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Abstract

In the present work, we propose a method combining a multi-scale approach and a model reduction technique based on proper
orthogonal decomposition (POD) to solve highly nonlinear conduction problems in structures made of periodic heterogeneous materials.
Following classical computational homogenization schemes, a representative volume element is associated with each integration point of
the macrostructure. The local macroscopic response is computed directly on the RVE through solving an incremental problem with
appropriate boundary and initial conditions. In the proposed method, the equations of the linearized micro problem are projected on
the reduced basis, which is obtained using POD via preliminary computations. The set of unknowns and Lagrange multipliers associated
with periodic boundary conditions is largely reduced. The technique called reduced model multi-scale method (R3M) lowers the com-
putational costs. Both accuracy and efficiency are examined through numerical tests involving thermal and electric nonlinear conduction
problems.
� 2007 Elsevier B.V. All rights reserved.

PACS: 02.30.Jr; 02.70.Dh; 02.70.�c; 46.15.�x; 47.11.St; 51.20.+d
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1. Introduction

Predicting the effective properties of heterogeneous
materials, such as composites with nonlinear behaviour,
is crucial in many applications. Homogenization tech-
niques have been successfully developed for linear materi-
als but they still remain limited in nonlinear cases.

Available homogenization approaches provide rigorous
bounds for the effective properties of nonlinear heteroge-
neous materials through an appropriate extension of vari-
ational principles [1–4]. However, analytical theories are
restricted in many circumstances due to complex geome-
tries or complex constitutive laws.

In order to overcome this difficulty, computational
homogenization methods have been worked out recently
[5–12]. When scale separation prevails, direct simulations

on the whole structure by meshing all heterogeneities
may be not practicable even using parallel computing,
whereas multi-scale homogenization algorithm can be
applied to obtain effective material properties. This kind
of technique [7–12] requires the resolution of two boundary
value problems at the same time: one at the macro scale
and another at the micro level. This approach, however,
remains computationally expensive, as a nonlinear problem
has to be solved at each macroscopic integration point.

Alternatively, computational cost can be reduced by
mean of a model reduction based on proper orthogonal
decomposition (POD) (see e.g. [13–16]). The POD is a pow-
erful method to capture correlation between sequences of
data sets, extracting only pertinent information with a
few number of modes.

The central goal of this study is to adapt a reduced
model multi-scale method [12] to transient conduction in
nonlinear heterogeneous media. In this context, the macro-
scopic gradient is first computed at every macroscopic
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point and then used to formulate appropriate boundary
conditions for a representative volume element (RVE).
The resolution of the nonlinear microscopic problem,
employing a reduced model obtained by preliminary com-
putations, provides a local macroscopic response through
averaged fields.

In the present paper, the multi-scale transient conduc-
tion problem is formulated in Section 2. Details on model
reduction based on POD are given in Section 3. Finally,
numerical examples involving nonlinear thermal and elec-
trical conduction problems are presented in Section 4 to
examine accuracy and efficiency of the method.

2. Formulation of the multi-scale transient conduction

problem

We consider a heterogeneous material with periodic
microstructure depicted in Fig. 1. We define two distinct
scales. One is the scale of the heterogeneities. The other
is the macro scale where the material can be assumed
homogeneous. In this section, we formulate the problem
at each scale.

2.1. Macro problem

Let X be an open domain occupied by the equivalent
homogeneous body bounded by oX which is decomposed
into two disjoint complementary parts oXu and oXq where
essential and natural boundary conditions are prescribed
respectively. Let �uð�x; tÞ be a scalar field, depending on the
macroscopic coordinates �x 2 X [ oX and on the time
t 2 ½0;1½, solution of the nonlinear transient conduction
problem governed by

�cð�uÞ _�uð�x; tÞ þ div�qð�uÞ � �g ¼ 0; �x 2 X; ð1Þ
�uð�x; tÞ ¼ ~u; �x 2 oXu; ð2Þ
�qð�uÞ � n ¼ ~q; �x 2 oXq; ð3Þ
�uð�x; t ¼ 0Þ ¼ u0; �x 2 X; ð4Þ

where �c, �g and n denote a material property, a volumetric
source and the unit outward normal vector on oX, respec-
tively. The flux related to �u is noted �q. Boundary and initial
conditions are prescribed through ~u, ~q and u0. The super-

posed dot is used to denote time differentiation. In the fol-
lowing, the brackets indicating that �u depends on space and
time are omitted, for the sake of conciseness.

