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A brief survey on discontinuous Galerkin

methods in computational fluid dynamics∗
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Abstract Discontinuous Galerkin (DG) methods combine features in finite element methods

(weak formulation, finite dimensional solution and test function spaces) and in finite volume

methods (numerical fluxes, nonlinear limiters) and are particularly suitable for simulating con-

vection dominated problems, such as linear and nonlinear waves including shock waves. In

this article we will give a brief survey of DG methods, emphasizing their applications in com-

putational fluid dynamics (CFD). We will discuss essential ingredients and properties of DG

methods, and will also give a few examples of recent developments of DG methods which have

facilitated their applications in CFD.
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1 Introduction

Discontinuous Galerkin (DG) methods belong

to the class of finite element methods. They are

based on weak formulations and with finite dimen-

sional piecewise polynomial solution space and test

function space. The main difference with tradi-

tional finite element methods is that the finite ele-

ment function space corresponding to DG methods

consists of piecewise polynomials (or other simple

functions) which are allowed to be completely dis-

continuous across element interfaces. Since this

leads to ambiguities at element interfaces, the

technique from finite volume methodology, namely

the choice of numerical fluxes, is introduced into

the DG schemes. Another important technique

from the finite volume methodology, namely the

choice of nonlinear limiters to control spurious os-

cillations in the presence of strong discontinuities,

is also introduced into the DG schemes. From this

point of view, DG schemes can be considered as

hybrid finite element and finite volume schemes.
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The first DG method was introduced in 1973

by Reed and Hill in a Los Alamos technical report

(Read and Hill 1973). It solves the equations for

neutron transport, which are time independent lin-

ear hyperbolic equations. A major development of

the DG method was carried out by Cockburn et al.

in a series of papers (Cockburn et al. 1989a, 1989b,

1990, 1991, 1998), in which the authors have estab-

lished a framework to easily solve nonlinear time

dependent hyperbolic equations, such as the Euler

equations of compressible gas dynamics. The DG

method of Cockburn et al. belongs to the class

of method-of-lines, namely the DG discretization

is used only for the spatial variables, and explicit,

nonlinearly stable high order Runge-Kutta meth-

ods (Shu and Osher 1988, Gottlieb et al. 2011)

are used to discretize the time variable. The two

techniques from the finite volume methodology

mentioned above, namely the usage of exact or

approximate Riemann solvers as interface fluxes

and total variation bounded (TVB) nonlinear lim-

iters (Shu 1987) to achieve non-oscillatory prop-

erties for strong shocks, were also introduced into

the DG method of Cockburn et al. At the be-

ginning, applications of DG methods to compu-

tational fluid dynamics (CFD) were mainly for

solving Euler equations of compressible gas dy-

namics. Later, the DG methodology was gener-

alized to treat viscous terms as well and hence

the DG schemes were designed to solve Navier-

Stokes equations (Bassi and Rebay 1997, Cock-

burn and Shu 1998). Within the umbrella of CFD,

the DG methods have also been applied to areas

including aeroacoustics, granular flows, magneto-

hydrodynamics, meteorology, modeling of shallow

water, oceanography, transport of contaminant in

porous media, turbulent flows, viscoelastic flows

and weather forecasting, among many others. For

earlier work on DG methods, we refer to the sur-

vey paper (Cockburn et al. 2000), and other pa-

pers in that Springer volume, which contains the

conference proceedings of the First International

Symposium on Discontinuous Galerkin Methods

held at Newport, Rhode Island in 1999. The lec-

ture notes (Cockburn 1999) is a good reference for

many details, as well as the extensive review pa-

per (Cockburn and Shu 2001). The review paper

(Xu and Shu 2010) covers the local DG method

for partial differential equations (PDEs) contain-

ing higher order spatial derivatives, such as Navier-

Stokes equations. More recently, there are three

special journal issues devoted to the DG method

(Cockburn et al. 2005, 2009, Dawson 2006), which

contain many interesting papers on DG method

in all aspects including algorithm design, analysis,

implementation and applications. There are also

a few recent books and lecture notes (Hesthaven

et al. 2008, Kanschat 2007, Li 2006, Riviere 2008,

Shu 2009) on DG methods.

2 DG methods for hyperbolic con-

servation laws

In this section, we describe briefly the main

idea of DG methods for solving hyperbolic conser-

vation laws. In CFD such equations include Eu-

ler equations of compressible gas dynamics, MHD

equations, linearized Euler equations in aeroacous-

tics, shallow water equations, etc. We use the fol-

lowing one-dimensional scalar equation

ut + f(u)x = 0 (1)

as an example.

