
International Journal of Solids and Structures 46 (2009) 2453–2462
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/ locate / i jsols t r
A cohesive zone model for fatigue crack growth allowing for crack retardation q

Ani Ural a, Venkat R. Krishnan b, Katerina D. Papoulia c,*

a Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
b Department of Theoretical and Applied Mechanics, 217 Kimball Hall, Cornell University, Ithaca, NY 14853, USA
c Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 October 2007
Received in revised form 14 November 2008
Available online 7 February 2009

Keywords:
Fatigue
Damage
Cohesive zone models
Crack propagation
Life prediction
Crack retardation
Healing
Mean stress effect
Load-ratio
Overload
0020-7683/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.ijsolstr.2009.01.031

q Supported in part by NASA Cooperative Agreem
Future Space Transport”, NSF Award NMS-0239068
342117-07.

* Corresponding author. Tel.: +1 519 888 4567.
E-mail addresses: ani.ural@villanova.edu (A. Ur

Krishnan), papoulia@uwaterloo.ca (K.D. Papoulia).
A damage-based cohesive model is developed for simulating crack growth due to fatigue loading. The
cohesive model follows a linear damage-dependent traction–separation relation coupled with a damage
evolution equation. The rate of damage evolution is characterized by three material parameters corre-
sponding to common features of fatigue behavior captured by the model, namely, damage accumulation,
crack retardation and stress threshold. Good agreement is obtained between finite element solutions
using the model and fatigue test results for an aluminum alloy under different load ratios and for the
overload effect on ductile 316 L steel.
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1. Introduction

The fatigue life of a structure is influenced by mechanical,
microstructural and environmental factors, all of which result in
material damage, typically equated to crack length (Miller, 1991).
Indeed the field of fracture mechanics has had profound influence
on fatigue analysis. For mechanical type loads, fatigue life of a com-
ponent or structure is calculated as the number of loading cycles
needed to grow a pre-existing crack to a predetermined critical
dimension or to nucleate and grow a crack from a notch or other
location of stress concentration.

The focus of this paper is the so-called stage-II fatigue crack
growth, i.e., the stable propagation of a dominant crack. Starting
with the Paris model (Paris and Erdogan, 1963; Paris et al.,
1961), fatigue life predictions have typically been based on equa-
tions relating the stage-II rate of crack growth (da=dN) to the stress
intensity range (DK), also called the driving force, characteristic of
a constant magnitude cyclic applied load and of specimen geome-
try. Here a is the crack length and N is the number of loading
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cycles. Attempts to incorporate more complex conditions affecting
the crack growth rate led to models whose parameters depend on
characteristics of the applied load or of the environment, as well as
the redefinition of DK .

The Paris model and similar approaches are valid under the
ideal conditions of linear elastic fracture mechanics (LEFM),
small-scale yielding, constant amplitude cyclic loading and long
cracks. When these conditions are not met, these approaches lose
their predictive capability. In particular, they are unable to model
crack retardation due, for example, to roughness induced crack clo-
sure (Elber, 1971), oxidation, or the presence of a residual stress
field (Noroozi et al., 2008).

We develop a cohesive zone model, i.e., a model of the traction–
separation relationship ahead of the crack tip, capable of macro-
scopically modeling fatigue crack growth. Cohesive zone models
can capture the nonlinear behavior occurring in the process zone
provided that the latter can be considered as a zone of zero thick-
ness. Since they can be paired with a plasticity model in the bulk
material, they can be especially useful in simulating fatigue behav-
ior of materials that violate small scale yielding assumptions at the
crack tip. Their use in fracture problems has become common in
recent years. Cohesive zone models are also useful when microme-
chanical processes acting at a scale smaller than the grid size used
in the finite element analysis affect the rate of crack growth. The
relevant micromechanics can then be incorporated in the cohesive
zone model. This process is sometimes called ‘‘subgrid modeling”.
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Examples are the interaction of asperities as a cause of crack clo-
sure and the effect of residual stresses when the plastic zone is
not adequately resolved. A crack retardation mechanism as intro-
duced in the proposed model can be used to capture these effects.
Subgrid modeling is ideally carried out through multiscale analy-
sis, which is not addressed in this paper. In that light, one could
envision obtaining the parameters of the proposed model from
micromechanical analysis at a smaller scale.

Cohesive zone fatigue models have most commonly been
implemented as cohesive interface finite elements. de Andres
et al. (1999) proposed a bilinear traction–separation relationship,
which unloads to the origin with no cyclic degradation of either
the stiffness or the peak traction. Nguyen et al. (2001) pointed
out that such a model can lead to plastic shakedown that arrests
crack growth after a few cycles. Hence, a distinction between load-
ing and unloading paths is necessary, which allows for subcritical
crack growth. In Nguyen et al. (2001), a cohesive model with an
unloading–reloading hysteresis was developed. In this work, the
stiffness and the peak load degrade proportionally to the unloading
stiffness as the number of cycles increases. Roe and Siegmund
(2001) introduced a damage variable, whose evolution resulted
in the degradation of the cohesive zone traction. The cohesive rela-
tionship under monotonic loading was based on the potential pro-
posed by Xu and Needlemanm (1994). Maiti and Geubelle (2005)
proposed a cohesive model of fatigue fracture in polymeric materi-
als in which the cohesive stiffness evolves as a function of the rate
of opening displacement and of the number of loading cycles since
the onset of failure. Crack retardation or healing due to artificial
crack closure (a wedge introduced in the wake of the crack) was
addressed by these authors in Maiti and Geubelle (2006). Maiti
et al. (2006) incorporated healing kinetics at the atomic level for
a class of self-healing materials.