The variational formulation associated with the balance
energy Eq. (1), is given by

Find �u 2SðXÞ satisfying conditions (2) and (4), such
that 8d�v 2S0ðXÞ,Z

X
�cð�uÞ _�ud�vdX�

Z
X

�qð�uÞ � grad d�vdX

¼
Z

X

�gd�vdX�
Z

oXq

~qd�vdS ð5Þ

or in a more compact form

Rð�u; d�vÞ ¼ 0; ð6Þ

where SðXÞ and S0ðXÞ are appropriate Sobolev spaces
[17,18].

Using a standard finite element discretization in tandem
with an implicit time integration scheme, the relation (6)
leads to a set of nonlinear equations which requires an
incremental procedure, e.g. Newton–Raphson, to be
solved. The macroscopic mesh associated with this problem
is plotted in Fig. 2. However, it should be emphasized that
the relation between �q and �u is unknown at this scale. To
determine this relation, we introduce the microscopic
problem.

2.2. Micro problem

Let Xl be an open domain with boundary oXl describ-
ing a representative volume element associated with the
neighbourhood of a macroscopic point �x. The equations
governing the nonlinear transient conduction in Xl are
identical to (1)–(6), where provided micro quantities
replace macro ones without �ð�Þ. At this scale, we assume
that materials properties of each phase are known. In this
work, we consider a nonlinear thermal conduction problem
in which a nonlinear generalized Fourier law

qðuÞ ¼ �KðuÞ � grad u ð7Þ

Fig. 1. Full structure. Fig. 2. Macroscopic mesh.
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is adopted, and a nonlinear electrical conduction problem
in which a power law

qðuÞ ¼ �vkgrad ukp�1grad u ð8Þ
is more adapted (see e.g. Refs. [1,2,4]). In those relations,
K(u) represents a second order tensor whose components
depend on u while v and p denote the second order aniso-
tropic nonlinear susceptibility tensor and the nonlinearity
index, respectively.

To solve the nonlinear problem at the micro scale by the
Newton–Raphson algorithm, it is necessary to establish the
linearized conduction problem which reads

DDuRðu; dvÞ ¼ �Rðu; dvÞ ð9Þ
where DDuð:Þ denotes the directional derivative (Gâteau
operator) of Rðu; dvÞ at any fixed u in the direction of
Du. For a more detailed account on directional derivative,
the reader is referred to [19]. After finite element discretiza-
tion of (9), we obtain the following system:

½KT�fDug ¼ �fRg; ð10Þ
where ½KT� and fRg denote the tangent matrix and the
residual vector, respectively.

To complete the micro problem, we need to specify
boundary and initial conditions. Those points are detailed
below.

2.3. Link between the two scales

One main ingredient of computational homogenization
is to consider a RVE for each integration point of the mac-
roscopic mesh. The coupling between the micro and macro
scales is ensured by boundary and initial conditions
imposed on the RVE and by the estimation of macroscopic
unknown quantities such as �q, �c and the macroscopic tan-
gent matrix through averaging the different microscopic
quantities.

For this purpose, we assume that the microscopic solu-
tion u is the superposition of an average field from the
macro domain and a fluctuation w induced by the
heterogeneities

uðx; tÞ ¼ grad uðtÞ � xþ wðx; tÞ; ð11Þ
where x denotes a generic point in the micro domain.
Applying the gradient operator and taking the volume
average over Xl, we obtain

