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Abstract - -A damage mechanics model is proposed to study the void growth and crack initiation. 
J2 incremental flow theory along with a damage variable is used to model the material behaviour in 
elasto-plastic regime. Large deformation (large rotation and finite strain) finite element analysis is carried 
out for five different cases. In all the cases it is observed that the triaxiality and the plastic strain play 
an important role in void growth and crack initiation in ductile material. A failure curve is obtained for 
the material AISI-1090 spheroidised steel. Finally, it is concluded that the critical value of the damage 
variable can be taken as a crack initiation parameter. 

N O T A T I O N  

a void dimension (Fig. 1) 
a~ coefficient of  damage growth law 
a2 coefficient of  damage growth law 
a flow vector 
A area of  cross-section at the necked region 
A0 area of  cross-section of  the unit cell (Fig. 1) 
A,, area of  cross-section of  the unit cell between the voids (Fig. 1) 
A. effective area void fraction 
b void dimension (Fig. I) 
c coefficient of  damage growth law 
[C] elastic constitutive matrix 
[C eP] elasto-plastic constitutive matrix 
d intervoid spacing (Fig. 1) 
dE incremental strain in vector form 
da incremental stress in vector form 
do initial diameter of  cylindrical specimen 
d~ current diameter of  cylindrical specimen 
D damage variable 
D~ critical value of  damage variable 
E Young's modulus 
F plastic potential 
F~ plastic potential associated with yielding 
Fo plastic potential associated with damage 
H hardening parameter 
K hardening parameter 
n hardening parameter 
P load 
r internal hardening variable 
R virtual work done by surface tractions 
R* effective hardening stress variable 
S~j 2nd Piola Kirchoff stress tensor 
- Y elastic damage energy release rate 
AA infinitesimal area 
AAv area of  void traces contained in AA 
Au~ incremental displacement vector 
Aei/  linear part o f  incremental strain tensor 
Ar/,j non-linear part of  the incremental strain tensor 
E,j Green-Lagrange strain tensor 
~,, strain rate tensor 
~ plastic part of  strain rate tensor 
E~q equivalent strain 
E L equivalent plastic strain 
g~q equivalent strain rate 
~ equivalent plastic strain rate 
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scalar in a damage evolution law 
Poisson's ratio 
initial yield stress in uniaxial tension 
maximum principal stress 
plastic constraint stress 
mean part of effective stress tensor 
equivalent stress 
effective equivalent stress 
Cauchy stress tensor 
effective stress tensor 
deviatoric part of Cauchy's stress tensor 
deviatoric part of effective stress tensor 
Jaumann stress rate 

triaxiality 

spin tensor. 

1. I N T R O D U C T I O N  

SATISFACTORY IDENTIFICATION of fracture criteria for ductile material has not been available in the 
literature till today. It has been observed from metallurgical test results that ductile fracture occurs 
mainly due to void nucleation, growth and finally coalescence into a crack. Earlier models of  
McClintock [1] and Rice and Tracey [2] considered single void in a continuum. These models 
assumed a pre-existed finite size void in a continuum and hence did not consider any void 
nucleation phenomena. Based on Berg's [3] theory of dilatational plasticity, Gurson [4] proposed 
a plastic potential taking into account both the void nucleation and growth. Many research workers 
used the Gurson model taking a critical void volume fraction equal to 1.0 for micro crack initiation; 
but, from the experimental test [5], it was observed that at the final stage of void growth, the void 
coalesces by internal necking. This phenomenon starts at a critical void volume fraction which is 
well below 1.0 and then increases rapidly to 1.0. 

Recently, based on continuum thermodynamics, Lemaitre [6] proposed a damage model for 
elasto-plastic case. The concept of  "effective" stress and strain equivalence is used in deriving this 
model. He performed an experiment to find the critical value of  the damage variable from the 
change of elastic modulus in the one dimensional tensile test. However, his damage evolution law 
did not account for void nucleation. On the other hand, the experiment of  Le Roy et al. [7] which 
measures the growth of area void fraction with one dimensional strain seems to give a more 
consistent damage evolution law, as the damage is identified as the area void fraction in a particular 
plane. 

