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Abstract

The Weibull distribution is widely used to describe the scatter of the strength in brittle (but also quasi-brittle) materials,
often assuming that the Weibull modulus is a ‘‘material constant’’. One possible motivation of this perhaps comes from the
classical Freudenthal�s interpretation of Weibull modulus depending on the crack size distribution, which however assumes
the cracks to be at large distance one from the other. It is here found with simple numerical experiments with collinear
cracks that Weibull distributions tend to be obtained also with interaction taken into account, but the Weibull modulus
depends on both the crack size distribution and the distribution of ligaments. Hence, Weibull modulus should not be con-
sidered a ‘‘material constant’’ or to correspond to an ‘‘intrinsic’’ microstructure of the material, as assumed in many indus-
trial applications and commercial postprocessors of FEM softwares, even in the case of a varying stress fields. In the limit
case of a crack or sharp notch this leads to paradoxically a zero scale parameter (and the usual Weibull modulus). Hence,
in the case of a blunt notch, we suggest the Weibull modulus would vary depending on the distribution of cracks, their
distances, and the interaction with the geometry and stress field. Only numerical simulations where the distribution of
cracks is directly included in the geometry under consideration can provide the correct scale factor and Weibull modulus.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The strength of brittle materials and size effects is a classical subject which has attracted the interest of many
of the greatest scientists of all times including Galileo (1638), who first recognized the ‘‘size effect’’ as the
departure from failure at the nominal failure stress, Mariotte (1686), and others (see reviews by Bazant
(2002, 2004)). This problem was then studied experimentally by Weibull and resulted in his well-known dis-
tribution (Weibull, 1939, 1951), although in 1928 this distribution had been already derived by Fisher and
Tippett (1928). Since the tail of similar results is a power-law, Weibull suggested that statistical size effect is
also a power-law with the exponent being the coefficient of variation of material strength. Weibull theory
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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was amply confirmed and perhaps even used more widely or less safely than the scope and the original moti-
vation would suggest. First of all, it is recognized that a large class of materials have cracks which are in the
transition from brittle behaviour to ductile behaviour (it is possible to define a fracture process zone: only
when the latter is negligible compared with the size of the structure, the material is perfectly brittle and follows
linear elastic fracture mechanics, LEFM). More recently, fractals are used to interpret size effects perhaps
more efficiently (Carpinteri, 1994; Mandelbrot et al., 1984), recognizing the multiscale nature of power-law
distributions can be more advantageously discussed within this context than in the context of statistics, even
if not all authors agree on this advantage of fractals (see Bazant and Yavari, 2005).

One unjustified assumption often made in the engineering community and literature is to assume that the
size effect power-law exponent, i.e. the coefficient of variation of material strength, is a material constant. Is
this the case? This paper will illustrate why this is not, with a simple example of collinear cracks. This is by no
means of interest of realistic materials (why would the crack be aligned only along a line), but to provide a
simple way to define their distance and study the effect of interaction.

But where does the assumption of Weibull modulus as a material constant come from? Is there any reason
for this? One possible explanation is that most people consider the well-known interpretation of Weibull the-
ory by means of the model of non-interacting cracks, hence attribute Weibull modulus to the crack size dis-
tribution, and translate this as a material properties into any other condition, even including different
geometrical and loading conditions (this latter aspect will be discussed towards the end of the paper).
Freudenthal (1968) indeed showed that a Weibull distribution is obtained with an inverse power-law distribu-
tion of flaws, but neglecting mutual interaction in the stress fields surrounding each flaw, and applying Griffith
equation which specifies the critical length a of an elliptical crack in terms of the stress intensity r
r
ffiffiffi
a
p
¼ k ¼ const ð1Þ
where the constant k depends on the Young�s modulus E, Poisson�s ratio m and the rate of work Cc to produce
a unit area of crack.