1

jXlj

Z
Xl

grad udX ¼ 1

jXlj

Z
Xl

grad udX

þ 1

jXlj

Z
Xl

grad wðxÞdX; ð12Þ

which requires

1

jXlj

Z
Xl

grad wðxÞdX ¼ 1

jXlj

Z
oXl

wðxÞ nl dS ¼ 0; ð13Þ

where nl denotes the unit outward normal on oXl. Condi-
tion (13) is satisfied for the following boundary conditions:

wðxÞ ¼ 0 on oXl or wðxþÞ ¼ wðx�Þ on oXl; ð14Þ
where xþ and x� denote two opposite points on a rectangu-
lar boundary oXl. The first equation in (14) is verified by
using homogeneous essential boundary conditions

u ¼ grad u � x on oXl; ð15Þ

whereas, the second equation corresponds to periodic
boundary conditions for the fluctuation implying the
decomposition of oXl into two disjoint complementary
parts oXlþ and oXl� associated with xþ and x�, respec-
tively. In this study, we focus on the periodic boundary
conditions which may be stated as follows:

uþ � u� ¼ grad u � ðxþ � x�Þ on oXl; ð16Þ
where uþ and u� denote the solution of the microscopic
conduction problem at points xþ and x�, respectively.

After solving the microscopic problem, the macroscopic
flux is computed by

�q ¼ 1

jXlj

Z
Xl

qdX ð17Þ

while, according to [6], the macroscopic dynamic property
is recovered through

�c ¼ 1

jXlj

Z
Xl

cðrÞ dX; ð18Þ

where the superscript r denotes the corresponding constit-
uent phase (r ¼ 1 for the matrix material and r ¼ 2 for
the inclusions). It should be underlined that, in this ap-
proach, no assumption on the form of �q and �c is needed,
which allows to take very different and complicated micro-
scopic constitutive laws and arbitrary periodic
microgeometry.

Our last goal in this section is to estimate the macro-
scopic tangent matrix. For this purpose, we use a perturba-
tion method as described in [7]. We calculate the
microscopic response to a small variation of each compo-
nent of boundary conditions. This way of calculating
requires the solution of three (2D) or four (3D) finite ele-
ment problems for the micro mesh whose cost is not negli-
gible. In the following, we aim at reducing the costs
associated with the plentiful nonlinear problems at the
micro scale. For this purpose, we introduce model reduc-
tion for solving the microscopic problems.

3. Model reduction

The model reduction based on POD is an elegant
method to alleviate computational costs. The POD process,
also known as principal component analysis (PCA) or
Karhunen–Loève (KL) expansion [13,15,16], is a technique
which captures the overall behaviour of a physical system.
The POD identifies an optimal set of orthogonal basis
functions to achieve a satisfactory approximation of sys-
tems in the least square sense. The mathematical theory
relies on properties of Hilbert spaces.
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3.1. POD

Let fuðtÞg 2 RN be a time-dependent vector field over
Xl, given by solving the discretized transient conduction
problem at the micro level. It can be expressed as

fuðtÞg ¼ ½U�fnðtÞg; ð19Þ
where ½U� ¼ ½f/1g; f/2g; . . . ; f/Ng� is an arbitrary ortho-
normal basis of RN and fnðtÞg are coefficients.

In the POD context, we aim at replacing fuðtÞg by an
approximate solution fûðtÞg ¼ ½bU�fn̂ðtÞg, using only M

basis vectors ðM � NÞ, which satisfies

Min
f/ig
kfuðtÞg � fûðtÞgk2 ð20Þ

with the constraints

hf/ig; f/jgi ¼ dij; ð21Þ

where f/ig denotes the ith vector of ½U�.
It can be shown that the problem described by (20) and

(21) leads to the following eigenvalue problem:

½V �f/ig ¼ lif/ig i ¼ 1; 2; . . . ;N ; ð22Þ
where ½V � is the correlation matrix defined by

½V � ¼ ½Q�½Q�T; ð23Þ
where ½Q� is a N � S matrix such that

½Q� ¼ ½fuð1Þgfuð2Þg � � � fuðSÞg�; ð24Þ
fuðtÞg being solutions known for S time-steps from preli-
minary computations. For a more detailed account, the
reader is referred to [15].

