dΩ −
∫

ΓI

divs(σ s(u)) · δudΓ

=
∫

Ω

b · δudΩ +
∫

∂ΩF

F · δudΓ. (18)

By using the relation:

divs (Tw) = divs

(
TT

)
· w + TT : ∇sw, (19)

where T and w are continuously differentiable second-order
tensor and vector functions, respectively, we obtain, by the

(2)

(1)

I

u

F

ñ

n

F

u = u

(2)

(1)

I

u

F

ñ

n

F

u = u

I

(1) (1)

m

(a) (b)

Fig. 1 a Closed interface ΓI ; b open interface ΓI

symmetry of σ s ,

∫

ΓI

divs(σ s) · δudΓ

=
∫

ΓI

divs(σ sδu)dΓ −
∫

ΓI

σ s : ∇s(δu)dΓ. (20)

Due to the fact that P acts as the identity operator for (.)s
quantities, we have:

divs(σ sδu) = divs(Pσ sPδu)

= divs(Pσ sδus) = divs(σ sδus) (21)

Applying Stokes’ theorem, we obtain:

∫

ΓI

divs(σ sδus)dΓ =
∫

∂ΓI

σ sm · δusdl

=
∫

∂ΓI

F̂ · δusdl =
∫

∂ΓI

F̂ · Pδudl. (22)

In the case where the interface ΓI is closed (see Fig. 1a), the
term (22) is equal to zero. Otherwise, for an open interface as
depicted in Fig. 1b, ∂ΓI is the (d −2)-dimensional boundary
ofΓI with m a unit outward vector normal to ∂ΓI , and tangent
to ΓI (see Fig. 1b), F̂ being an applied force on ∂ΓI .

Now, let us express the second term on the right-hand of
expression (20). We have

σ s : ∇s(δu) = [Pσ sP] : ∇(δu)P. (23)

Setting [∇(δu)]i j = ∇i j and using the symmetry of P and
the identity P2 = P, expression (23) can be written as:

[
Pikσ

s
kl Pl j

]∇ik Pk j = σ s
kl

(
Pki∇ik Pk j Pjl

)

=σ s : (P∇(δu)P) = σ s : 1

2

(
P∇(δu)P+[P∇(δu)P]T

)

= σ s : εs, (24)
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as σ s is symmetric. Finally, the weak form is given by
∫

Ω

σ (u) : ε(δu)dΩ +
∫

ΓI

σ s(u) : εs(δu)dΓ

=
∫

Ω

b · δudΩ +
∫

∂ΩF

F · δudΓ +
∫

∂ΓI

F̂ · Pδudl. (25)

3.3 Constitutive equations

Here we assume that the solid undergoes small displace-
ments. In the context of a linear elastic model, the bulk consti-
tutive law is given by:

σ (u) = C
(i) : (ε(u)− ε∗) , (26)

where C
(i) is the fourth-order elastic stiffness tensor associa-

ted with domain Ω(i) and ε∗ is an eigenstrain prescribed on
Ω∗ ⊂ Ω .

According to [26], the surface stress σ s is related to the
surface-strain energy γ by Schuttleworth’s equation:

σ s = τ0I2 + ∂γ (εs)

∂εs
, (27)

where τ0 is the strain-independent surface/interfacial tension
and I2 is the unit tensor for surfaces. In the context of isotropic
linear elastic interfaces, we have:

σ s = σ 0 + C
s : εs,

with

Cs
i jkl = λs Pi j Pkl + µs

(
Pik Pjl + Pil Pjk

)
(28)

where λs and µs are Lamé’s constants characterizing the
interface ΓI and σ 0 = τ0P. With this model, the weak form
is finally given by:
∫

Ω

ε(δu) : C : ε(u)dΩ +
∫

ΓI

Pε(δu)P : C
s : Pε(u)PdΓ

=
∫

Ω

δu · bdΩ +
∫

∂ΩF

δu · FdΓ +
∫

∂ΓI

Pδu · F̂dl

+
∫

ΓI

Pε(δu)P : σ 0dΓ +
∫

Ω

ε(δu) : C : ε∗dΩ. (29)