Let us first settle on some notations. Assum-

ing we are solving (1) in x ∈ [0, 1]. We divide [0,1]
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into N cells
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)
, xj =
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xj− 1

2
+ xj+ 1
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)
,

hj = xj+ 1
2
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as the cells, cell centers and cell lengths respec-

tively. We also define h = hmax = maxj hj and

hmin = minj hj , and we consider only regular

meshes, that is hmax 6 λhmin where λ > 1 is a

constant during mesh refinement. Define the dis-

continuous Galerkin finite element space as

V k
h = {v : v|Ij ∈ Pk(Ij), j = 1, · · · , N}, (2)

where Pk(Ij) denotes the space of polynomials in

Ij of degree at most k. This polynomial degree k

can actually change from cell to cell (p-adaptivity),

but we assume it is a constant in this article for

simplicity.

The semi-discrete DG method for solving (1)

is defined as follows: find the unique function

uh = uh(t) ∈ V k
h such that, for all test functions

vh ∈ V k
h and all 1 6 j 6 N , we have∫

Ij

(uh)t vhdx−
∫
Ij

f(uh)(vh)xdx+

f̂j+ 1
2
(vh)

−
j+ 1

2

− f̂j− 1
2
(vh)

+
j− 1

2

= 0. (3)

Here, f̂i+ 1
2
is the numerical flux, which is a single-

valued function defined at the cell interfaces and

in general depends on the values of the numerical

solution uh from both sides of the interface

f̂i+ 1
2
= f̂(uh(x

−
i+ 1

2

, t), uh(x
+
i+ 1

2

, t)). (4)

We use the so-called monotone fluxes from finite

volume schemes, which satisfy the following con-

ditions:

Consistency: f̂(u, u) = f(u);

Continuity: f̂(u−, u+) is at least Lipschitz

continuous with respect to both arguments u− and

u+.

Monotonicity: f̂(u−, u+) is a non-decreasing

function of its first argument u− and a non-

increasing function of its second argument u+.

Symbolically f̂(↑, ↓).

We refer to, e.g., (LeVeque 1990) for more

details about monotone fluxes.

Notice that the DG scheme Eq. (3) can also

be written as∫
Ij

((uh)t + f(uh)x) vhdx+

(f̂j+ 1
2
− f((uh)

−
j+ 1

2

)(vh)
−
j+ 1

2

−

(f̂j− 1
2
− f((uh)

+
j− 1

2

)(vh)
+
j− 1

2

= 0 (5)

through integration by parts. Mathematically the

two formulations Eq. (3) and Eq. (5) are equiva-

lent, so users can choose to implement any one of

them and will get the same result. However, if the

integral terms in Eq. (3) and Eq. (5) are approxi-

mated by numerical quadrature rules, then the two

formulations may no longer be equivalent. Some of

the variants of DG schemes, for example the CPR

scheme (Wang and Gao 2009), can be considered

as scheme (5) with the integral term replaced by

a numerical quadrature.

If Eq. (1) is a system of hyperbolic conserva-

tion laws, the formulation of the DG scheme is the

same as in the scalar case, except that the numer-

ical flux Eq. (4) is no longer a monotone flux but

a flux based on an exact or approximate Riemann

solver (Toro 1991).

Since the DG scheme is defined in a weak

form, its multi-dimensional version is similar to

its one-dimensional version, with integration by
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parts replaced by Green’s formulas. The numerical

fluxes are still one-dimensional, along the normal

direction of element interfaces. Elements can be

of any shape, and mixed type meshes (e.g. both

triangles and quadrilateral cells in 2D) can be eas-

ily accommodated. The method is thus easy to

handle complicated geometry and boundary con-

ditions.

Time discretization is usually through ex-

plicit Runge-Kutta methods, for example the

total-variational-diminishing (TVD), or strong-

stability-preserving (SSP) time discretizations

(Shu and Osher 1988, Gottlieb et al. 2011). The

fully discretized scheme is referred to as Runge-

Kutta DG (RKDG) schemes.