Then, the reduced basis ½bU� is obtained by keeping only
M eigenvectors of ½U� associated with the first M higher
eigenvalues li. As the error induced by the approximation
fûðtÞg is estimated by

kfuðtÞg � fûðtÞgk ¼
XN

i¼Mþ1

li

 !1
2

; ð25Þ

the number M of selected basis functions, called modes in
the following, is thus chosen according to the error
criterion:PN

i¼Mþ1li

� �1
2PN

i¼1li

� �1
2

< d; ð26Þ

where d denotes a tolerance error parameter smaller than
one. In practise, the eigenvalues quickly decrease, and only
a small number of eigenvectors needs to be retained.

3.2. POD and Lagrange multipliers

Discretization of the nonlinear transient conduction
problem results in an incremental discrete system of N lin-
ear equations whose matrix form is given by (10). In this
context, the periodicity condition (16) can be rewritten in
an incremental form

Duþ � Du� ¼ 0: ð27Þ

Here, condition (27) is imposed by using Lagrange multi-
pliers. The new system to be solved is in the form

½KT� ½GT�
½G� ½0�

" #
fDug
fDkg

� �
¼ �

fRg
f0g

� �
; ð28Þ

Fig. 3. Representative volume element.
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Fig. 4. Sampling points in the parameter space used to construct the POD
solution.
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Fig. 5. Profiles of the first five modes along a line tangent to the inclusion.

Table 1
Coefficients of electric properties

a0 a1 a2 a3 a4

Matrix 500 2� 10�1 3� 10�3 1� 10�6 1� 10�10

Inclusion 100 �5� 10�2 �4� 10�4 5� 10�7 2� 10�7
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where additional unknowns, the Lagrange multipliers
fDkg, must be also reduced in the form of (19) in the frame-
work of POD analysis.

We have noted that the Newton–Raphson algorithm
used to solve the reduced linearized problem diverges when
solutions f~ug, including Lagrange multipliers, of the full
microscopic problem are used to construct the reduced
basis in the procedure described in Section 3.1 To over-
come this issue, we propose here to project the linearized
equations on a reduced basis that is built using the
unknown increments fD~ug, including Lagrange multipliers,
instead of the unknown f~ug, such as we define the new
matrix ½Q� by

½Q� ¼
fDu1

1g � � � fDuk1

1 g � � � fDukS

S g
fDk1

1g � � � fDkk1

1 g � � � fDkkS

S g

" #
; ð29Þ

where the superscript, the subscript and k denote iteration
index, time-step and the last iteration at each time-step,
respectively. Thus, in the POD context, the unknown incre-
ments fD~ug take the following form:

fD~ug ¼ ½bU�fDn̂g: ð30Þ

Introducing (30) in (9) and expanding dv using (30), we
obtain

Fig. 6. Electric potential along a centered line.

Fig. 7. Electric potential after interchanging materials properties.
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½bU�T½KT� ½bU�fDn̂g ¼ �½bU�TfRg: ð31Þ
This equivalent problem involves only M equations and

M unknowns instead of N, with M � N . The expected
computational gains are due to (a) the storage and
decomposition of only small matrices and vectors associ-
ated with the linearized problem at micro scale, (b) the
assembly of reduced elementary matrices instead of
premultiplying the full assembled matrix by the reduced
basis (see Ref. [14]).

3.3. Construction of the reduced basis

Up to now, we have not precised how to construct the
reduced basis. Let f ¼ fc1; c2; . . . ; crg; f 2 Rr the space of
the parameters defining the system solution. In the pro-
posed approach, we first define a set of S points in f, in
which we solve the full problem. We then collect all the
increments in the matrix ½Q�, solve the eigenvalue problem
(22) and select the M relevant eigenvectors of ½V � according
to the criterion (26), to form the reduced basis ½bU�. We then
assume that the basis is rich enough to capture accurately
the different feature of the full problem solution for any
set of parameters in f. The steps of the reduced basis con-
struction are summarized as follows:

(i) define S points in the r-dimensional space of the
parameters f ¼ fc1; c2; . . . ; crg describing the system;

(ii) solve the full problems associated with the S sets of
parameters and store the increments in ½Q� (29);