In [27], Chessa and Belytschko have taken into account
surface tension with XFEM. In fluid mechanics, a surface
tension, which can also be derived from a surface energy, is
an isotropic surface stress tensor and must verify the classical
Laplace equation. The surface energy involved in our paper
is associated to a solid surface and its derivation with respect
to the surface strain tensor gives a surface tensor which is
in general not isotropic and must satisfy the Young Laplace
equation. From a numerical point of view, in [27], the surface
tension acts through en external forces energy term as it acts

through an additional rigidity matrix in our work, as it will
appear in the next section.

4 Level-set/extended finite element discretization

4.1 Evaluation of the unit vector normal to the interface

The domainΩ is discretized by n nodes ni that do not neces-
sarily match the interfaceΓI . Here we use a mesh of triangles,
whereas other types of elements can be employed. Regular
meshes can then be adopted for parallelepipedic domains,
even if the interface has a complex geometrical shape.

In the present context, ΓI is defined as the zero level-set
of a function φ(x), whose value is known at avery node ni ,
i.e., φ(xi ) = φi .

Wherever needed, the components of n(x) can be evalua-
ted by:

n(x) = ∇φ̃(x)∥∥∥∇φ̃(x)
∥∥∥
, (30)

where

∇φ̃(x)i =
n∑

j=1

∂N j (x)
∂xi

φ j . (31)

Here N j (x) are the standard finite element shape functions,
φ j are the nodal value of the level-set function, and n is the
number of nodes of the elements. In the present paper, we use
simple linear finite element shape functions, though higher-
order shape functions can be used [28], this interpolation
being independent of the discretization of the weak form (29).
The above approximation for n can then be used to evaluate
the components of the projector P needed in the weak form
(29).

4.2 Discrete system

For the coherent interface model, the displacements must be
continuous at the interface whereas the strains must follow
the Hadamard relation described in Eq. (14). These condi-
tions can be enforced by superposing to the standard finite
element field an enrichment term that possesses the above
continuity conditions (XFEM method [21]). In this context,
the approximation is defined at a particular point x lying in
an element Ωe by:

uh(x) =
n∑

i=1

Ni (x)ui +
m∑

j=1

N j (x)ψ(x)a j , (32)

where Ni are the standard finite element shape functions asso-
ciated with the nodes ni of the elements, N j (x) are the shape
functions of the nodes of the elements whose support are cut
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ΓI

ni

Fig. 2 Zero level-set of the function φ(x) and node ni whose support
is cut by the interface ΓI

by the interface (see Fig. 2) and ψ(x) is a function with the
required continuity. Due to the enrichment term in Eq. (32),
the unknowns ui become arbitrary coefficients, as well as the
unknowns a j , and lose their kinematical meanings. To meet
the Hadamard condition (14), we use the enriched approxi-
mation proposed in [29], which ensures good convergence
properties, preserves the interpolant character of the approxi-
mation, and removes the issue of partially enriched elements
[29]. Precisely, the enrichment function is defined by:

ψ(x) =
n∑

i=1

|φi | Ni (x)−
∣∣∣∣∣

n∑
i=1

φi Ni (x)

∣∣∣∣∣ . (33)

The numerical integration in the bulk is performed by
using Gauss integration on subtriangles near the interface
(see Fig. 3). The strain and stress tensors are then expressed
in the vector forms,

ε =

⎡
⎢⎢⎣

ε11

ε22

αε33

2ε12

⎤
⎥⎥⎦ , σ =

⎡
⎢⎢⎣

σ11

σ22

ασ33

σ12

⎤
⎥⎥⎦ , (34)

with α = 0 for plane strain problems and α = 1 for axisym-
metric problems. In the foregoing, the indices 1, 2 and 3 are
associated with directions ex , ey and ez and er , ez and eθ ,
according as a plane strain or an axisymmetric problem is

Intersection between zero 
level-set function and the mesh
Interface integration points
Bulk integration points

(a) (b)
ΓΙ

Fig. 3 a Approximated interface using interpolated level-set function
on triangle edges; b triangulation of the elements cut by the interface
and integration points

concerned. The vector forms of surface strain and stress take
the same form as in (34).