The RKDG schemes are already energy sta-

ble (Jiang and Shu 1994, Hou and Liu 2007, Zhang

and Shu 2010), and can be used to solve Eq. (1)

with smooth solutions or solutions with only weak

discontinuities. However, for solutions with strong

shocks, DG schemes will generate spurious oscilla-

tions which may lead to nonlinear instability and

blow-ups of the code. In such cases, some form of

nonlinear limiters would be needed. We will ad-

dress this issue in Section 4.

The RKDGmethod is local, with communica-

tions only with immediate neighbors through the

numerical fluxes, regardless of the order of accu-

racy of the scheme. This makes the implemen-

tation of the RKDG method highly efficient. It

also makes the method easy for parallel imple-

mentation. The method can achieves almost 100%

parallel efficiency for static meshes and over 80%

parallel efficiency for dynamic load balancing with

adaptive meshes (Biswas et al. 1994, Remacle et

al. 2003). The DG method is also very friendly to

the GPU environment (Klockner et al. 2010).

3 DG methods for convection-

diffusion equations

In this section we describe briefly the main

idea of DG methods for solving convection-

diffusion equations. In CFD such equations

include Navier-Stokes equations of compressible

gas dynamics, etc. We use the following one-

dimensional scalar equation

ut + f(u)x = (a(u)ux)x (6)

with a(u) > 0 as an example. We first discuss

the local DG (LDG) method (Cockburn and Shu

1998), for which we rewrite Eq. (6) as the following

system

ut + f(u)x = (b(u)q)x, q −B(u)x = 0, (7)

where

b(u) =
√
a(u), B(u) =

∫ u

b(u)du. (8)

The finite element space is still given by Eq. (2).

The semi-discrete LDG scheme is defined as fol-

lows. Find uh, qh ∈ V k
h such that, for all test func-

tions vh, ph ∈ V k
h and all 1 6 i 6 N , we have∫

Ii

(uh)t(vh)dx−
∫
Ii

(f(uh)−

b(uh)qh)(vh)xdx+ (f̂ − b̂q̂)i+ 1
2
(vh)

−
i+ 1

2

−

(f̂ − b̂q̂)i− 1
2
(vh)

+
i− 1

2

= 0, (9)∫
Ii

qhphdx+

∫
Ii

B(uh)(ph)xdx−

B̂i+ 1
2
(ph)

−
i+ 1

2

+ B̂i− 1
2
(ph)

+
i− 1

2

= 0.

Here, all the “hat” terms are the numerical fluxes.

We already know from Section 2 that the convec-

tion flux f̂ should be chosen as a monotone flux.

However, the upwinding principle is no longer a

valid guiding principle for the design of the diffu-

sion fluxes b̂, q̂ and B̂. According to Cockburn and

Shu (1998), sufficient conditions for the choices of

these diffusion fluxes to guarantee the stability of
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the scheme Eq. (9) are given. Here, we will only

discuss a particularly attractive choice, called “al-

ternating fluxes”, defined as

b̂ =
B(u+

h )−B(u−
h )

u+
h − u−

h

, q̂ = q+h , B̂ = B(u−
h ). (10)

The important point is that q̂ and B̂ should be

chosen from different directions. Thus, the choice

b̂ =
B(u+

h )−B(u−
h )

u+
h − u−

h

, q̂ = q−h , B̂ = B(u+
h )

is also fine.

Notice that, from the second equation in the

scheme (9), we can solve qh explicitly and locally

(in cell Ii) in terms of uh, by inverting the small

mass matrix inside the cell Ii. This is why the

method is referred to as the “local” discontinuous

Galerkin method (LDG).

LDGmethod as defined above is energy stable

(Cockburn and Shu 1998). Its multi-dimensional

version is still similar to its one-dimensional ver-

sion, and the advantages in local communication,

easiness in handling complicated geometry and

boundary conditions, and parallel efficiency, are

still valid.

There are other types of DG approxima-

tions to the viscous terms (Bassi and Rebay 1997,

Wheeler 1978, Arnold 1982, Baumann and Oden

1999, Oden et al. 1998, Liu and Yan 2009, 2010,

Cheng and Shu 2008).

4 Examples of recent developments

on DG methods

In this section we give a few examples of re-

cent developments on DG methods which are rel-

evant to CFD.

4.1 Nonlinear limiters

The RKDG schemes for conservation laws de-

fined in Section 2 are energy stable. However,

for solving problems with strong discontinuities,

the DG solution may generate spurious numerical

oscillations. In practice, especially for nonlinear

problems containing strong shocks, we often need

to apply nonlinear limiters to control these oscilla-

tions. Most of the limiters studied in the literature

come from the methodologies of finite volume high

resolution schemes.