(iii) solve the eigenvalue problem (22);
(iv) select the M relevant eigenvectors of ½V � according to

the criterion (26) to form ½bU�.
Here, the system of interest is the RVE, which solution is

defined by two parameters fc1; c2g, the components of
grad u in (16). In the parameter space, we define series of
sampling points by S1 ¼ fc1; 0g, S2 ¼ f0; c2g and
S3 ¼ fc1; c2g. To determine the values of those parameters,
a preliminary simulation on the macroscopic domain using
a volume average of material properties is conducted. Dur-
ing this simulation, we store the maximum and the mini-
mum of each component of the gradient so that the
amplitudes of ci are picked between those values. An illus-
tration of the sampling points used to define the S full
problems is depicted in Fig. 4. It is worth noting that other
strategies can be adopted to define the S points (regular
grids, patters, random clouds, etc.).

4. Numerical examples

4.1. Nonlinear electrical steady conduction

Numerical computations are carried out for a unit
square plate divided into triangular elements with linear
interpolations. The macroscopic mesh described in Fig. 2
is composed of 100 nodes and 162 elements. The RVE is
a single square with a centred circular inclusion shown in
Fig. 3. It involves 423 degrees of freedom and 760 linear
elements. Here, we restrict ourselves to solve electrical
steady problems.

We impose a potential difference of 500 V between two
opposite sides of the macroscopic domain ð�x ¼ 0Þ and
ð�x ¼ 1Þ whereas, on the other sides, we assume that
�q ¼ 0. We also suppose that the materials, forming the
matrix and inclusions, obey isotropic constitutive laws
which are a combination of (7) and (8), so that the electric
flux reduces to

qðuÞ ¼ �ða0 þ a1uþ a2u2 þ a3u3Þgrad u

þ a4kgrad ukp�1 grad u: ð32Þ

We choose arbitrarily the same nonlinearity index p ¼ 4
for each phase. The other coefficients are provided in
Table 1.

As described in Section 3.3, we perform preliminary
computations to build the reduced basis following the three
series established previously. By taking d ¼ 10�6 in (26),
only 8 modes are retained. Hence, the microscopic reduced
problem only involves 8 unknowns. The profiles of the first
five modes along a line tangent to the inclusion are depicted
in Fig. 5. Then, we carry out three simulations: one using a
simple multi-scale procedure termed as FE2 and one using
a multi-scale algorithm in tandem with a model reduction
termed as R3M. The last calculation, used as a reference
solution, is carried out on the complete structure depicted
in Fig. 1.

In Fig. 6, we compare the potential obtained along a
centered line of the macroscopic domain. Good accuracy
of the proposed method with respect to a full computation
or a direct computational homogenization (FE2) is
observed. To check the validity of our solutions, we also
plot, in the same figure, the solution of homogeneous prob-
lems in which the macroscopic plate would be only com-
posed by the matrix material or the inclusion one. As
expected, the presence of inclusions which are less conduc-
tive lowers the conductivity of the equivalent material.

Table 2
Coefficients of thermal properties

a0 a1 a2 a3 a4

kalumina 23.6 �3:68� 10�2 2:85� 10�5 �7:73� 10�9 155
kzirconia 2.91 3:90� 10�3 3:60� 10�6 �9:55� 10�10 �2.86
Cpalumina 0.899 8:91� 10�4 �8:43� 10�7 3:24� 10�10 �3.71
Cpzirconia 0.737 �3:22� 10�4 7:75� 10�7 �3:78� 10�10 �1.12
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As a second example, we solve the same problem inter-
changing the materials properties. Thus, we determine the
new reduced basis and perform the three same simulations.
As previously, we compare in Fig. 7 our numeric solutions
along the same centered line and we plot the solution of
homogeneous problems. Good agreement is obtained com-
pared to a full computation. This time, the presence of con-
ductive inclusions increases the conductivity of the
equivalent material. Besides, in Fig. 8, we compare compu-
tation times for the first case: a large reduction of the com-
putational costs is noticed.

4.2. Nonlinear thermal transient conduction

4.2.1. Homogeneous problem

In the context of transient conduction problems, we first
validate the R3M procedure for homogeneous materials. In
this example, we solve a thermal transient conduction
problem on a rectangular plate whose length and width
are 0.2 m and 0.1 m, respectively. The surface is divided
into 64 linear triangular elements which involves 45 nodes.
The boundary conditions are as follow.