The proposed cohesive zone model, an earlier form of which
was presented in Ural and Papoulia (2004), is bilinear under mono-
tonic loading and shows a degrading peak traction and stiffness
behavior under cyclic loading due to an evolving damage variable.
The model is a constitutive relationship of the material, i.e., unlike
the Paris and other models, its parameters do not depend on load-
ing characteristics such as the load ratio, defined as the ratio of
minimum to maximum load. Rather, it contains three physically
motivated parameters, which govern crack advance, threshold,
and retardation, respectively. As in Roe and Siegmund (2001), the
model introduces a scalar (energy like) damage variable, governed
by an evolution equation, which provides a phenomenological
framework to account for the nonlinear processes associated with
fatigue failure. Special emphasis is placed on the ability of the
model to capture crack retardation, which is known to depend
on the load ratio. In particular, the damage variable can evolve
nonmonotically; a decrease in damage partially restores the
strength of the material and therefore retards crack growth. How-
ever, we do not specifically attribute crack retardation to any of the
possible physical mechanisms mentioned earlier, namely rough-
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Fig. 1. Evolution of peak traction (left) and stiff
ness induced crack closure or the effect of residual stresses. Indeed,
crack retardation and damage nonmonotonicity could even corre-
spond to physical crack healing. Several recent proposals have
been made for self-healing structural materials (White et al.,
2001; Toohey et al., 2007). Regardless of the physical mechanism,
we show that the model captures the effect of mean stress (load ra-
tio) and of overload.

The remainder of the paper is organized in the following manner.
Section 2 presents the details of the proposed cohesive model. Sec-
tion 3 includes a mathematical analysis of well-posedness of the
model. Section 4 presents aspects of the finite element implementa-
tion and some preliminary testing. In Section 5, the predictive capa-
bility of the proposed model is evaluated through two dimensional
finite element simulations of cyclic fatigue tests of A356-T6 com-
pact-tension (CT) specimens at two load ratios. Section 6 illustrates
the ability of the model to capture the effect of overload.

2. A damage-based cohesive model allowing for crack
retardation

We postulate a degrading linear traction–separation relation-
ship of the form

T ¼ FðjÞd; ð1Þ

where j is a damage variable, d is the effective opening displace-
ment, defined in Section 4, and T is a scalar effective cohesive trac-
tion, also defined in Section 4.

The dependence of the elastic coefficient F on j is specified by

FðjÞ ¼ rcð1� jÞ
jðdu � dcÞ þ dc

; ð2Þ

dc is the critical displacement at which the crack initiates and dam-
age starts to accumulate, du is the failure displacement, i.e., the dis-
placement at which the traction becomes zero, and rc is the initial
peak traction of the interface. The traction T is also required to sat-
isfy the inequality T 6 CðjÞ, where CðjÞ is specified by

CðjÞ ¼ rcð1� jÞ: ð3Þ

Under cyclic loading, the model exhibits a degrading peak trac-
tion, i.e., a decreasing value of CðjÞ, and a degrading stiffness, i.e., a
decreasing value of FðjÞ as the value of j increases (Fig. 1), result-
ing in eventual loss of load transmission ability of the interface.
The variable j takes values between 0 and 1 corresponding to no
damage and complete fracture, respectively. The expression pro-
posed in (2) has the desirable property that the elastic coefficient
FðjÞ is strictly decreasing so that the traction T decreases from
rc (when j ¼ 0) to 0 (when j ¼ 1). The ascending and descending
linear branches of the monotonic response are not explicitly de-
fined by the above equations but rather are a consequence of these
equations. On the ascending branch, the relationship T ¼ FðjÞd
holds with j ¼ 0 and hence FðjÞ is a fixed constant. Therefore,
the relation between T and d is linear on the ascending branch.
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When the opening displacement is increasing and T is at its capacity
(i.e., the critical traction rc is attained), the inequality T 6 CðjÞ be-
comes binding and the equation FðjÞd ¼ CðjÞ, arrived at by substi-
tuting T ¼ CðjÞ into (1), holds. Upon substituting (2) and (3), this
yields d ¼ jðdu � dcÞ þ dc . Thus, the choice of (2) results in a linear
relationship between j and d on this branch of the loading curve.
Furthermore, substituting (3) shows that T, j, and d are all linearly
related. Fig. 2 shows a schematic representation of the proposed
cohesive traction–displacement relationship. In this figure, branch
OB is the ascending part of the loading curve, BC is the descending
part of the loading curve, and CO is the unloading curve.

