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Abstract  In the present paper a cohesive zone model coupled with monotonic and cyclic damage 
mechanisms for simulating elastic-plastic fracture and fatigue crack growth is introduced and applied for 
investigating failure processes in compact tension specimens. Fracture and fatigue crack tests are conducted 
on the compact tension C(T) specimen made of stainless steel 304 to study crack growth behavior under 
fracture and low cycle fatigue loading condition associated with severe elastic-plastic deformations. A good 
agreement between the prediction and the experimental result is obtained from the present simulations. It 
confirms that the suggested cohesive model in conjugation with the nonlinear damage evolution equations is 
applicable for describing the material degradation behavior of stainless steel 304 under both monotonic and 
cyclic loading with large plastic deformations. 
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1. Introduction 
Fatigue crack in industrial components are often subjected to heavy cyclic loading, and it is 
important to predict the fatigue crack growth behavior under higher stress fields. In low cycle metal 
fatigue problems, e.g. under loading conditions with maximum stresses beyond yield stress, 
specimens fail in small numbers of loading cycles.  
Comparing with Paris’ law, Walker model and Forman model or any other kinds of stress intensity 
factor based models, the cohesive model is more advantageous and gives the possibility to analyze 
the fatigue propagation behavior under severe plastic loading conditions, since the characterization 
of the cohesive zone model is generally applicable for inelastic materials [1-7]. Furthermore, it 
becomes possible to describe crack nucleation and propagation uniformly by the cohesive model.  
Originally, the cohesive zone model was introduced to describe the fracture process zone ahead of 
the crack-tip by Dugdale [8] and Barenblatt [9]. In the last twenty years, the cohesive modeling has 
been applied in simulating monotonic fracture process for diverse materials and has also been 
verified by experimental results [10-13]. For the fatigue failure analysis, the loading history 
dependent development of material degradation has to be taken into account under cyclic loading. 
Establishing a physical solid cohesive model for finite fatigue life is under intensive investigation in 
many research groups worldwide [2, 3, 14-17].  
In the present study, the fatigue crack propagation experiments have been conducted using compact 
tension C(T) of type 304 stainless steel associated with large plastic deformations. A cohesive 
model coupled with damage for prediction of fracture and fatigue behavior is introduced for 
elastic-plastic crack propagation associated with both normal and shear displacements of the crack 
surface. Both rupture damage and cyclic damage accumulation are considered in the damage 
evolution equations. The numerical results agree with experimental data and reproduce the high 
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fatigue crack propagation rate. The present analysis is limited to a two-dimensional configuration 
by the plane strain assumption.  
 

2. Experimental arrangement 
2.1. Material and specimens 
The material used in the present investigation comes with 304 austenitic stainless steel cylindrical 
bars with a 200mm diameter. The mechanical properties were obtained through tensile test 
performed on cylindrical specimen of 6mm diameter and about 70mm gauge length. The C(T) 
specimens were fabricated following the ASTM E399. The dimensions of C(T) specimen are 
illustrated in Figure 1(a). The material curves are shown in Figure 1(b). 

   
                              
 
 
 
 
 
 
 
 
 

      (a)                                  (b) 
Figure 1. (a) Dimensions of C(T) specimen, the thickness is 12.5mm. (b) Engineering and true 
stress-strain curves for the stainless 304 steel. 
 

2.2. Experimental apparatus and conditions 
The configuration of clevis used for C(T) specimen is based on ASTM E647. All fatigue pre-cracks 
of the specimens were generated under mode I loading using high frequency testing machine at a 
loading frequency of approx. 90 Hz. The fracture test was conducted to determine the plane strain 
fracture toughness of the stainless steel 304. Fatigue loading during the crack growth process was 
carried out in a MTS servo-hydraulic testing machine. 
 
 
 
 
 
 
 
 

 
(a)                                 (b) 

Figure 2. (a) The compliance method and (b) beachmarks on the fracture surface for CT specimen. 
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The tests were performed in air at room temperature with sine waveform at a frequency of 8 Hz. 
The fatigue crack growth rate was measured by using the compliance method and also creating 
beachmark to record the crack front as displayed in Figure 2. 
   