All the models cited above require a critical value of a material parameter  for micro crack 
initiation which has to be determined either by experiment or by appropriate micro model based 
on void coalescence. In all the studies done by earlier investigators, either the effect of  void 
nucleation and growth was not considered simultaneously, or the micro crack initiation criterion 
was not based on void coalescence. Moreover,  the void nucleation and the growth ahead of  the 
crack tip need stress analysis which has to take into account the effect of  finite strain and large 
rotation. 

The objectives of  this paper are to define a damage variable properly, to establish its critical 
value as a material property and to extend it as a parameter  for micro crack initiation. 
Lemaitre 's  [6] Continuum Damage Mechanics model together with experimental results of  Le Roy 
et al. [7] are used to derive a damage growth law for ductile materials. Modified Thomason 's  
model [8-10] is used to obtain a criterion for micro crack initiation. Non-linear finite element 
studies have been done for five different cases of  varied geometries to obtain critical values of  strain, 
triaxiality and damage variable for each case. 

2. F O R M U L A T I O N  

2.1. Mater ia l  characterisation 

Damage represents surface discontinuities in the form of  microcracks, or volume 
discontinuities in the form of  microvoids. The description of material behaviour of a damaged 
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material involves an additional internal variable, called the damage variable, which quantifies the 
intensity of  damage. If it is assumed that cracks and voids are scattered in an isotropic way, then 
this variable can be represented by a scalar quantity, which in the literature is normally denoted 
by D. D has been defined in various ways such as change in global mechanical properties (Young's 
modulus, yield strength, etc.) or change in global physical properties (density, resistance, etc.) or 
microscopic properties like void volume fraction. Here, the damage variable D is identified as area 
void fraction at a point, i.e. 

D = AA~/AA (1) 

where AA is an "infinitesimal" area around the point in some plane and AAv is the area of the 
void traces in the plane contained in AA. Here, D is considered as a scalar isotropic field quantity, 
i.e. independent of the plane on which it is defined. The introduction of damage variable leads to 
the concept of effective stress, i.e. the stress calculated over the effective area (AA - AA0 that 
actually resists the forces. Thus, the effective stress tensor a~* at a point is defined as 

try* = a0j(1 -- D). (2) 

The conjugate variable corresponding to D is the rate at which the elastic energy is released 
during damage growth at constant stress. For  an isotropic material, the elastic damage energy 
release rate ( -  Y) is given by [6] 

a*2 
- Y = - - f ( a * / a * )  (3) 2E 

where 

flag~a*) = 2(1 + v)/3 + 3(1 - 2v)(am*fa*)L (4) 

Here, E is the Young's modulus, v is the Poisson's ratio, a* is the mean (or hydrostatic) part 
of the stress tensor a~* and a*oq is the equivalent stress related to the deviatoric part a* '  by the 
relation 

a* t-~,,~,,~*,v/= (5) 

The constitutive equation for plastic behaviour of a damaged material can be derived from 
the appropriate plastic potential F. For convenience, F can be decomposed as 

F = F~(a~*, R*)  + F o ( -  Y; r, D). (6) 

Here, Fo is the plastic potential associated with the damage such that it reduces to zero 
whenever D = 0 and R* is the effective hardening stress variable which is conjugate to the internal 
hardening variable r defined by 

r = (1 -- D)Cq (7) 

t 

egq = gP.q dt (8) 

(2 ¢1~1~.1/2 ggq = ,~ <J~,7) • (9) 

Here, g~ is the plastic part of  the strain rate tensor g~. For  a material yielding according to 
yon Mises criterion, the first part of the potential F is given by 

F,  = (a~* - R * )  - a0 ( 1 0 )  

where a0 is the yield stress in uniaxial tension. When D = 0, a* and R* reduce, respectively, to 
aeq (equivalent stress corresponding to mj) and R (hardening stress variable of  an undamaged 
material), and thus, Fl reduces to the usual form. 
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If the form of Fo is known, the evolution of damage can be found from the relation 

OFo (11) b = x0(_---- 

where 2 is a scalar. However, unlike F~ the form of Fo is not well established. As a result, 
experimental observations are used to postulate an appropriate damage evolution law. Based on 
the model of Lemaitre [6] and the experimental results of Le Roy et al. [7], the following law is 
proposed: 

1~ = CEPq -~ (a, + azD)(-- Y)iPq. (12) 

Here, the first term, which is independent of - Y, represents the damage growth due to void 
nucleation, while the next two terms represent the evolution of damage due to void growth. The 
above expression states that void nucleation depends linearly on the equivalent plastic strain rate 
(~,~), which is in agreement with experimental results [7] and also consistent with Gurland's [11] 
model. Lemaitre [6], and Tai and Yang [12] did not consider the void nucleation term in their 
damage evolution law. Further, in Lemaitre's [6] work, the linear term in D is missing, while in 
the work of Tai and Yang [12], the term corresponding to a~ is not considered. 