The evolution of the damage variable is governed by:

_j ¼ a�jðT � bCÞð _dÞ if ðT � bCÞð _dÞ > 0;
_j ¼ 0 if ðT � bCÞð _dÞ < 0;
_j ¼ _k if T ¼ C and _d > 0;

ð4Þ

where _k is a free variable, and a�, b are material parameters that
capture the rate of damage evolution, and the threshold for initia-
tion of damage, respectively. The parameter a� takes on one of
two distinct values for the cases of loading and unloading, _d > 0
or _d < 0, denoted by the parameters a and �c, respectively, which
are regarded as material parameters.

Evolution Eq. (4) are reminiscent of damage plasticity (Lubliner
et al., 1989). The first and second equations allow damage accre-
tion (when _d > 0) or healing (when _d < 0) to occur only when
the traction is greater or less than the threshold limit during load-
ing and unloading, respectively. Physically, this can be thought of
as damage accretion or healing occurring only when the work done
by an effective traction, i.e., the value of the traction above the
threshold, on the crack surface is positive. A key property of both
surface roughness and crack tip plasticity as causes of crack retar-
dation is that they become strongly active only when the crack
opening displacement returns to a small value in the trough of
the cyclic loading. This explains why our evolution equation for
damage decrease is inactive until the traction drops below a
threshold level. During loading, if the value of the traction (T)
reaches peak traction (C), it is constrained to move along the enve-
lope T ¼ CðjÞ. This in turn forces the relationship CðjÞ ¼ FðjÞd to
hold, which defines the evolution of j. Therefore, for this situation,
the third case of (4) does not constrain _j at all since _k is free. This
case is again analogous to classical plasticity theory in which a
parameter _k is chosen in the loading case to ensure that the stress
remains on the yield surface. The analogy to plasticity is not com-
plete, however, because our model does not involve a strain or rel-
ative displacement decomposition.

Accordingly, when the traction–displacement relationship is
tracing the descending branch of the monotonic cohesive curve,
O δ
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Fig. 2. Schematic representation of the proposed cohesive traction–separation
relationship. No change in damage occurs during OA; damage starts increasing after
the threshold at A; BC shows the descending part of the loading curve; no damage
change takes place during the unloading path CD; damage decreases during
unloading from D to O.
the evolution of damage is governed by the plasticity parameter
k, and it is only a function of the current opening displacement.
However, during reloading, damage depends on the rate of defor-
mation, previous damage accumulation, cohesive traction and fati-
gue threshold. During unloading, the value of j can decrease if the
traction is lower than the threshold. Decrease of the damage vari-
able during unloading, controlled by the model parameter c, is a
vehicle to capture crack retardation. In addition, a penalty stiffness
is included in the formulation of the model for negative displace-
ment values to prevent interpenetration of the crack faces.

3. Well-posedness conditions

The model has some obvious restrictions on the parameter val-
ues such as a P 0, 0 < b < 1 and c P 0. In this section, we will also
derive two subtler conditions that are necessary for the model to
be well posed mathematically.

The first condition concerns the case that the current state of
the interface is very close to, but not exactly on, the descending lin-
ear branch. In this case, for the model to be well posed, the inter-
face should evolve so that the state tends toward the descending
linear branch. If it tends away from the branch, this creates an
ill-behaved model since it implies that a small perturbation to
the state can cause a large deviation in subsequent trajectory. First,
consider a point on the descending branch of the model. Such a
point has FðjÞd ¼ CðjÞ, and thus satisfies d ¼ jðdu � dcÞ þ dc. The
slope dT=dd in this case is seen to be �rc=ðdu � dcÞ (independent
of j and d). Next, consider a point satisfying d ¼ jðdu � dcÞþ
dc � �, where � > 0 is extremely small. In this case, T ¼ FðjÞd <
CðjÞ so the point is below the descending branch, but only slightly.
The condition for well-posedness in this case is that
dT=dd P �rc=ðdu � dcÞ, i.e., the slope of the trajectory from this
point should not be less than the slope of a nearby point on the
descending branch. For a point not on the descending branch,
when loading is applied (i.e., _d > 0), we have

dT
dd
¼ dðFðjÞdÞ

dd
ð5Þ

¼ F 0ðjÞdj
dd

dþ FðjÞ ð6Þ

¼ F 0ðjÞajðT � bCÞdþ FðjÞ: ð7Þ

Note that we used the equation _j ¼ ajðT � bCÞ _d (which is the first
equation of (4) when _d > 0) to obtain dj=dd. By using the relation-
ship d ¼ jðdu � dcÞ þ dc � � and eventually dropping the �, simplify-
ing and rearranging one obtains the following inequality:

a 6
1

rcjð1� jÞð1� bÞðdu � dcÞ
: ð8Þ

This inequality must hold for all values of j. The denominator is
maximized when j ¼ 1=2, so a sufficient condition that implies
the above inequality is simply

a <
4

rcðdu � dcÞð1� bÞ : ð9Þ

The second well-posedness condition concerns the healing part
of the curve. If the healing effect is too strong, then the material
may exhibit a descending branch during healing, i.e., a negative va-
lue of dT=dd, which seems unphysical and is likely to increase
numerical problems. We have