In particular, according to Weakest Link Theory (WLT), the fracture of a specimen is identified with the
unstable propagation of the most ‘‘critical’’ crack (the largest in a uniform stress field). Peirce (1926) was
the first to formulate WLT and recognized the close relation of this model to the theory of extremes values,
stating that the distribution of smallest values tends in the limit of large number of samples to be one of the
asymptotic distributions, regardless of the initial population (Gumbel, 1958). Only two kinds of physically sig-
nificant distribution functions of extreme values exist: one function represents the extremes of unlimited initial
populations, described by functions that converge towards zero for jxj ! 1 at least as fast as the exponential
function exp(�x); the other function represents the extremes of initial populations (called Cauchy type distri-
butions) that are limited for x = 0 and converge towards zero for jxj ! 1 as fast as an inverse power-law x�m.
For example, for a Cauchy type distributions of crack size a, the function distribution of the largest cracks was
derived by Frechet (1927)
F a að Þ ¼ exp � a
u

� ��ah i
ð2Þ
with u characteristic size. By using Griffith�s equation, Eq. (1), this distribution can be converted into a dis-
tribution of strength
F rðrÞ ¼ 1� exp � k2

r2u

� ��a
" #

¼ 1� exp � r
r0

� �2a
" #

ð3Þ
with r0 ¼ k=
ffiffiffi
u
p

and such distribution coincides with the two-parameter Weibull distribution with modulus
m = 2a.

This model can explain experimental strength data of brittle material to some extent, but when there is
interaction between cracks, or between cracks and the gradient of the stress field, the modulus is found to
depend significantly on loading and geometrical factors, and is not a material constant, as noticed already
experimentally by various authors (Milella and Bonora, 2000).

In order to attack the problem of interaction, we start from a simple case, generating distributions of
collinear cracks in a large plate under uniform tension, and finding the strength distributions by an efficient
dual boundary element method (DBEM) (Portela et al., 1993; Aliabadi, 2002).



L. Afferrante et al. / International Journal of Solids and Structures 43 (2006) 5147–5157 5149
2. Formulation

The geometry of the problem is shown in Fig. 1 where an infinite plate with N collinear cracks is loaded by
uniform remote tension r1. The model is similar to that considered by Zhang et al. (1998).

In particular, two cases was considered:

• N collinear cracks with arbitrary lengths and equal ligament sizes;
• N collinear cracks with arbitrary ligament sizes and equal lengths.

The ultimate stress rr has been evaluated as
rr

r1
¼ KIC

KI

ð4Þ
where KI and KIC are, respectively, the highest stress intensity factor in a specimen and the critical stress inten-
sity factor of the material.

To define the size of the samples, i.e. the number of specimen in each sample, the following equation (pro-
posed by Smart et al. (2003) and relating the Weibull modulus m to the number of experimental data) can be
used:
msd

m0

¼ 1ffiffiffiffiffiffi
Ng

p ð5Þ
where Ng is the number of data and m0 and msd are the expected value and standard deviation of the Weibull
modulus. Eq. (5) shows as the scatter of the modulus m decreases with the number of data Ng and the larger is
m the larger has to be Ng.

Fig. 2 show the values of Weibull modulus obtained by a two parameters regression on samples with Ng

from 25 to 500. For each specimen, the ligament size is distributed with inverse power-law (r = 5 and
d = 2), i.e. we suppose that the crack length is a random variable distributed with a probability density func-
tion p(a) = 1/ar.
Fig. 1. Infinite plate with N collinear cracks, loaded on the edges by uniform remote tension r1.
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Fig. 2. Variation of the Weibull modulus with the number of specimens Ng (two parameters distribution).
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The number Ng of specimens needed to identify with enough reliability the correct distribution can be very
large. However, we set Ng = 100 as the estimated error is around 2%. Further, the number of cracks of the
specimens is bounded to N = 50, finding a trade-off between reliability and computational costs.
3. Cracks with length 2a distributed with inverse power-law and equal ligament size d