In order to express ( - Y )  in terms of the equivalent plastic strain (E~), the relationship 
describing strain-hardening characteristics of the material is required. Here, it is assumed that the 
relationship is given by the following power law: 

i f*  = K(EePq)" (13) 

where K and n are the material hardening parameters. Using this expression for a* and the 
expression (3) for ( - Y ) ,  the damage evolution law [eq. (12)] can now be written as 

/(2 p 2n * * "p b = c~o~ + (a~ + a2D) ~-~ (E,q) f(~m/a~q)Coq. (14) 

The constants c, aj and a2 are determined by fitting the above equation through the 
experimental results of Le Roy et al. [7]. This is done in Section 3. 

2.2. The elasto-plastic matrix 
The incremental stress-strain relation is expressed as 

da = [CEP]dE ( 1 5 )  

where da and dE are incremental stress and strain written in vector form. The [C EP] matrix is 
obtained from the plastic potential F~ [eq. (10)] with the help of a flow rule following a standard 
procedure [13]. The expression for [C EP] is 

[ [C]aar[C]r 3 ( 1 - D  ) (16) [C EP] = [CI H + arIC]a 

where [C] is the elastic constitutive matrix. Further, flow vector 

and the hardening parameter 

ar = I OF' OF~ 1 0a*~ ' ~  . . . .  (17) 

dae* (18) 
H = de~q 

are obtained by differentiating eqs (10) and (13), respectively. In deriving [C Ev] matrix, it is assumed 
that D does not change within the increment. D is updated only at the end of the increment. 

2.3. Crack initiation criterion 
Experimental studies on microstructural features of ductile fracture indicate that the ductile 

fracture process is essentially a localised plastic instability occurring simultaneously in the intervoid 
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matrix between a very large number of coalescing micro voids [8-10]. According to these references, 
the sufficient condition for plastic stability of the intervoid matrix at a point is given by 

a t  - -  a.A. = 0 ( 1 9 )  

where a~ is the current maximum principal stress of the macroscopically homogeneous state of 
stress at the point, A, is the current effective area void fraction of the intervoid matrix at the point 
and a, is the critical stress required to initiate localised plastic flow or internal necking. The stress 
a, is called the plastic constraint stress. 

Since there are about 105 micro voids in an area of approximately 0.25 mm 2 of ductile fracture 
surface [10], one can describe the fracture process by using a simple unit cell model in which the 
unit cell represents the statistical average of the micro void size and intervoid spacing at the point 
under consideration. The problem of finding an analytical expression for the plastic constraint 
stress a, in a unit cell with an ellipsoidal void seems to be intractable. Thomason [10] considered 
a geometrically equivalent square-prismatic void with the same principal dimensions as the 
ellipsoidal void and used the upper bound method to obtain the following expression for the plastic 
constraint stress: 

0.1 + 1.2 },r~ (20) 
° "  = t ( a - -d -~  [ 6 / ( b  + d) ]  '~ _ • 

where a and b are the void dimensions, and d is the intervoid spacing (Fig. 1). This expression has 
been obtained by modifying the original expression of Thomason (which is for a perfectly plastic 
material) to incorporate the hardening of the material. Here, a* is the current value of the yield 
stress of the intervoid material. 

Elimination of a~ from eqs (19) and (20) leads to the following expression for the micro crack 
initiation criterion: 

0.1 1.2 } 
a' - {(a---~ + [b / (b-+~]  ''~ A°~* = 0. (21) 

Therefore, whenever the combination of the stress, and the void size and spacing at a point 
satisfies the above equation, micro crack initiation will take place at that point. Since the actual 
a, will be less than its upper bound estimate [eq. (20)], the above criterion will overestimate the 
critical combination of the stress, and the void size and spacing at micro crack initiation. 