dT
dd
¼ dðFðjÞdÞ

dd
ð10Þ

¼ F 0ðjÞdj
dd

dþ FðjÞ ð11Þ

¼ F 0ðjÞcjðbC � TÞdþ FðjÞ: ð12Þ
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Substituting the above formula into the condition dT=dd P 0, sim-
plifying and rearranging yields the condition

c 6
1

rcduj
jðdu�dcÞþdc

b� d
jðdu�dc Þþdc

� �
d
: ð13Þ

This must hold for all j; d such that T 6 bC. Treating d as a free var-
iable, the denominator of the above formula is maximized when
d ¼ bðjðdu � dcÞ þ dcÞ=2. Substitute this into (13) to obtain the fol-
lowing inequality, which is sufficient to imply (13):

c 6
4

rcdujb2 : ð14Þ

The worst case is when j ¼ 1, and thus the sufficient condition for
the second well-posedness criterion is that

c 6 4=ðrcdub
2Þ: ð15Þ
Fig. 3. Mesh for the DCB model.
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Fig. 4. Fatigue crack growth in the DCB model vs. number of applied load cycles.
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propagation at that level occurs.

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ (mm)

T
 (

M
Pa

)

Cycles 0-5

Cycles 50-55

Fig. 5. Traction vs. relative displacement curve for the first cohesive element in the
DCB specimen. Each gray-level represents a five-cycle interval. Fracture of the
element occurs at the 55th cycle.
4. Finite element implementation and preliminary testing

The cohesive model described in Section 2 is implemented as a
constitutive relationship governing interface elements in a finite
element mesh. These are zero thickness elements obtained by
duplicating grid points along bulk element edges. Our cohesive fi-
nite element implementation, which is based in part on work by
Ortiz and Pandolfi (1999), depends on an effective scalar parameter

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ds � ds þ d2

n

q
; ð16Þ

where g is a nondimensional factor that couples the normal and
shear effects, ds is the shear component of the opening displace-
ment and dn is the normal component. The cohesive model (1) de-
fines a scalar traction T as a function of effective opening
displacement. This scalar traction is used in turn to define the usual
vector traction via the formula:

t ¼ T
d
ðg2ds þ dnnÞ: ð17Þ

Following standard procedures, e.g., Xu and Needlemanm (1994),
Ortiz and Pandolfi (1999), the finite element discretization is ob-
tained from a virtual power equation that involves power due to
stresses in the bulk material and power due to interface tractions.

Because of the ascending branch of the cohesive model, which
makes the model active before the critical stress is reached, node
duplication is necessary from the outset of the simulation. In cases
where the crack path is not known in advance, cohesive interface
elements must tile the domain. This results in mesh dependence
associated with the ascending stiffness of the cohesive model
(Klein et al., 2000). On the other hand, implementation of cohesive
interface elements that are inactive (rigid) before the critical stress
is reached (Ortiz and Pandolfi, 1999; Papoulia et al., 2003), and
therefore can be inserted adaptively as needed, is not easy in impli-
cit calculations. However, all applications in this paper involve a
predetermined crack path so that cohesive interface elements are
inserted along that path only and the effect of the ascending stiff-
ness is minimal. Likewise, the obvious mesh dependence of inter-
face finite elements is avoided without need of any special
meshing strategies (Papoulia et al., 2006). Some algorithmic details
of implementing the proposed fatigue fracture model within this
framework are presented in the Appendix.

As an example, a double cantilever beam (DCB) geometry is
used to show damage accumulation and crack growth according
to the model. The DCB geometry results in mode I crack growth.
The crack is constrained to grow along the centerline of the speci-
men. The bulk material is aluminum with material properties
E = 70,000 MPa and m ¼ 0:33. The cohesive model parameters cho-
sen are rc ¼ 6:66 MPa, g ¼ 0:5 and dc ¼ 0:203 mm. The parameters
b and c are taken to be zero. The finite element mesh, shown in
Fig. 3, consists of 1600 plane strain elements and 100 cohesive
interface elements inserted along the centerline from the initial
crack tip to the free end of the specimen. Due to symmetry, only
half the specimen is modeled. A displacement of constant ampli-
tude equal to 6 mm is applied and cycled 115 times. Fig. 4 shows
crack growth against number of load cycles. As a result of this load-
ing, damage as measured by the damage variable j accumulates,
resulting in a degrading traction–separation curve. Fig. 5 shows
the traction–separation evolution to fracture in the first cohesive
element. The accumulation of damage eventually results in frac-
ture of the cohesive element. In the figure, each loop of the simu-
lation results in a lower traction because the damage variable j
increases from loop to loop, hence FðjÞ decreases. By cycle 55,
j ¼ 1 and FðjÞ ¼ 0. The capacity CðjÞ is not attained for most of



Table 1
Initial and final locations of crack in CT test specimens and magnitude of fatigue
loading applied to the specimens.