We impose free convection conditions on two opposite
sides ð�x ¼ 0Þ and ð�x ¼ 0:2Þ of the macroscopic mesh with
a heat transfer coefficient h ¼ 2000 W m�2 K�1. The other
two opposite sides are assumed to be adiabatic. The initial
temperature for the whole structure is equal to 100 �C
while the ambient temperature is 500 �C.

We consider a homogeneous RVE whose mass density
and specific heat are 7800 kg m�3 and 440 J kg�1 K�1,
respectively. The constitutive equation takes the form of
(7) where the heat conductivity tensor is defined by

KðuÞ ¼ ð98:43� 0:09155uþ 0:255410�4 u2ÞI; ð33Þ

where I is the second order identity tensor.
We perform preliminary computations as detailed in

Section 3.3 with d ¼ 10�6 in (26) in order to obtain a
reduced basis. Only 6 modes are selected. Then, as previ-
ously, we carry out two simulations: one using the FE2

method and one using the R3M. Results, depicted in
Fig. 9, agree well with the reference solutions obtained in
[20].

4.2.2. Heterogeneous problem

This last example deals with heat conduction inside
ZrO2–Al2O3 composite.

The macroscopic domain is the same as used in example
4.1. The RVE is a square domain with a centred circular
inclusion whose volume fraction is 0.2. The matrix is
assumed to be yttria-stabilized zirconia whose mass density
is 5:9� 103 kg m�3 whereas the inclusions are made of alu-
mina whose density is 3:9� 103 kg m�3. Thermal proper-
ties, i.e thermal conductivity and specific heat depicted in
Fig. 10, are assumed to be functions of the temperature.
In [21,22], experimental data allow to propose the follow-
ing form:
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a0 þ a1uþ a2u2 þ a3u3 þ a4u�1; ð34Þ
which covers a large number of isotropic conductivity and
specific heat forms used in thermal problems. The different
coefficients are given in Table 2.

We impose on the sides ð�x ¼ 0Þ and ð�y ¼ 1Þ of the mac-
roscopic mesh a temperature of 500 �C whereas the other
sides are subjected to an adiabatic condition. The initial
temperature of the structure is taken to be uniform and
equal to 100 �C.

In order to obtain a reduced basis, we perform prelimin-
ary computations as detailed in Section 3.3 with d ¼ 10�6

in (26). The microscopic reduced problem involves only 7
unknowns instead of 480 (439 for the temperature
unknowns and 41 for Lagrange multipliers associated with
boundary conditions). Four modes are depicted in Fig. 11
while Fig. 12 shows the functional profile of those 4 modes

Fig. 13. Temperature distribution.
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along a line (y = 0.02). The Lagrange multipliers fields are
not represented.

Then, we carry out three simulations: two multi-scale
computations as previously described and one where the
whole heterogeneous structure is meshed (see Fig. 1). The
latter is used as a reference solution. The numerical results
are shown in Fig. 13. Good agreement between the differ-
ent methods is noticed.

In Fig. 14, we compare the homogenized temperature
obtained through the different approaches along a line
ð�y ¼ 0:22Þ at different time-steps. The relative error in per-
cent, given by

e ¼ 100
kT � T refk
kT refk

; ð35Þ

where T and T ref denote the temperature obtained through
multi-scale and full computations respectively, is depicted
in Fig. 15. A good agreement with the reference solution
is observed.

We also compare computation times in Fig. 16. Once
again, important reduction of computational times is
achieved in comparison with a simple multi-scale method.

5. Conclusion

In this work, a reduced model multi-scale method
(R3M) initially developed for solid mechanics problems
in [12] has been applied to solve highly nonlinear conduc-
tion problems. The proposed method lowers computa-
tional costs with regard to brute computation or simple
multi-scale computations as the total degrees of freedom
(unknowns of the nonlinear microscopic problem and
Lagrange multipliers) decrease considerably.

The performance of the method has been demonstrated
through nonlinear electrical and thermal problems. Accu-

rate results are obtained with respect to some reference
solutions obtained by meshing all the heterogeneities at
lower computational costs.
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