3. Cohesive zone model  
3.1. Kinematics and constitutive relation under quasi-static and cyclic loading 
 
Taking the principle of virtual work of the boundary value problem into account, the weak form of 
the equilibrium equation without body forces can be written as  

: d d d
V S V

V S sδ δ δ• •

∂

′+ =∫ ∫ ∫σ ε T Δ T u                             (1) 

with σ  as the Cauchy stress tensor, T´ denotes the external traction vector and <δε  , δΔ  ,δu> are the 
admissible displacement fields. The cohesive traction T is taken to have the following form, 

),( 2 nsnsT nsns
TTT Δ+Δ
Δ

=+= ξ                          (2) 

where Ts and Tn are the cohesive traction components in shear and normal direction, respectively. 
Following the Ortiz et al. [1] and Ural et al. [17], the effective displacement jump Δ is a scalar 
parameter defined as   

,222
ns Δ+Δ=Δ ξ                                     (3) 

where Δs=| Δ s | and Δn are the displacement jumps in shear and normal directions and ξ weights the 
shear displacement jump over normal one. T is a scalar effective traction relates to the effective 
displacement jump Δ  in the process zone where a crack may arise. The formulation of T used in the 
present study refers to a coupled damage model defined as 
 

 
Figure 3. Illustration of the cohesive zone model under monotonic loading. 

 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

 

4 

( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

Δ≤Δ<ΔΔ+Δ−Δ−

Δ≤Δ≤⎟⎟⎠

⎞
⎜⎜⎝

⎛
+Δ

=Δ

ufufu
f

f

n

c
c

c

T

TT

σ

σ
κ

σ
0

,           (4) 

where Δc is the onset of the displacement jump associated with initiation of the cohesive zone 
hardening, σc refers to the initial cohesive strength of the process zone corresponding to Δc and Δu is 
the final displacement jump which mirrors the complete loss of stress carrying capacity when the 
traction equals to zero. κ  is a parameter which has the same unit as the displacement jump and n is 
the hardening exponent. Δf is the value of displacement jump after which the initiation of damage 
begins and the corresponding cohesive strength is σf , the effects of these parameters are shown in 
Figure 3. For the application of Eq. (4), the inequality must be satisfied that 

),1()( DDCT f −=≤ σ                                   (5) 

where D is a scalar variable representing the overall damage in materials and C is identified with 
the cohesion as the function of the damage. The monotonic cohesive law is insufficient and the 
cyclic damage should be taken into account in the constitutive description. Should the cohesive 
model be applied for both fracture and fatigue crack growth, the material damage depends on both 
monotonic loading and loading cycles, i.e. 

  

dD
dt

= D = Ds + Dc                                     (6) 

with Ds for damage under monotonic loading and Dc for damage under cyclic loading. Obviously, 
both damage variables have to be expressed in evolution equations. 
Under the monotonic loading condition, Eq. (4) denotes inelastic behavior of the material in the 
cohesive zone and Eq. (5) implies that the degradation of the material strength for Δ < Δf. For Δ>Δf , 
the damage grows and assumes to be expressed in a linear function of the displacement increment 
[17],  

DS =
Δ − Δ f

Δu − Δ f

                                     (7) 

under monotonic loading condition.  
For fatigue, the material should be damaged even under the cohesive strength, σf. The damage 
evolution equation proposed by Ural et al. [17] is used to characterize fatigue process reads   

   

Dc =

αDc(T − βC) Δ T − βC > 0, Δ > 0
γ Dc(T − βC) Δ T − βC < 0, Δ < 0
0 (T − βC) Δ < 0
λ T = C, Δ > 0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 ,                      (8) 

where α and γ  are two difference material constants used to conduct the damage accumulation 
during the reloading and unloading under the given conditions, respectively. The parameter β is 
adopted to denote the fatigue threshold in conjunction with the current cohesion C. The rate form of 
λ is a free variable is defined to represent the damage growth rate at a random stress state associated 
with the second equation of Eq. (4).  
Following the suggestion in [17], the unloading and reloading paths of the present study can be 
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described in the incremental form as 
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The equation above indicates that the unloading/reloading stiffness the cohesive zone, F(D), varies 
with D from σc /Δc for no damage (D=0) to zero for D=1.  
The total damage in terms of a loading history should be the sum of the monotonic damage and 
cyclic damage  