In the present work, a micro crack initiation criterion is needed in terms of a combination 
of stress and strain, and not as a combination of stress, and void size and spacing. Therefore, the 

A r e a  : A o 

/-f 

- , , - - - - ---  2 d -'= b ',,"-- 

Fig. 1. Unit cell. 

A r e a  = An  
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void dimensions a and b, the intervoid spacing d and the effective area ratio 71, should be expressed 
in terms of the strain at the point. Thomason suggested the Rice formula [2] to express a, b and 
d in terms of the strain. However, only a small strain is considered by Rice [2] in arriving at this 
formula. Therefore, it is not suitable for the case of large deformation. 

Several research workers have suggested that, at micro crack initiation, the a/d ratio should 
lie between 0.8 and 1.2 depending on the triaxiality at the point. In the experimental results of Le 
Roy et al. [7], aid is observed to be close to 1.0. Therefore, in this study, it is taken as 1.0. Thus, 

a/d = 1.0. (22) 

To relate the void dimension b and the intervoid spacing d to the strain at the point, we assume 
that the equivalent strain 

Eoq = ~oq dt, ~eq = (2 ~j~ii)l/2 (23) 

at the point is more or less equal to the axial strain of the unit cell. Then, from Fig. 1 we get 

7t, = A,/Ao = exp(--Eeq) (24) 

d/(b + d) = exp(-Eeq/2). (25) 

The last equation implies 

b/(b + d) = 1 - exp(-Eeq/2). 

Substituting eqs (22), (24) and (26) into eq. (21) we get 

(26) 

~ exp ( -  eoq)a* 
1.2 

a~ - 0.1 + [1 - exp(-Eoq/2)] ~/2 O. 
) 

(27) 

This is the micro crack initiation criterion used in this study. It states that whenever a 
combination of stress and strain at a point satisfies the above equation, micro crack initiation takes 
place at that point. 

2.4. Finite element formulation 

The constitutive equation derived in Section 2.1 is used in the elasto-plastic finite element 
analysis. The scheme used is an updated Lagrangian Jaumann stress rate formulation, as it can 
properly model the large rotation and finite strain which are dominant ahead of the crack tip for 
ductile materials. 

For an updated Lagrangian formulation, the virtual work expression at time t + At is 
expressed in terms of the configuration at time t as 

f,, ~r+At'~t#+aqch¢ Rt+At. 
t o ( j  v ~ t ~ -  0 .t ~ v  

t 

(28) 

The right superscript indicates the current configuration and the left subscript indicates the 
reference configuration. The tensor S U stands for the 2nd Piola Kirchoff stress tensor and e~j is the 
Green-Lagrange strain tensor which is work conjugate to S0. R on the right hand side stands for 
the virtual work done by surface tractions. Following Bathe et al. [14], eq. (28) is simplified as 

f ,  ,Co~ ,Aek~6(,Ae~j) dv' + ,,.'f a~,6(,Aq,.,)dv'= R ' + ~' - f,, a~,6(,Ae~j) dr' (29) 
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Table 1. MateriaI-AISl 1090 steel; chemical composition (% wt) 

C Mn P S Si Fe 

0.92 0.72 0.009 0.022 0.20 Balance 

Table 2. MateriaI-AISI 1090 steel; mechanical properties 

V E O'o o'ut~ Er g t/ 

0.3 210 GPa 464 MPa 619 MPa 0.63 1115 MPa 0.19 

923 

where cEg is the tensor form of the [C EP] matrix [eq. (16)], fro represents Cauchy stress tensor, and 
the linear and non-linear parts of the incremental strain tensor are given by 

,Ae,/ = ½ (,Au~./+ ,Auj.,) (30) 

,ArI,j = ½ ,Auk.i ,Auk,j. (31) 

Note that ,Ae~j is the tensor form of the incremental strain dE appearing in eq. (15). Further, 
for large rotation, the stress increment dtr appearing in eq. (15) must be related to Jaumann stress 
rate. Thus, in terms of Jaumann stress rate, the incremental stress strain relation [eq. (15)] becomes 

~r~, dt = ,cE~ ,Aek,. (32) 

Once ,Ae~j is calculated by solving eq. (29), the Jaumann stress rate is determined from eq. (32) 
and the Cauchy stress at time t + At is obtained from 

O.t + At t Vt t t t t i~ = a~i + cri/ d t  + trJqpj d t  + tr/eflp~ d t ,  (33) 

where Iq~" is the spin tensor defined by 

fq~j dt = ½ (,Auj., - ,Au,j). (34) 

At every time step the Cauchy stress and configuration are updated, and the iteration process 
is continued till the required load level is reached. 