Loading Pmin (N) Pmax (N) a0 (mm) af (mm)

R ¼ 0:1 414.444 4144.444 23 38
R ¼ 0:5 1615 3230 30 45
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the loops and hence the descending branch does not exhibit its lin-
ear envelope. This is because the simulation incorporates fixed-
amplitude displacement loading rather than fixed-amplitude force
loading, so the crack mouth opening displacement (CMOD) never
exceeds a certain fixed d even when the interface is fully ruptured.

5. Simulations of fatigue tests of A356-T6 compact tension
specimens

We simulate fatigue tests performed on A356-T6 cast aluminum
alloy CT specimens with a thickness of 9.1 mm for load ratios, R,
equalling 0.1 and 0.5 under constant amplitude loading (Stephens,
1988). Fig. 6 shows the specimen dimensions. The loading and
initial pre-crack locations of the specimens for the two R ratios
are given in Table 1. During these tests, incremental crack growth
lengths and the corresponding number of cycles were recorded. A
definite R ratio effect in the test results was reported in detail.

In order to simulate the above fatigue experiments using the
proposed model, the local cohesive strength of the material (rc)
and work of separation per unit area (Gc) as well as bulk material
properties were determined from axial cylindrical tests and frac-
ture tests of A356-T6 aluminum alloy CT specimens, also reported
15.25 mm

34.8 mm

34.8 mm

88.9 mm

9.1 mm

15.25 mm

19.8 mm

71.1 mm

Fig. 6. CT specimen for fatigue tests.

Fig. 7. Undeformed finite element mesh of CT specimen (top left), deformed mesh at the
displacement magnification factor is 5.
in Stephens (1988). Besides providing elastic properties
E ¼ 70;000 MPa, m ¼ 0:33, the axial cylindrical tests also produced
bounds for the yield stress ry and the critical stress rc of the mate-
rial. The yield stress was required to take values between the stress
at which the material started to deviate from linearity, 180 MPa,
and the stress corresponding to 0.2% strain, 229 MPa. The critical
stress was required to lie between the yield stress and the ultimate
stress, 289 MPa. The values of these properties used to simulate the
fatigue experiments were rc ¼ 190 MPa and Gc ¼ 5:50 N=mm.
These were chosen by fitting the proposed model to load vs. crack
mouth opening displacement (CMOD) monotonic curves obtained
from fracture toughness tests of CT specimens (Ural, 2004).
The bulk material was defined as a plastic material with ry ¼
180 MPa and various amounts of hardening. The latter did not af-
fect the life prediction calculations.

The location of cohesive interface elements, placed in the direc-
tion of crack growth, and the fatigue starter notch in the CT spec-
imen are marked in Fig. 7. The finite element mesh used was
composed of 13,080 quadrilateral elements and 60 cohesive inter-
face elements and is shown in the undeformed and deformed con-
figurations in Fig. 7. Under the assumption of plane strain, the
estimated cohesive zone size can be calculated as de Andres
et al. (1999)

rcoh ¼
p
8

E
1� m2

Gc

r2
c
; ð18Þ

which gives a cohesive zone size of 4.7 mm. According to this calcu-
lation, the cohesive zone is spanned by approximately 7–8 interface
elements. Increasing the number of interface elements in the cohe-
sive zone did not affect the results. This indicates that the size of the
interface elements was small enough to resolve the cohesive zone.
end of the simulations (top right), and close-up of the notch tip region (bottom). The
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Cycle-by-cycle simulations of high-cycle fatigue applications
require excessive computational resources. For this reason, a sim-
ple but quite effective extrapolation scheme was used to predict
the fatigue life of the specimens. Suppose one wishes to simulate
N cycles of a material whose fatigue parameters in our model are
ða; b; cÞ. Suppose also that a damage-accumulation scaling function
f ðkÞ exists such that one could instead compute only N=k cycles
explicitly using modified parameters ðaf ðkÞ; b; cf ðkÞÞ. The function
f ðkÞ is chosen so that one cycle with these modified parameters
causes an equal amount of fatigue crack propagation as k cycles
with the actual parameters. Note that the damage accumulation
parameters a and c are scaled but not the threshold parameter b.
We carried out a variety of experiments with ranges of parameters
and crack lengths and found that in all cases, linear scaling with
f ðkÞ ¼ k gave excellent results, i.e., N cycles with ða; b; cÞ gave very
similar results as N=k cycles with ðak; b; ckÞ. Note that the scaling is
purely an extrapolation scheme and is not a change of the model
parameters.

The model was implemented in the finite element software
Abaqus. All analyses were performed under the assumption of
plane strain. Each explicit cycle for the R ¼ 0:1 simulation had 18
time steps and the R ¼ 0:5 simulation had 10 time steps per load
cycle. This was chosen so that each load step is an increment or
decrement of 10% of the peak load. The fatigue parameters a, b,
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Fig. 9. Fatigue crack growth simulation results t
and c that appear in the damage evolution Eq. (4) were chosen
so that good agreement is obtained with the experimental crack
length versus load cycle curves.