 

D = Ds + Dc =
Δ

Δu − Δ f

+ Dc                               (10) 

 
3.2. Implementation of cohesive element into ABAQUS 
The commercial software ABAQUS[18] allows the user to define a new element conveniently, via 
the interface UEL. The formulation of the cohesive element is referred to the ABAQUS theoretical 
manual. We have to provide the cohesive element stiffness, the residual nodal force vector and 
derive the cohesive traction and displacement jump according to the cohesive law. These variables 
are needed to calculate the virtual work generated by the cohesive zone such that the internal work 
equals to the external virtual work for every kinematically admissible displacement field in 
accordance with Eq. (1). As illustrated in Figure 4, a four node cohesive element is defined in two 
dimensional x-y coordinates. The nodal displacement vector corresponding to 4 nodes is defined by 

     [ ] 4,3,2,1, T == ivu iiu                             (11) 

with u and v as nodal displacements in x and y direction, respectively. Then the local displacement 
jump vectors Δ  are written using the shape functions and the nodal displacement as  

= =s

n
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with B as the matrix about the shape functions,  
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where N1=(1-s)/2 and N2=(1+s)/2 are linear interpolation functions in the intrinsic coordinate 
system and α  is the rotation matrix denoted by   

cos sin
sin cos
θ θ
θ θ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

α .                                     (14) 

 The cohesive element stiffness matrix and the traction force term are given by  

   

K e = BTDB
e∫ dA=
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1
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1

∫ ds,
                               (15) 

where le is the length of the element , T is the traction vector based on the Eq. (2) and D is the 
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material Jacobian matrix denoted as 
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During the implementation, the matrices of Eq. (15) should be transformed to x-y coordinates 
according to Eq. (14).  

  
Figure 4. Illustration of a cohesive element 

4. Results and discussion 

4.1. Crack growth under monotonic loading 

C(T) specimens were tested to determine cohesive parameters under monotonic loading. The 
load-displacement curve was recorded in the experiment. In computations the finite element mesh 
of the potential damage zone ahead of the crack tip is refined and the minimal element size is about 
0.4mm. In the process of numerical simulation, cohesive elements are placed at the symmetric line 
of the mesh with zero thickness. The rest of region is occupied by the conventional four nodal 
elements under the plane strain assumption. The initial crack length is around 29mm. The stainless 
steel is described by the J2 plasticity for simplicity. 

 
(a)                                        (b) 

Figure 5. Computational prediction of monotonic crack growth in a C(T) specimen. (a) Comparison between 
the simulation and the test result. (b) Cohesive response of a ruptured element during the crack propagation. 
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As mentioned in the previous sections, Eq. (4) shows the bilinear behavior if κ=0 under the 
monotonic loading and the initial cohesive strength of σc=σf =1100MPa associated with Δc=Δf 

=0.2mm. Computational simulation based on the cohesive zone model according to Eq. (4) is 
shown in Figure 5(a) for monotonic fracture. It confirms that the final displacement jump 
Δu=2.5mm gives a reasonable prediction in comparing with the experiment. This kind of the 
cohesive law is popular in simulation of quasi-brittle material failure. Figure 5(b) illustrates the 
cohesive response of a ruptured element along crack path, the static damage evolution of the 
element can be seen additionally and this result should be imagined according to Eq. (7) or Eq. (10).  

4.2. Crack growth under cyclic loading 

The crack growth under cyclic loading case is conducted within elasto-plastic region in this section.  
Considering the cyclic damage equation as mentioned in Eq. (8), the damage accumulation depends 
on the current cohesive traction and the increment of the displacement jump corresponding to the 
loading history. We use the concept of the loading cycles to capture the evolution of damage and 
predict the fatigue life. By recording the crack growth length, Δa, the fatigue crack growth rate can 
be determined by Δa/ΔN. Since the global loading behavior of the C(T) specimen is represented by 
the amplitude of the stress intensity factor, ΔK, the numerical simulation by using the cohesive 
element can be verified through the experimental da/dN vs. ΔK curve.  
 