The specificity of the present problem is the presence of
the internal virtual work term related to the implicit surface
(not discretized by nodes) in Eq. (29). To evaluate the asso-
ciated surface integral, we first approximate the interface by
piece-wise linear segments in 2D (see Fig. 3). For this pur-
pose, we first find the intersection between the level-set func-
tion φ(x) and the triangular mesh. The triangles cut by the
interface ΓI are easily detected, as the values of φ evaluated
at the two nodes of a given edge have opposite signs. The
intersection between φ(x) = 0 and the edges of the mesh
can then be approximated by using a linear interpolation of
φ(x) based on the mesh. Once again, the linear interpola-
tion is adopted, though higher-order approximation schemes
could be used [28]. It is worth noting that despite the fact
that the surface is implicit, its description accuracy depends
on the local nodal density.

We then perform a Gauss integration on each edge of the
2D interface approximation. In the following examples, we
have used three Gauss points in the triangles cut by the inter-
face, one in the remaining triangles and two on each linear
segment of the approximated interface. On substituting the
trial and test functions from Eq. (32) in Eq. (29), and using
the arbitrariness of nodal variations, the following discrete
system of linear equations is obtained:
(
K + Ks) d = f (35)

where

KI J =
∫

Ω

BT
I C(i)BJγ dΩ, (36)

f =
∫

Ω

NT bγ dΩ+
∫

∂ΩF

NT Fγ dΓ +
∫

Ω

BT C(i)ε∗γ dΩ

+
∫

∂ΓI

NT PF̂γ dl +
∫

ΓI

BT MT
p σ 0γ dΓ, (37)

with γ = 1 for plane strain problems and γ = 2πr for
axisymmetric problems. In the above equations, the matrix
BI is given by:

BI =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ N̂I (x)
∂x1

0

0 ∂ N̂I (x)
∂x2

α
N̂I (x)

x1
0

∂ N̂I (x)
∂x2

∂ N̂I (x)
∂x1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (38)

where N̂I ≡ NI for a finite element displacement degree
of freedom, and N̂I ≡ ψNI for an enriched degree of free-
dom. In the above equations, C(i) is the bulk stiffness matrix
associated with the elasticity tensor of phase i . To determine
the phase associated with a particular bulk integration point,
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we simply use the sign of φ(x) computed by the linear finite
element discretization:

φ(x) =
n∑

i=1

Ni (x)φi . (39)

The matrix C(i) is defined according to:

C =

⎡
⎢⎢⎣

(λ+ 2µ) λ αλ 0
λ (λ+ 2µ) αλ 0
αλ αλ α(λ+ 2µ) 0
0 0 0 µ

⎤
⎥⎥⎦ , (40)

where the superscripts i have been omitted. The matrix K s

is the interface rigidity matrix, expressed by:

Ks
I J =

∫

ΓI

BT
I MT

p CSMpBJγ dΓ, (41)

with Cs the surface stiffness matrix expressed by:

Cs =

⎡
⎢⎢⎣

(2µs + λs)P2
11 λs P11 P22 + 2µs P2

12
λs P11 P22 + 2µs P2

12 (2µs + λs)P2
22

αλs P11 αλs P22

(2µs + λs)P11 P12 (2µs + λs)P12 P22

αλs P11 (2µs + λs)P11 P12

αλs P22 (2µs + λs)P12 P22

α(2µs + λs) αλs P12

αλs P12 λs P2
12 + µs(P11 P22 + P2

12)

⎤
⎥⎥⎦ . (42)