Figs. 8 and 9 show simulation and experimental crack length
versus load cycle curves for the R ¼ 0:1 and R ¼ 0:5 tests, respec-
tively. Parameters a ¼ 0:000062, b ¼ 0:17, and c ¼ 0:0002 were
used for both the R ¼ 0:1 and R ¼ 0:5 simulations. Good agreement
was obtained with the fatigue crack growth test data. The results
for R ¼ 0:5 closely match the crack growth versus number of cycles
experimental data. The results for R ¼ 0:1 also show good agree-
ment. The graphs show simulation results up to the onset of unsta-
ble crack growth as observed in the tests. The instability points
predicted by the simulations are very close to the experimentally
observed values. Table 2 shows the comparison between predicted
and experimentally obtained initiation and failure cycles.

Based on the observations of Stephens (1988), roughness in-
duced crack closure appears to be the crack retardation mechanism
in these experiments. This was concluded from the change in line-
arity of load versus crack mouth opening displacement plots
(CMOD) and fractography of the crack surfaces. The CMOD mea-
surements indicated closure effects were present for R ¼ 0:1 but
not for R ¼ 0:5. Fractography observations, on the other hand, indi-
cated that some crack closure might be present in the R ¼ 0:5 tests
as evidenced by the smooth surfaces close to the pre-crack, which
4 5 6 x 10 5

oad Cycles

ma=0.00085

hat best fit the test data for R ¼ 0:1 loading.

5 6 7 8 x 10 5

ad Cycles

ma=0.00085

hat best fit the test data for R ¼ 0:5 loading.



Table 2
Initiation and failure cycles from tests and simulations for both R ratios.

Loading Initiation cycle Failure cycle

R ¼ 0:1, simulation 117000 579000
R ¼ 0:1, test 61853 570830
R ¼ 0:5, simulation 98000 737000
R ¼ 0:5, test 89050 705440

-1 0 1 2
-6

-5

-4

-3

Fig. 10. da=dN vs. DK curve using the test data and simulations for R ¼ 0:1 and
R ¼ 0:5 loading.
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were assumed to be a result of fretting. Further, the crack growth
plane changed very often during testing and the fracture surfaces
showed an overall coarseness for both R ratios. It was reported in
Stephens (1988) that the materials used in the tests had a very
coarse microstructure. Still, roughness induced crack closure is
mostly observed at low DK and R, which result in small crack tip
opening displacements, comparable to the average height of the
asperities (Suresh, xxx). Plasticity-induced crack closure was not
considered to have a significant effect on the tests due to the low
ductility of the material. It was also observed from the test data
that the fatigue threshold for this material decreased with increas-
ing R ratio. This is in agreement with previously obtained test data
that show the dependence of fatigue threshold on the R ratio
(Elber, 1971; Suresh, xxx).

The proposed cohesive model does not involve an explicit rep-
resentation of surface roughness or asperities of the crack surface.
Rather, the model uses the parameter c to capture decreases in
damage possibly due to these effects. It was observed during the
simulations that the crack retardation parameter c was crucial
for obtaining good agreement with a single set of parameters for
both load ratios. This parameter c can also capture other physical
mechanisms for crack retardation, such as a plastic zone at the
crack tip whose length scale is too small to be explicitly captured
as plasticity of the bulk elements. Under plane strain assumptions,
the estimated plastic zone size can be calculated as Anderson
(2005)

rp ¼
1

3p
KIc

ry

� �2

; ð19Þ

which gives 1.3 mm plastic zone size for a CT specimen 9.1 mm
thick. According to this calculation, the cohesive zone in our simu-
lations is spanned by two elements. Further mesh refinement did
not affect the results. This seems to indicate that indeed a mecha-
nism other than plasticity is responsible for crack retardation, here
captured by the damage decrease capability of the proposed cohe-
sive model.

The results presented in this section can also be viewed in the
form presented in the Paris law, namely crack growth rate versus
stress intensity factor range. The following equation (ASTM,
2000) is used to reduce the test data and the simulation results
to the information in Fig. 10:

DK¼ DP

BW1=2 f ða=WÞ;

f
a

W

� �
¼

2þ a
W

� �
ð0:886þ4:64 a

W

� �
�13:32 a

W

� �2þ14:72 a
W

� �3�5:6 a
W

� �4

1� a
W

� �3=2 ;

where a is the crack length, P is the tensile load range, B is the
specimen thickness and W is the specimen width. As seen in the
figure, the rate of crack growth and DK values predicted by the
simulations match the test data. We observed that the measured
crack speed oscillated considerably during the simulation. We
suspect that this oscillation is an artifact of the method used to
measure crack speed coupled with the discrete nature of our crack
model. In particular, we measure the crack length by finding the
farthest Gauss point along the crack path at which the opening
displacement has reached its ultimate value (and hence the inter-
face is traction-free). On some cycles, the damage variable j can
increase and yet not many Gauss points reach that zero-traction
value. On these cycles, the measured crack length increment will
be small. On the subsequent cycle, however, many Gauss points
will reach the ultimate displacement simultaneously, yielding a
large measured advance in crack length and hence a large crack
speed. Our extrapolation method exacerbates this artifact because
extrapolated cycles involve advancing the j values but not the d
values. Although the crack speed measured on a cycle-by-cycle
basis is oscillatory, the averaged crack speed over many cycles
shows smooth and monotonically increasing behavior consistent
with the test data.