A limiter can be considered as a post-

processor of the computed DG solution. In any

cell which is deemed to contain a possible discon-

tinuity (the so-called troubled cells), the DG poly-

nomial is replaced by a new polynomial of the same

degree, while maintaining the original cell average

for conservation. Different limiters compute this

new polynomial in different fashions. The main

idea is to require that the new polynomial is less

oscillatory than the old one, and, if the solution in

this cell happens to be smooth, then the new poly-

nomial should have the same high order accuracy

as the old one. Some of the limiters are applied to

all cells, while they should take effect (change the

polynomial in the cell) only in the cells near the

discontinuities. The total variation diminishing

(TVD) limiters (Harten 1983) belong to this class.

Unfortunately, such limiters tend to take effect

also in some cells in which the solution is smooth,

for example in cells near smooth extrema of the

exact solution. Accuracy is therefore lost in such

cells. The total variation bounded (TVB) limiters

(Shu 1987), applied to RKDG schemes (Cockburn

et al. 1989, Cockburn et al. 1989, Cockburn et

al. 1990, Cockburn and Shu 1998), attempt to

remove this difficulty and to ensure that the lim-

iter takes effect only on cells near the discontinu-

ities. The TVB limiters are widely used in appli-

cations, because of their simplicity in implementa-
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tion. However, the TVB limiters involve a param-

eter M , related to the value of the second deriva-

tive of the exact solution near smooth extrema,

which must be chosen by the user for different test

cases. The moment-based limiter (Biswas et al.

1994) and the improved moment limiter (Burbeau

et al. 2001) also belong to this class, and they are

specifically designed for DG methods and limit the

moments of the polynomial sequentially, from the

highest order moment downwards. Unfortunately,

the moment-based limiters may also take effect in

certain smooth cells, thereby destroying accuracy

in these cells.

The limiters based on the weighted essen-

tially non-oscillatory (WENO) methodology are

designed with the objective of maintaining the

high order accuracy even if they take effect in

smooth cells. These limiters are based on the

WENO methodology for finite volume schemes

(Liu et al. 1994, Jiang and Shu 1996), and in-

volve nonlinear reconstructions of the polynomials

in troubled cells using the information of neigh-

boring cells. The WENO reconstructed polynomi-

als have the same high order of accuracy as the

original polynomials when the solution is smooth,

and they are (essentially) non-oscillatory near dis-

continuities. Qiu and Shu (2005) and Zhu et al.

(2008) designed WENO limiters using the usual

WENO reconstruction based on cell averages of

neighboring cells as in (Jiang and Shu 1996, Hu

and Shu 1999, Shi et al. 2002), to reconstruct the

values of the solutions at certain Gaussian quadra-

ture points in the target cells, and then rebuild the

solution polynomials from the original cell aver-

age and the reconstructed values at the Gaussian

quadrature points through a numerical integration

for the moments. This limiter needs to use the in-

formation from not only the immediate neighbor-

ing cells but also neighbors’ neighbors, making it

complicated to implement in multi-dimensions, es-

pecially for unstructured meshes (Zhu et al. 2008,

Hu and Shu 1999, Zhang and Shu 2009). It also

destroys the local data structure of the base DG

scheme (which needs only to communicate with

immediate neighbors). The effort made by Qiu

and Shu (2003, 2005) attempts to construct Her-

mite type WENO approximations, which use the

information of not only the cell averages but also

the lower order moments such as slopes, to reduce

the spread of reconstruction stencils. However, for

higher order methods, the information of neigh-

bors’ neighbors is still needed.

More recently, Zhong and Shu (2012) devel-

oped a new WENO limiting procedure for RKDG

methods on structured meshes. The idea is to re-

construct the entire polynomial, instead of recon-

structing point values or moments in the classical

WENO reconstructions. That is, the entire recon-

struction polynomial on the target cell is a con-

vex combination of polynomials on this cell and

its immediate neighboring cells, with suitable ad-

justments for conservation and with the nonlinear

weights of the convex combination following the

classical WENO procedure. The main advantage

of this limiter is its simplicity in implementation,

as it uses only the information from immediate

neighbors and the linear weights are always posi-

tive. This simplicity is more prominent for multi-

dimensional unstructured meshes, which is studied

in (Zhu et al. 2013) for two-dimensional unstruc-

tured triangular meshes. This new WENO limiter

has also been designed for CPR type schemes (Du

et al.).