The matrix Mp is constructed such that εs = Mpε and is
defined according to:

Mp =

⎡
⎢⎢⎣

P2
11 P2

12 0 P11 P12

P2
12 P2

22 0 P12 P22

0 0 α 0
2P11 P12 2P12 P22 0

(
P2

12 + P11 P22
)

⎤
⎥⎥⎦ . (43)

5 Numerical examples

5.1 Cylindrical inclusion under plane strain and with the
coherent interface model

A cylindrical inclusion with an imperfect coherent interface
in an infinite medium is submitted to a dilatational eigenstrain
ε∗. The exact strain solution of this problem is given in [9,13]
by:

εrr (r) = εθθ (r) = A, r < R0 (44)⎧⎨
⎩
εrr (r) = −A

R2
0

r2

εθθ (r) = A
R2

0
r2

, r > R0 (45)

A = 3K
′ Mε∗ − τ0/R0

2µM + 3K ′ M + K ′S/R0
, (46)

R0
r

ε* x

y

ΓΙ

(a)

(b)

Fig. 4 First Eshelby problem model with imperfect coherent interface
a geometry; b mesh, zero level set, and enriched nodes

where R0 is the radius of the cylindrical inclusion (see Fig. 4),
κ

′ M = 2(λM + µM )/3, κ ′
s = (λS + 2µS) is the plane strain

surface modulus, and ε∗ is a prescribed dilatational eigens-
train in cylindrical inclusion with ε∗ = ε∗11 = ε∗22, ε∗33 = 0.

By using the kinematical relations εrr = ∂ur/∂r and
εθθ = ur/r we obtain the displacement field as:

ur (r) =
{

Ar , 0 ≤ r ≤ R0

A
R2

0
r , r ≥ R0.

(47)

We consider an axisymmetric model in a finite square
domain by imposing the exact displacement solution on the
external boundary. Then, the interface does not coincide with
the mesh. To examine the size effect, we propose the follo-
wing indicator:

β =
∣∣∣∫ΓI

σ s(u) : εs(u)dΓ
∣∣∣

∣∣∣∫ΓI
σ s(u) : εs(u)dΓ

∣∣∣ + ∣∣∫
Ω

σ (u) : ε(u)dΩ
∣∣

= |Es |
|Es | + |Eb| , (48)

where Es denotes the surface energy and Eb stands for the
bulk energy. The following numerical parameters were used
for the bulk material: E = 3 GPa, ν = 0.3, ε∗ = 0.5,
τ0 = 0. A regular mesh of 40×40 nodes is used. The surface
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parameters can be obtained through molecular dynamics
computations. Here, we use those obtained by Miller and
Shenoy in [1]: (a) λs =6.842 N/m,µs =−0.375 N/m, which
gives a positive κ ′

s = 6.091 N/m, (b) λs = 3.48912 N/m,
µs = −6.2178 N/m, which gives a negative plane-strain
surface modulus κ ′

s = −8.94948 N/m, and (c) the classical
case where λs = 0 N/m, µs = 0 N/m, κ ′

s = 0 N/m.
As noted by Shenoy in [30], the surface elastic tensor

Cs
i jkl needs not to be positive definite, i.e., the quadratic form

Cs
i jklε

s
i jε

s
kl need not to be non-negative. At first glance it

may suggest a violation of basic thermodynamic postulates.
It must be noted that positive definiteness of the bulk elastic
modulus tensor which guarantees the stability of the solid
cannot be applied to the surface elastic tensor. This is due to
the fact that a surface cannot exist independently of the bulk,
and only the total energy (bulk + surface) needs to satisfy the
positive definiteness condition.

As seen from Fig. 5, the presence of the surface term on the
left-hand of Eq. (25) introduces size effects, when the internal
surface energy surface becomes important compared to the
internal volume energy.