The question of existence of another triplet of parameters that
could fit the experimental data was also investigated to check if
the parameters a, b and c are unique for a given material. A series
of simulations were performed using higher values of the parame-
ters. The observation from these simulations was that as the values
were increased, crack growth first occurred at a later cycle. The
crack started propagating much later than observed in the tests.
Furthermore, the crack growth occurred at a much faster rate in or-
der to attain the instability point at a cycle comparable to the tests.
As a result, in order to match closely the initiation cycle, the insta-
bility cycle as well as the overall behavior in between these two
events, the parameters appear to be unique.

Finally, the sensitivity of the simulation results to the damage
evolution parameters was studied. Figs. 11–13 show the effect of
varying the parameters a, b, and c on the simulation results. As ex-
pected, the rate of damage accumulation and therefore the crack
growth rate increases with a, and decreases with b and c. Increas-
ing values of both parameters b and c enhance crack retardation by
increasing the fatigue threshold and slowing damage accumulation
during unloading, respectively.

6. Overload effect

Fatigue crack growth rates are well known to be decelerated by
the application of overloads, which tend to cause an initial increase
of the crack growth rate, followed by fast decrease before the final
return to steady state crack propagation. The cause is usually
attributed to plasticity induced crack closure, strain hardening,
crack tip blunting, crack deflection, and/or branching depending
on the toughness of the material. Wheatley et al. (1999) performed
experiments on ductile 316 L steel, which indicated that overall
crack retardation under plane stress conditions is related to strain
hardening and residual compressive stresses in the plastic region
of the overload. Plane stress simulations using the proposed model
were performed on a CT specimen of width 40 mm and thickness
6 mm (Wheatley et al., 1998) with an initial crack 18 mm long.
In the experiment, the pre-crack was initially a 12-mm blunt crack,
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Fig. 11. Comparison of fatigue crack growth simulation results with varying a for R ¼ 0:5 loading.
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Fig. 13. Comparison of fatigue crack growth simulation results with varying c for R ¼ 0:1 loading.
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which facilitated a 6-mm crack obtained with the application of
high cycle fatigue loading. The applied loading ratio was R ¼ 0:1
with a minimum load of 3 kN. An elastic-plastic material model
with linear kinematic hardening was used to model the bulk mate-
rial with parameters E = 1.93 GPa, m = 0.33, rc ¼ 588 MPa, and
ry ¼ 334 MPa, as given in the experiment.
Fig. 14 shows simulation results for several single peak overloads
applied early on (N=4000 cycles). Crack retardation is more pro-
nounced when the overload is higher. The crack accelerates immedi-
ately following the overload but slows down within a few cycles and
then reaches a minimum before eventually attaining the pre-load
crack growth rate. The simulations closely match the experimental
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results. The extrapolation scheme was applied during the constant
amplitude portions of the loading, i.e., away from the overload. It
was observed that using the extrapolation scheme soon after the
application of the overload caused the finite element program to
crash due to the sudden increase in the value of the damage variable
in the process zone. Hence, cycle-by-cycle calculations were per-
formed for a few cycles following the overload application.

Unlike in the cyclic loading of the aluminum alloy CT specimen
described in the previous section, surface roughness and asperities
do not seem to have significant effect on the crack growth rate in
the present application. Based on fast scanning electron micros-
copy observations, Wheatley et al. (1999, 1998) suggest that strain
hardening and residual stresses caused by plastic deformation due
to the peak overload are responsible for crack retardation. To ex-
plain the immediate acceleration and subsequent retardation of
crack growth, Wheatley et al. hypothesize a small fatigue damage
zone ahead of the crack tip and argue that in their experiment
crack closure was not a significant cause of the overload effect.

Compared to the aluminum alloy CT specimen, the plasticity
zone causing crack retardation is much larger in this simulation
due to the ductility of the material. Indeed, it is large enough to be
represented well by plasticity of the elements in our mesh. (We con-
firmed the activity of the plasticity by observing a drastic change in
the results when plasticity in our finite element analysis was dis-
abled.) Thus, the cause of retardation is already captured by proper-
ties of the bulk elements, so there is no need for the c parameter,
which, as stated earlier, is intended to capture physical causes of
crack retardation occurring at subgrid scales. Our FEM simulations
corroborate this contention. Indeed setting c equal to zero in the
cohesive model made little difference in the crack retardation plots.