 

Figure 6. Four loading amplitudes for the CT specimen as a function of load line displacement. 
 
As shown in Figure 6, four different loading amplitudes were performed under the displacement 
control at the loading ratio R=0.1. Because the stainless steel 304 is a cyclic instable material which 
associates the stress variation as a function of loading cycles, the average stress amplitude ΔKavg is 
used to express the loading level during the crack growth process. The specimen dimensions and 
mesh configurations for the fatigue simulation are the same as those for the fracture test. The 
material parameters for the damage evolution are α=0.00053, β=0.15 and γ=0.0 combined with the 
monotonic cohesive law which has been determined from the fracture simulation. The damage 
growth process in an element ahead of the crack-tip is displayed in Figures 7, 8 and 9 under the 
conditions with ΔKavg=83.1MPa m1/2 and ΔKavg =104.8 MPa m1/2, respectively. In the figures, the 
traction and displacement jump are non-dimensionalized by σc and Δc, respectively. The negative 
displacement jump associated the compression of the crack surface is constrained by introducing a 
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penalty equation for contact. Comparing the amplitudes, the higher loading level results in a faster 
material degradation (Figure 7) and so shorter fatigue life (Figure 8). Actually, ΔKavg=104.8 MPa 
m1/2 asymptotically approaches the plain strain toughness Kc of 133MPa m1/2 at the loading ratio 
R=0.1, larger amount of damage accumulation is coincident with that caused by the fracture loading. 
In Figure 8, the traction against the loading segment (half cycle) is illustrated in both loading and 
unloading path, no damage growth is assumed in the unloading path including the compression in 
terms of Eq. (8), as shown in Figure 9. In order to verify the simulation results, the popular crack 
growth law proposed by Erdogan et al. [19] is used to consider all ranges of cyclic crack growth 
which is given by 

th( )d
dN (1 )

n

c

C K Ka
R K K

Δ −Δ=
− −Δ

,                          (17) 

where the fracture toughness of Kc=133MPa m1/2, the threshold value of ΔKth is 7.5MPa m1/2 and 
material constants C=10-5.578 and n=2.697 for correlating the experimental data. The computational 
result together with the experiment are compared in Figure 10, the prediction gives a better 
agreement with the test, especially in the region III of fatigue crack growth.  

 
Figure 7. The traction vs. displacement jump curves in a cohesive element for ΔKavg=83.1MPa m1/2 and 
ΔKavg=104.8MPa m1/2. 

 
Figure 8. The traction vs. loading segements curves for ΔKavg=83.1MPa m1/2 and ΔKavg=104.8MPa m1/2. 
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Figure 9. The traction vs. damage evolution curves for ΔKavg=83.1MPa m1/2 and ΔKavg=104.8MPa m1/2. 

 
Figure 10. Comparison between the numerical simulation and the experimental data. 

 

5. Concluding remarks 
In the present paper a cohesive zone model in conjunction with monotonic damage and cyclic 
fatigue damage was investigated based on experimental tests, to create a unified fatigue crack 
growth model for both elastic and elastic-plastic fatigue crack growth. 
In simulations the initial cohesive strength and the corresponding displacement jump are defined 
based on the true stress-strain relationship so that the cohesive zone does not affect the compliance 
of the specimen before damage initiation. The penetration of the crack surface under compression is 
prevented using the contact formulation. The first results confirm that the present cohesive zone 
model coupled with monotonic and cyclic damage evolution is suitable to describe fracture and 
fatigue crack growth of stainless steel 304 with severe plastic deformations.  
In addition, the present computations reveal that the damage evolution in the low stress level and 
the material compression process could not be properly described need further improvement. More 
extensive studies on the cohesive model and the damage evolution equation may provide further 
understanding of ductile fatigue damage under more complex loading conditions.  
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