In this section a first investigation on the interaction effects between the cracks is shown. We considered 50
collinear cracks with identical ligament size d. A distribution with inverse power-law is considered for the
cracks length 2ai. Twelve samples, each with Ng = 100 specimen, have been generated with the following val-
ues of ligament size d and exponent of power-law r:
d 2 ½0:002; 0:02; 2�
r 2 ½2; 3; 5�
The maximum stress intensity factor KI,max has been evaluated and by (4) the ultimate stress rr (each elasticity
problem being solved by an efficient dual boundary element formulation). In Fig. 3 the failure probability is
shown vs the normalized strength (rr/r1) for r = 2 and d = 0.2. The numerical results are better fitted by the
three parameters Weibull distribution than two parameters one (the correlation coefficient is 0.993 for the
three parameters Weibull distribution, 0.992 for two one). However, the difference is very small and, for this
reason, the simpler two parameters distribution is used in the following.

Fig. 4 shows the variation of the Weibull modulus m2p of the ultimate stress distribution with the exponent r

of the cracks� inverse power-law. The curves are obtained for different values of the ligament d. Notice that the
Weibull modulus increases upon increase of the exponent r, stating that the scatter of the material strength
decreases. In particular, for d > 0.002 the numerical curves are very close to theoretical one (dashed dot line)
which is obtained by assuming no interaction between the cracks (m2p = 2(r � 1)). Only when the ligament is
very small (d = 0.002) the interaction between the stress fields around the cracks becomes significant and the
Weibull modulus deviates from the theoretical one. In fact, in this case the ratio between the ligament and the
crack medium size (amed) is always less than one, as indicated in the table shown in Fig. 4. As expected, inter-
action effects are significant only when cracks and their ligaments are of comparable size.

This can be interpreted as a transition zone between the applicability field of the Weibull theory (in which
maximum scatter of the results is expected) and that of the deterministic results of the constant size ligaments.



Fig. 3. Probability failure vs normalized strength (r = 2 and d = 0.2).

Fig. 4. Variation of the Weibull modulus m2p with the exponent r of the inverse power-law, for different values of ligament d.
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If the ligaments were to be distributed, their statistics would imply in turn a different Weibull exponent in the
resulting strength distribution.

In Fig. 5 the variation of the scale parameter r0 with the exponent r of inverse power-law, for different
values of ligament d is plotted. The interaction between the cracks involves a larger concentration of the stress
fields around the tip (larger KI) and a nominal strength reduction of the specimen. In fact, the scale parameter



Fig. 5. Variation of the scale parameter r0 with the exponent r of the inverse power-law, for different values of ligament d.
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r0 decreases by decreasing the ligaments size d, and moves towards an upper bound represented by the
theoretical scale parameter (dashed dot line) which is evaluated in according to the weakest link hypothesis,
i.e. by considering only the largest crack in its isolation.

An example is shown in Fig. 6, where a comparison between theoretical and numerical results (and the
respective Weibull regression curves) is presented for ligament d = 0.002 and exponent r = 5. The effective
nominal strength is lower than theoretical one.

Therefore, for cracks with length 2a distributed with inverse power-law and equal ligament size d, the
Weibull modulus significantly deviates from the theoretical one only for small values of the ratio between
the ligament d and the crack medium size amed (d/amed < 0.5).
Fig. 6. Comparison between failure probability of the theoretical case (without interaction) and numerical one (r = 5, d = 0.002).
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4. Cracks with constant length 2a and ligament d distributed with inverse power-law

In this section, the case of 50 cracks with constant length 2a and ligament d distributed with probability
density function p(a) = 1/ar is studied. Nine samples, each with Ng = 100 specimens, have been generated with
the following values of crack length 2a and exponent of power-law r:
Fig.
2a 2 ½0:02; 2; 20�
r 2 ½5; 8; 10�
Similarly to the above section, we shall find a distribution of strength. However, differently from the previous
case, here we need to reason in terms of load, because the Griffith equation is now modified for external cracks
(Fig. 8)
P r ¼ const
ffiffiffi
d
p