Next we compare the exact solution with the solution com-
puted from the proposed numerical approach for f = 0.2.
For a fair comparison between the different sets of parame-
ters, we chose the inclusion radius R0 in each simulation
such as β = 0.4. Thus for the set (a), we chose R0 = 1 nm,
and for the example (b) we chose R0 = 1.8 nm. Computa-
tions are performed for different regular triangular meshes
with increasing nodal density, ranging from 10 × 10 nodes
to 80 × 80 nodes. The convergence results about the relative
energy norm

∥∥uh(x)− u(x)
∥∥

E(Ω)

‖u(x)‖E(Ω)

=

(∫
Ω

(
εh(x)− ε(x)

) : C
(i) : (εh(x)− ε(x)

))
1
2

(∫
Ω

ε(x) : C(i) : ε(x)

) 1
2

, (49)

are reported in Fig. 6.
For κ ′

s = 0 (no surface effects), an expected rate of conver-
gence r ≈ 1 is appreciated. For κ ′

s < 0 and κ ′
s > 0, the pro-

posed approach leads to a convergent solution, but without an
optimal rate of convergence. Though it is adequate for most
purposes, it indicates that there is room for improvement of
the method.

It is worth pointing out that for κ ′
s < 0, the contribu-

tion of the negative-definite surface stiffness matrix Ks in
(35) influences the condition number of the total stiffness
matrix, which may consequently tend to be ill conditioned.
This issue has also been reported by Gao et al. in [18]. When
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Fig. 6 Convergence analysis for the cylindrical inclusion problem with
the coherent interface model

the ill condition leads to inaccurate results, special numerical
methods should be applied to improve the precision of solu-
tions. In the present work, we have used an iterative solver,
the biconjugate gradients methods [31] (bicg in Matlab).

5.2 Size-dependent overall properties of a material with
cylindrical nanovoids

In this example, we compute the effective bulk modulus of
an aluminium material containing nano voids. For this pur-
pose, we perform numerical linear homogenization on a RVE
containing a coherent interface whose geometry is depic-
ted in Fig. 4b. For a constant volume fraction, we vary the
void radius and compute for each size the effective bulk
modulus. Estimated effective properties for long cylindri-
cal nanofibers with coherent interfaces have been provided
in [15]. We then compare the results obtained by the present
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Fig. 7 Size-dependent effective plane-strain modulus with surface
effects versus void radius, f = 0.2

XFEM approach with the reference normalized effective bulk
modulus κe f f /κM , κM being the matrix bulk modulus. In
this example, we have used a regular 80 nodes grid. The
material parameters of the matrix are E = 70 MPa and
ν = 0.32. The results are depicted in Fig. 7 for a volume
fraction f = 0.2. Good agreement between the reference
solution and the numerical computations is noticed.

We obtain the expected effects, i.e., the effective properties
are not sensitive to the nanovoid radius value for relatively
large sizes, but the values of effective bulk modulus clearly
deviate for small sizes of nanovoids.

Now for a fixed radius R = 1 nm (at which size effects
are predominant for the used set of parameters), we vary
the volume fraction by changing the size of the enclosing
square domain. Due to the implicit description of the inter-
face, generating different geometries only requires changing
the equation describing the level set, and does not involve
any mesh generation. We compute the effective properties
of the RVE using the aforementioned approach for volume
fractions ranging from 0 (no interface) to 0.6. The results
comparing the present XFEM approach and the reference
solution computed from [15] are provided in Fig. 8. Very
good agreement between theory and numerical solutions is
noticed, and the surface effects are clearly shown up.