The physical interpretation is as follows: due to the sudden in-
crease in load beyond the yield limit of the highly ductile material,
strain hardening plasticity produces residual stresses in the plastic
region, which envelopes the damage zone. These force the fatigue
damage to be minimal and slow down the fatigue crack. Hence,
even though the crack accelerates immediately following the
application of the peak load due to a high value of KII , the subse-
quent size of the damage zone ahead of the crack tip is reduced.
The crack growth rate thereafter slowly increases as the size of
the damage zone ahead of the crack tip increases to its pre-load va-
lue. In accordance with the theory presented in Wheatley et al.
(1999, 1998), change in the yield stress of the material made a sig-
nificant difference in the fatigue crack growth. As the ultimate
stress was reduced towards a more brittle material, crack retarda-
tion was reduced to a point that it completely disappeared after
the initial transient acceleration.
7. Summary

A damage-based cohesive zone model was developed for simu-
lating fatigue under cyclic loading. The model introduces three
material parameters that define the rate of evolution of a damage
variable j. Damage accumulation leads to eventual crack growth.
The model has the feature that damage may also decrease, which
leads to crack retardation. Damage decrease represents material
‘‘healing”, as well as phenomenologically captures the different
mechanisms that may lead to crack retardation. The three param-
eters have simple physical interpretations: they determine the rate
of damage accumulation, the threshold value for accumulation of
damage, and the rate of crack retardation. The admissible ranges
of these parameters for well-posedness of the model were
established.

The model was implemented within a cohesive interface finite
element method. Algorithmic details for the evolution of damage
were included in an appendix. Simulation results of fatigue tests
of an aluminum alloy CT specimen at two loading ratios, R = 0.1
and R = 0.5, compare favorably with experimental results. A single
set of parameters was determined that fit the tests at both load ra-
tios. The ability of the model to capture crack retardation was cru-
cial to this effect. Indeed, crack retardation was active in the R = 0.1
but not in the R = 0.5 simulation as was also observed in the exper-
iment. A sensitivity study was carried out that determined the ef-
fect of these parameters on crack growth prediction.

The model was also used to predict crack retardation following
a single peak overload. In this case crack retardation was due to the
formation of residual stresses in the very large plastic zone of that
material. This was adequately captured by a plasticity model in the
bulk material.

Appendix. Detailed description of the algorithm

The value of the damage variable j at each time step is obtained
using the backward Euler method, which requires the value of j
from the previous time step and the derivative term as obtained
from the evolution equations. Inputs to this algorithm are dn, dnþ1
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and jn, where subscripts n and nþ 1 correspond to time steps tn

and tnþ1, respectively. Outputs are jnþ1 and Tnþ1. Define
Ddnþ1 ¼ dnþ1 � dn.

If dn > du

jnþ1 ¼ 1
Tnþ1 ¼ 0
return

end
If Ddnþ1 > 0

a� ¼ a
else

a� ¼ �c
end
Solve the following system of four equations for jnþ1, Djnþ1,
Tnþ1, Cnþ1:

Djnþ1 ¼ a�jnþ1ðTnþ1 � bCnþ1ÞðDdnþ1Þ (see (4)),
Tnþ1 ¼ rcð1�jnþ1Þdnþ1

jnþ1ðdu�dcÞþdc
(see (1)),

Cnþ1 ¼ rcð1� jnþ1Þ (see (3)),
jnþ1 ¼ jn þ Djnþ1 (backward Euler).
(Refer to the note below for the solution procedure.)

Let threshold ¼ Ddnþ1ðTnþ1 � bCnþ1Þ
If threshold > 0

execute over-strength check (below)
return

else
jnþ1 ¼ jn

Tnþ1 ¼ FðjnÞdnþ1

Cnþ1 ¼ Cn

execute over-strength check (below)
return

end

The system of four equations described in this algorithm is
solved using the following procedure. Observe that we can elimi-
nate all the variables except jnþ1 with obvious substitutions. After
this elimination, the following cubic equation is obtained:

aj3
nþ1 þ bj2

nþ1 þ cjnþ1 þ d ¼ 0 ð21Þ

where

a ¼ brca�Ddnþ1ðdu � dcÞ;
b ¼ �½ðdnþ1 � bdcÞrca�Ddnþ1 þ brca�Ddnþ1ðdu � dcÞ þ ðdu � dcÞ�;
c ¼ ½rca�Ddnþ1ðdnþ1 � bdcÞ � dc þ jnðdu � dcÞ�;
d ¼ jndc:

Define a cubic function

/ðjÞ ¼ aj3 þ bj2 þ cjþ d:

The cubic equation can be solved with the method of bisection. It is
easy to see that /ð0Þ > 0 and /ð1Þ < 0. Therefore, there is at least
one root of / in ½0;1�. Furthermore, the number of roots is odd,
i.e., either one or three of the cubic’s roots are in this interval. In
fact, for ja�j sufficiently small, there is only one root. The reason is
that for ja�j sufficiently small,

/0ð1Þ � ðjn � 1Þðdu � dcÞ � dc < 0:

Since /0 is a convex quadratic, if /0ð1Þ < 0 then /0 has at most one
root in ½0;1�, which means that / has at most one turning point in
½0;1�. This makes it impossible for / to have three roots in the
interval.
Procedure over-strength check

If Ddnþ1 > 0 and Tnþ1 P Cnþ1

jnþ1 ¼ dnþ1�dc
du�dc

Tnþ1 ¼ Fðjnþ1Þdnþ1

end

This test ensures that the constraint T 6 CðjÞ holds at the end of
the iteration.
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