ð6Þ

where d is the ligament size. Hence, the cumulative probability function of the ultimate load Pr (with P = r Æ L,
where L is the plate width size) is evaluated by
P r

P1
¼ KIC

KI

ð7Þ
Fig. 7 shows the variation of the Weibull modulus m2p of the distribution Pr/P1 with the exponent r of the
inverse power-law, for different values of cracks length 2a. The Weibull modulus shows a similar trend to that
of the specular case (discussed in the above section): an increase of exponent r yields an increase of modulus
m2p; vice versa an increase of the crack size 2a yields a decrease of m2p. The theoretical curve of the Weibull
modulus is plotted with dashed dot line. It is deduced by Eq. (3) assuming for the ultimate load Pr Eq. (6).

In fact, Fig. 7 shows as increasing the crack size 2a, i.e. approaching the limit case of external crack of
Fig. 8, the numerical curves move towards the theoretical one. Hence, in the limit of very large cracks with
7. Variation of the Weibull modulus m2p with the exponent r of the inverse power-law, for different values of cracks length 2a.



Fig. 8. Isolated and external crack.
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respect to the ligament size (in our numerical experiments for dmed/a ’ 10�3), we expect the applicability of a
specular theory to that of Freudenthal.

Also, the increase of the Weibull modulus (i.e. the decrease of the scatter) when the crack length reduces
with respect to ligaments size denotes that a transition exists between the statistical distribution in the sense
of Weibull (in which it is necessary to reason in terms of probability of fracture) and the determinism of the
LEFM of the single defect (in which deterministic results are obtained for the ultimate strength because the
crack size is constant). If the crack sizes were to be distributed, the transition would be between two statistics.
Fig. 9. Variation of the scale parameter r0 with the exponent r of the inverse power-law, for different values of cracks length 2a.
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The specular theory is confirmed in Fig. 9 where the variation of the scale parameter r0 with the exponent r

of the inverse power-law is plotted for different values of cracks length 2a. However, notice that, contrary to
the case discussed in Section 3, the theoretical scale parameter, evaluated in according to Eqs. (3) and (6), can
be interpreted as a lower bound.

5. Discussion: Weibull paradox

The use of Weibull�s modulus as a material constant, and the idealization of a given set of tests into a Wei-
bull ‘‘material’’ leads to further extensions of Weibull�s theory and of the Weakest Link Theory to the Weibull
integral, often used even in well-known softwares like CARES by NASA, where the probability of failure of a
given specimen is assessed by multiplying the ‘‘local’’ probability of failure for each infinitesimal element. This
process carries strong assumptions, since essentially an entire distribution of cracks which in some experiment
has lead to a given Weibull modulus is concentrated in infinitesimal elements of material, and the specimen�s
geometry can no longer affect the Weibull modulus. A limit case is when the specimen is notched or even deter-
ministically cracked, in which the theoretical Weibull distribution found by integration would lead to the same
Weibull modulus but zero scale parameter (because of the singularity in the stress field).

In fact, considering also the effect of the volume, in terms of probability of survival R(V) = 1 � F(V), Eq.
(3) can be rewritten as
Rðr; V Þ ¼ exp � r
r0

� �m V
V 0

� �
¼ exp �nc rð ÞV½ � ð8Þ
The function ncðrÞ ¼ 1
V 0
ð r
r0
Þm is a stress dependent ‘‘risk of rupture’’, where V0 is representative of the material

volume, r0 is a scale parameter and m is the Weibull modulus. The volume component is easily derived as it is
the only one satisfying the WLT condition (see Freudenthal, 1968)
Rðr; nV Þ ¼ ½Rðr; V Þ�n ð9Þ