3. NUMERICAL RESULTS AND DISCUSSION 

The FEM formulation developed in Section 2.4 has been implemented in an iterative fashion. 
That is, eq. (29) is solved for equilibrium till the unbalanced work in any iteration cycle is zero. 
The arc length method with Newton Raphson scheme is used for displacement controlled problem. 

In each increment, Cauchy stress components are calculated from eq. (33) and hence, 
equivalent stress (ao0, mean stress (am) and triaxiality (trm/treq) are obtained. From incremental strain 
components (,Ae~/), incremental equivalent strain ((eq dt) and hence, incremental equivalent plastic 
strain (ggq dt) is obtained which is added in subsequent increments to get the total equivalent plastic 
strain (e~). Damage increment is obtained from eq. (14) which is added to the previous value to 
get the total damage. Elastic unloading equations are used when the current equivalent stress is 
less than that of the previous step. During unloading, calculations regarding equivalent plastic 
strain and damage are bypassed. For reloading, calculations for equivalent plastic strain and 
damage are restarted again from the point of unloading. Load is calculated from the nodal 
reactions at a particular cross-section. For a cylindrical specimen, true stress is calculated from the 
load (P) divided by area A of the minimum cross-section at the necked region. The logarithmic 
strain is calculated from the change in diameter in the necked portion using the formula E = 2 
In(do/de), where do and do are the initial and current diameters, respectively. The programme is 
terminated when the crack initiation condition [eq. (27)] is satisfied. The values of quantities like 
damage, equivalent plastic strain, etc. calculated at this point are termed as their critical values. 
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The material used in this study is AISI-1090 spheroidised steel whose void growth curve is 
given in ref. [7]. The chemical composition and mechanical properties of the material are given in 
Tables 1 and 2, respectively. 

The coefficients a~, a2 and c of  the damage growth law are obtained from eq. (14) by 
rearranging as a relation between dD/dE~q and E~q and also using Bridgman's [15] formula to express 
triaxiality as a function of  strain. Then, from the experimental results of Le Roy et al. [7], the slopes 
dD/dE~ are calculated at different strain levels. Finally, the coefficients a,, a2 and c are obtained 
by the method of least square curve fitting: 

al = 9.8 × 10 -04 MPa 1, a2 = 1.86 MPa- ' ,  c = 1.84 × 10 -02 

Five specimens with different geometry and loading conditions are studied. The geometries 
of  the specimens are shown in Fig. 2. For  all the cases except for the cracked plate, a total of 105 
eight-noded isoparametric elements is used. For  the cracked plate, the number of eight-noded 
isoparametric elements is 182 with crack-tip element size of (0.2 x 0.2 mm) for an effective crack 
length of  5.0 mm. The undeformed and deformed mesh patterns for cylindrical piece are shown 
in Fig. 3. It is worth noting here that a small imperfection of the order of 0.01 mm in diameter 
at the centre of  the undeformed cylinder is introduced in order to simulate necking. 

To check the accuracy of the results obtained from computer simulation, the true 
stress-logarithmic strain curve from computer simulation is compared with that obtained by Le 
Roy et al. [7] in an experiment with AISI-1090 steel (Fig. 4). The difference in stress levels is 8.0% 
at a strain level of 55.0% This shows that the damage growth law [eq. (14)] matches the material 
behaviour even after the ultimate point. 

(a) 

,_ d~ = 18ram, 

- - - - r  

I E 

i 

¢_ 
=mlO~ P=tOrnm 

(b) 

20ram 

(e) 

J 

(c) 

a Cyl indrical piece 
b Cyl. prenecked 
c PI. strain 

~i d PI. strain side grooved 
e Crocked plate 

Note: All dimensions are in 
eE mm 

E 

= I0 mm 

i -  (d)  - I  

Fig. 2. Specimen geometry. 
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(0) 

(o) Undeforrned mesh 

(b)  Deformed mesh 
at st ra in  level  5 5 %  

( b )  

Fig. 3. Deformed and undeformed mesh patterns for cylindrical specimen. 