5.3 Spherical inclusion

Here we test the proposed XFEM methodology through an
axisymmetric problem. A spherical inclusion with an imper-
fect coherent interface in an infinite medium is submitted to a
dilatational eigenstrain ε∗. We model the spherical inclusion
using axisymmetric triangular elements (see Fig. 9). For this
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Fig. 8 Plane-strain bulk modulus for R = 1 nm versus void volume
fraction

R0

R1

(a) (b)

Fig. 9 Spherical inclusion with imperfect interface; a geometry; b
finite axisymmetric domain, zero level-set and enriched nodes

problem, the exact solution is given by [10,14]:

εrr (r) = εθθ = εφφ(r) = A, r < R0 (50)⎧⎨
⎩
εrr (r) = −2A

R3
0

r3

εθθ (r) = εφφ(r) = A
R3

0
r3

, r > R0 (51)

A = 3κMε∗ − 2τ0/R0

4µM + 3κM + 2κ S/R0
, (52)

where κM = λM + 2µM/3, κ S = 2(λS + µS), ε∗ = ε∗11 =
ε∗22 = ε∗33. The displacement field is given by:

ur (r) =
{

Ar , 0 ≤ r ≤ R0,

A
R3

0
r2 , r ≥ R0.

(53)

We chose E = 10 MPa, ν = 0.3 and ε∗ = 0.5, and
τ = 0. The radius is set as R0 =1 nm, and the radius
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Fig. 10 Convergence analysis for the spherical inclusion problem with
stiff coherent imperfect interface

of the cylindrical box R1 (see Fig. 9) is fixed such that a
given volume fraction f = 0.2 is met, according to R1 =(√

πR2
0/ f

)
/2. For these parameters, the surface effects

indicator has the value β = 0.4. Symmetry conditions are
applied on the boundary r = 0 and exact displacement solu-
tion is imposed on the external boundary of the domain.
Convergence results in energy norm error for κs = 0, κs > 0,
and κs < 0 using the same surface parameters as in pre-
vious examples are presented in Fig. 10. The indicated rate
of convergence is the one of a linear polynomial fit on the last
four point of the curve. Here again, We note that the XFEM
solution is convergent, though not at an optimal rate. When
no surface effects occur (κs = 0), the computed solution
converges to the exact one at the expected rate of conver-
gence.

For spherical void with a coherent surface, the effective
modulus can be evaluated according to [12]:

κe f f = 3κ I
(
3κM + 4 f µM

)

3
[
3 (1 − f ) κ I + 3 f κM + 2µM

(
2 + κ S

r − f κ S
r

)]

+ 2µM
[
4 f µMκ S

r + 3κM
(
2 − 2 f + κ S

r

)]

3
[
3 (1 − f ) κ I + 3 f κM + 2µM

(
2 + κ S

r − f κ S
r

)] ,
(54)

with κ S
r = κ S/

(
R0µ

M
)
, the superscripts M and I denoting

the matrix and inhomogeneity, respectively.
In Fig. 11, we compare the normalized effective reference

bulk modulus κe f f /κM for f = 0.5 for different radii of the
spherical void. In Fig. 12, we compare the normalized effec-
tive reference bulk modulus for a fixed radius R0 = 1 nm
while varying the volume fraction f . Excellent agreement
with the reference solution is noticed and here again the sur-
face effects are clearly shown.
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Fig. 11 Normalized effective bulk modulus for different spherical void
radius
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Fig. 12 Normalized effective bulk modulus for different void volume
fractions, R0 = 1 nm

5.4 Random nanostructure

Next we explore the effective properties of aluminium contai-
ning randomly distributed nanopores with constant radii, in
order to investigate its size-effects on effective properties.
For this purpose, we use 30 circular voids randomly distri-
buted, by choosing the size of the square domain such that
the volume fraction is f = 0.3, and we vary the radius of
the pores. A uniform mesh of 80 × 80 nodes is used, and the
level-set function was defined according to

φ(x) = min
xi

c∈Ω i
c

{∥∥x − xc
i

∥∥ − r i
c

}
, i = 1, 2, . . . , nc, (55)

where Ω i
c is the domain of the i th void, nc is the number of

circular voids, and xi
c and r i

c are the center and radius of the
i th void, respectively.
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Fig. 13 Level set function for the different randomly distributed nano-
pores
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Fig. 14 Statistical convergence of the effective bulk modulus for
various void radii

Different distributions are shown in Fig. 13. Note that
avoiding the construction of a conforming mesh for each
generation of a random microstructure by means of the level
set technique greatly simplifies the analysis.