Notice that this condition could be satisfied with nc(r) being any function of the stress r. The Weibull dis-

tribution simply corresponds to the case
ncðrÞ ¼
r
r0

� �m

or ncðrÞ ¼
r� ru

r0 � ru

� �m

ð10Þ
where the latter case is for three parameter distribution. For non-uniform stress field, we immediately derive
the product as an integral,
R ¼ exp � 1

V 0

Z
V

r
r0

� �m

dV
� �

ð11Þ
However, writing WLT in this form is purely speculative as it corresponds to effectively assuming infinitesimal
volumes of material non-interacting with each other—a distribution of cracks cannot be collapsed to a single
material point! Therefore, the larger the stress gradient, or the larger the cracks with respect to their distance,
the larger the deviation we expect from the simple Weibull case.

In order to see the effect of gradient, let us consider the case of a macroscopic crack or sharp notch. Using
the Williams� asymptotic stress field for a notch �a < h < a,
rðr; hÞ ¼ Ar�pgðhÞ ð12Þ

where A is an arbitrary constant, p is a dimensionless exponent and g is some function, we obtain
R ¼ exp � 1

V 0

Z a

�a

AgðhÞ
r0

� �m

dh
Z q2

q1

r1�mp dr
� �

ð13Þ
Now,
Z q2

q1

r1�mp dr ¼ q2�mp
2 � q2�mp

1

ð2� mpÞ ð14Þ
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There are two possibilities. If mp > 2, the integral will be unbounded when q1! 0, whereas if mp < 2, it will be
unbounded when q2!1. For mp = 2 it is unbounded at both limits. Thus, for all values of m, p the prob-
ability of survival is zero, but for different reasons. For mp > 2, failure occurs because of the high stress in the
notch, whereas for mp < 2 it occurs because of the unbounded volume of lightly stressed material away from
the notch. In the latter case, bounded results would be obtained by considering the actual stress field in the
finite body.

However, the main conclusion is that the mean value of strength is likely to be zero, whereas we expect it to
be finite (as after all the macroscopic crack is not qualitatively different from the distribution of cracks giving
the Weibull statistics). Also, there is no particular reason to expect the scatter to be given by the Weibull mod-
ulus in the case of pure tension. In fact, Weibull modulus depends on loading and geometrical factors, and is
not a material constant as noticed already experimentally by various authors (Milella and Bonora, 2000). A
Monte Carlo simulation for this case, conducted similarly to what done in the present paper, would certainly
lead to a different Weibull modulus (intermediate between that of the material and the infinite modulus result-
ing from the deterministic crack) and a finite scale parameter. One obvious but quite empirical solution is to
remove from integration a certain region ahead of the crack or notch tip, but this does not recognize the real
nature of the problem.
6. Conclusions

The Weibull distribution is very commonly found in experiments, and we have confirmed it generally ap-
plies even if interaction between defects is considered. However, we also have shown it does not necessarily
correspond to a ‘‘material property’’ modulus, and a geometry and loading condition dependent scale param-
eter. Indeed, the Weibull modulus can vary because of interaction between the cracks or between the cracks
and the stress field. Hence, it is perhaps over-simplifying to assume Weibull as a material constant.

We have defined a specular theory for distributed ligaments and cracks very much larger than the liga-
ments, and in this case, not the crack distribution, but the ligament distribution gives the Weibull modulus.
When both the cracks length and the ligaments sizes are statistically distributed the expected Weibull modulus
will be a weighted average between the modulus of the cracks distribution and that of the ligaments distribu-
tion, with weight depending on the ratio between the characteristic sizes of cracks and ligaments.

Finally, we have demonstrated that, in the limit case of specimen notched or even deterministically cracked,
the use of the classical Weibull ‘‘theory’’ by integration leads to a paradox. This paradox would be removed in
a direct simulation, where different Weibull modulus would be found and a finite scale parameter, both
depending on the interaction between the distribution of cracks and the stress field. This suggests that some
care is needed in using the classical Weibull ‘‘theory’’ when there is possibility of interaction of defects, or
interaction of defects with the stress field gradient.
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