The WENO limiters are typically applied
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only in designated “troubled cells”. In order to

save computational cost and to minimize the in-

fluence of accuracy in smooth regions, a troubled

cell indicator is needed, to correctly identify cells

near discontinuities in which the limiters should

be applied. Qiu and Shu (2005) have compared

several troubled cell indicators. In practice, the

TVB indicator (Shu 1987) and the KXRCF indi-

cator (Krivodonova et al. 2004) are often the best

choices.

4.2 Bound preserving DG schemes

In many CFD problems, the physical quanti-

ties have desired bounds which are satisfied by the

exact solutions of the PDEs. For example, for two-

dimensional incompressible Euler or Navier-Stokes

equations written in a vorticity-stream function

formulation, the vorticity satisfies a maximum

principle. For Euler equations of compressible gas

dynamics, density and pressure remain positive

(non-negative) when their initial values are pos-

itive. It would certainly be desirable if numerical

solutions obey the same bounds. If the numerical

solution goes out of the bounds because of spu-

rious oscillations, it would either be non-physical

(e.g. negative density, negative internal energy, a

percentage of a component which goes below zero

or above one), or worse still, it could lead to nonlin-

ear instability and blowups of the code because the

PDE becomes ill-posed (e.g. the Euler equations

of compressible gas dynamics become ill-posed for

negative density or pressure).

Not all limiters discussed in the previous sec-

tion can enforce the bound-preserving property.

When they do, they often degenerate the order of

accuracy of the original scheme in smooth regions.

Recently, a general framework is established

to preserve strict bounds (maximum principle for

scalar problems and positivity of relevant quanti-

ties for scalar problems or systems), while main-

taining provable high order accuracy of the orig-

inal schemes. These techniques apply to multi-

dimensions in general unstructured triangulations

as well (Zhang and Shu 2010a, 2010b, Zhang et

al., 2012).

We will not repeat here the details of this gen-

eral framework and refer the readers to the refer-

ences. We will summarize here the main steps in

this framework:

1. We first find a first order base DG scheme,

using piecewise polynomials of degree zero (piece-

wise constants), which can be proved to be bound-

preserving under certain Courant-Friedrichs-Lewy

(CFL) conditions for Euler forward time dis-

cretization. Notice that a first order DG scheme

is same as a first order finite volume scheme.

For scalar hyperbolic conservation laws in Eq.

(1), the first order DG scheme using any monotone

numerical flux would satisfy a maximum principle.

For Euler equations of compressible gas dynamics,

several first order schemes, including the Godunov

scheme (Einfeldt et al. 1991), the Lax-Friedrichs

scheme (Perthame and Shu 1996, Zhang and Shu

2010), the Harten-Lax-van Leer (HLLE) (Harten

et al. 1983) scheme, and the Boltzmann type

kinetic scheme (Perthame 1992), are positivity-

preserving for density and pressure.

2. We then apply a simple scaling limiter to

the high order DG solution at time level n. If the

DG solution at time level n in cell Ij is a polyno-

mial pj(x), we replace it by the limited polynomial

p̃j(x) defined by

p̃j(x) = θj(pj(x)− ūn
j ) + ūn

j
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where ūn
j is the cell average of pj(x), and

θj = min

{∣∣∣∣∣ M − ūn
j

Mj − ūn
j

∣∣∣∣∣ ,
∣∣∣∣∣ m− ūn

j

mj − ūn
j

∣∣∣∣∣ , 1
}
,

with

Mj = max
x∈Sj

pj(x), mj = min
x∈Sj

pj(x)

where Sj is the set of certain Legendre Gauss-

Lobatto quadrature points of the cell Ij . Clearly,

this limiter is just a simple scaling of the original

polynomial around its average.

3. We then evolve the solution by Euler

forward time discretization, or by TVD or SSP

Runge-Kutta time discretization (Shu and Osher

1988, Gottlieb et al. 2011).

We can see that this procedure is very simple

and inexpensive to implement. The scaling lim-

iter involves only evaluation of the DG polynomial

at pre-determined quadrature points. The proce-

dure can be applied in arbitrary triangular meshes.

Amazingly, this simple process leads to mathemat-

ically provable bound-preserving property without

degenerating the high order accuracy of the base

DG scheme.