Figure 5 shows the damage growth with equivalent plastic strain for the five cases. As expected, 
the damage grows with plastic strain. The critical values of damage (Do) and strain (Egq)c are 
obtained when eq. (27) is satisfied. For all the cases except for the cracked plate, the maximum 
damage occurs at the centre. For the cracked plate, it occurs at the crack tip. The values of critical 
strain and critical damage for cylindrical test piece are, respectively, 60.6% and 5.62%. The 
reported value of fracture strain and the calculated value of critical area void fraction for cylindrical 
test piece in ref. [7] are, respectively, 63% and 5.3%. Since the value of critical strain is in good 
agreement with the experimental value, it shows that Thomason's model is a good representation 
of micro crack initiation. 

1500 

1200 
n 

~" 900 

600 

300 

: : Point on expt, curve 

Ref.E ] 
Computer simuloted 
~b = 9.2 mm,L =56mm 

O• 
J f I ~ ~ I ~ ~ I i I I ~ i I J J I 

o.15 0.30 o.4s 0.60 0.75 o.eo t.o 
10g stroin,2.1n (do/dc) 

Fig. 4. Comparison of computer simulated true stress-logarithmic strain curve with experimental results 
for cylindrical specimen. 
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5 Crocked plate 

0.4 0.6 0.8 

Plastic strain 

Fig. 5. Damage growth curves for fine specimens. 

1.0 

Figure 6 shows the variation of critical damage (De) with critical triaxiality (trmltr~q)c. It can 
be seen that although there is a wide variation in the values of critical triaxiality, the values of 
critical damage remain within a narrow band. From Figs 5 and 6, it is observed that for a wide 
variation of critical values of strain and triaxiality for different geometries, the critical value of 
damage remains almost the same. Hence, De can be regarded as a material property. 

Figure 7 shows the variation of triaxiality with equivalent plastic strain for all the five cases. 
The locus of failure points is called the failure curve. The failure curve has a qualitative similarity 
with that of Hancock and Brown [16], but the quantitative comparison is not possible since they 
have used a different steel. This curve shows that failure can not be predicted either by critical strain 
alone or by critical triaxiality alone. Since one has to take into account both, it is better to predict 

0.I0 

OD8 

03 
t~ 0.06 

E 
o 

=.: 
0 0,(34 

4 5 

0.02 

I Cy l indr lco l  piece 
2 PI. s t ra in  
5 Cyl. prenecked 
4 PI. stra in side grooved 
,5. Cracked plate 

O. .5 03' 0,9 I.I h3 

Cr. triaxiolity 

Fig. 6. Variation of  critical damage with critical triaxiality, 

1.5 
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2 PI. s'troln 
3 Cyl. prenecked 
4 PI. strain side grooved 
5. Cracked plate 

0.2 0.4 O.G 0.8 1.0 

Plast ic  st ra in 

Fig. 7. Failure curve. 

it by cri t ical  d a m a g e  which incorpora tes  bo th  the s t ra in  and  tr iaxial i ty.  I t  is observed tha t  cri t ical  
s t ra in  increases with decreas ing t r iaxial i ty .  Final ly ,  Fig. 7 shows that ,  besides strain,  t r iaxial i ty  also 
plays  an i m p o r t a n t  role in void g rowth  and  crack ini t iat ion.  

4. C O N C L U S I O N S  

The fo l lowing conclus ions  can be d rawn f rom the results o f  this s tudy.  
The  d a m a g e  g rowth  law [eq. (14)] is p r o p o s e d  for  void  nuclea t ion  and  growth  for  AISI-1090 

spheroid ised  steel. 
T h o m a s o n ' s  micro  mode l  with a modi f ica t ion  [eq. (27)] is p r o p o s e d  for  c rack  in i t ia t ion in 

incrementa l  plast ic i ty  analysis .  
F r o m  the s tudy it is observed tha t  the cri t ical  value o f  damage  var iable  (De) can be cons idered  

as a mate r ia l  p r o p e r t y  for  pred ic t ion  o f  c rack  in i t ia t ion in duct i le  mater ials .  
The role o f  t r iaxia l i ty  in void growth  and ducti le  f racture  is well es tabl ished f rom this study.  
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