For each radius of nanopore, we generate random micro-
structures and compute the homogenized bulk modulus until
we have reached statistical convergence on the mean value of
the effective bulk modulus. Examples of statistical conver-
gence are shown in Fig. 14. The results for the effective bulk
modulus are presented in Fig. 15. The size effects with dif-
ferent nanovoid radii can be clearly observed.

0 10 20 30 40 50
0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

R
0
 in nanometers

N
or

m
al

iz
ed

 e
ffe

ct
iv

e 
pl

an
e−

st
ra

in
 b

ul
k 

m
od

ul
us

Fig. 15 Size effects in bulk modulus for randomly distributed nano-
pores

Fig. 16 Zero level-set function of different shapes of nanostructures
with same volume fractions f = 0.2

5.5 Shape of nano inclusion

In this example, we investigate the influence of the shapes
of nanovoid on the effective properties and their possible
influence on the size effects. For this purpose, different shapes
are generated, as depicted in Fig. 16.

With the proposed procedure, it is easy to introduce an
imperfect interface for an arbitrary geometry, without requi-
ring any surface elements. In Fig. 17, we present the effective
bulk moduli associated with the different shapes, for different
sizes. For each shape, we have chosen the size parameters
such as its volume is equal to the one of the circular void.
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Fig. 17 Size and shape dependent properties of the nanostructures

For polygonal shapes, the level-set function was constructed
using Eq. (55), and replacing rc by the distance between the
center xc

i and xI defined as the intersection between
{

xc
i − x

}
and the boundary of the polygonal shape. For the non-convex
shapes, we have used the following function describing their
radius in cylindrical coordinates:

R(θ) = R0 + A sin(Bθ), (56)

where R0 is the reference radius, B denotes the number of
oscillations and A is the amplitude of oscillations. In the
example, we have chosen B = 4 and B = 8, and A = 0.4R0.

The associated volume area can be derived by:

V = 4A2 Bπ + 8AR0 + 8BπR2
0 − 8AR0 cos(2Bπ)

8B

+ A2 sin(4Bπ)

8B
, (57)

which allows to chose the size of the square box in order to
meet the desired volume fraction, which here is chosen to be
f = 0.2.

Results for the normalized effective bulk modulus are
reported in Fig. 17. We notice that size effects occur inde-
pendently of the shape of the nanostructures. As expected,
we note that the shape greatly influences the effective bulk
modulus. The circular shape offers the best stiffness against
compression, while the non-convex shapes do not resist well
to compression.

6 Conclusion

In this work, a numerical procedure has been proposed to
compute the overall elastic properties of nanomaterials and
nanostructures with surface/interface effects. For this pur-
pose, the coherent interface model has been adopted, leading
to an additional stiffness matrix. Since the ratio between the

surface and bulk strain energies is not preserved when the
volume fraction of the nano-inhomogeneities in a material
remains fixed but their sizes or/and shapes change, the effec-
tive properties of the material depend on the sizes and the
shapes of the nano-inhomogeneities. To handle efficiently
complex and arbitrary nano-inhomogeneities only through
regular meshes, we have developed a level-set approach in
tandem with an extended finite element method. This
approach allows the generation of complex microstructures
in an automatic manner without the burden of meshing, and
hence constitutes an efficient numerical tool for analyzing
highly inhomogeneous materials. The proposed XFEM/level
set approach has been validated in the 2D context by applying
it to different problems with known exact analytical solu-
tions. The proposed approach has also been employed to
determine the effective elastic moduli of materials with ran-
domly distributed nanopores. As expected, the effective elas-
tic moduli are not only size-dependent but also shape-
dependent with respect to nanopores.

The implementation and application of the proposed
XFEM/level set approach in the 3D context are in progress.
Note that this approach can also be extended to other mecha-
nical and physical phenomena involving imperfect interfaces.
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