For scalar nonlinear conservation laws, pas-

sive convection in a divergence-free velocity field,

and 2D incompressible Euler equations in the

vorticity-stream function formulation, high order

DG schemes maintaining maximum principle have

been designed in Zhang and Shu (2010) and in

Zhang, Xia and Shu (2012).

For scalar nonlinear convection diffusion

equations, second order DG schemes on unstruc-

tured triangulations maintaining maximum princi-

ple have been designed in Zhang and Shu (2013).

For Euler equations of gas dynamics, high or-

der DG schemes maintaining positivity of density

and pressure (or internal energy) have been de-

signed in Zhang and Shu (2010b, 2011a, 2011b,

2012) and in Zhang, Xia and Shu (2012).

For shallow water equations, high order

DG schemes maintaining non-negativity of water

height have been designed in Xing, Zhang and Shu

(2010).

Positivity-preserving semi-Lagrangian DG

schemes have been designed in Qiu and Shu (2011)

and in Rossmanith and Seal (2011).

4.3 DG method for hyperbolic equations

involving δ-functions

In a hyperbolic conservation law

ut + f(u)x = g(x, t), (x, t) ∈ R× (0, T ],

u(x, 0) = u0(x), x ∈ R,
(11)

the initial condition u0, or the source term g(x, t),

or the solution u(x, t) may contain δ-singularities.

Such singularities are more difficult to handle than

discontinuities in the solutions. Many high order

schemes would easily blow up in the presence of δ-

function singularities, because of the severe oscil-

lations leading to non-physical regimes (e.g. neg-

ative density). On the other hand, if one applies

traditional limiters such as various slope limiters

to enforce stability, the resolution of the δ-function

singularities would be seriously deteriorated. Re-

solution is also seriously affected by other com-

monly used strategies such as molifications by an

approximate Gaussian to smear out the δ-function.

Since DG methods are based on weak formu-

lations, they can be designed directly to handle δ-

function singularities. Recently, we have designed

and analyzed DG schemes for solving linear and

nonlinear PDE models with δ-function singulari-

ties (Yang and Shu 2013, Yang et al. 2013). For

linear problems, we prove stability and high order
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error estimates in negative norms when the DG

method is applied, and propose post-processing

techniques to recover high order accuracy in strong

norms away from these δ-function singularities.

For nonlinear problems, such as Krause’s consen-

sus models (Canuto et al. 2012) and pressure-

less Euler equations (Chen and Liu 2003), an ad-

equate design of bound preserving limiter, within

the framework described in Section 4.2, to enforce

the physical bounds without compromising reso-

lution of δ-function singularities is shown to be

crucial. With such limiters, high resolution and

highly stable results can be obtained for such dif-

ficult nonlinear models.

4.4 DG method for Hamilton-Jacobi equa-

tions and nonlinear control

Time dependent Hamilton-Jacobi equations

take the form

φt +H(φx1 , ..., φxd
) = 0, φ(x, 0) = φ0(x), (12)

where H is a Lipschitz continuous function. H

could also depend on φ, x and t in some appli-

cations. Hamilton-Jacobi equations appear often

in many applications. Examples in CFD in-

clude front propagation, level set methods, multi-

material flows, and nonlinear control.

Since the spatial derivative operator is inside

the nonlinear Hamiltonian H in Eq. (12), integra-

tion by parts leading to a weak formulation for the

DG scheme cannot be directly performed. How-

ever, by exploring the strong relationship between

the Hamilton-Jacobi equations and conservation

laws, various formulations of DG methods have

been designed in the literature.

The first attempt to design a DG method was

based exactly on this relationship (Hu and Shu

1999). At least in one dimension, the viscosity so-

lution of the Hamilton-Jacobi Eq. (12) is equiva-

lent to the entropy solution of the conservation law

in Eq. (1), when we identify φx = u and H = f .

Therefore, a DG scheme for solving the conserva-

tion law in Eq. (1) can be directly used to approxi-

mate the derivative of the viscosity solution of the

Hamilton-Jacobi Eq. (12). The missing degree of

freedom, to recover φ from φx, can be determined

by ∫
Ij

((φh)t +H(uh)) dx = 0,

which is an evolution equation for the cell aver-

age of φ when the approximation to its derivative

φx = u is known. This algorithm is well defined

for one dimension. Additional complications exist

for multi-dimensional cases, which can be handled

either by a least square procedure (Hu and Shu

1999) or by using locally curl-free DG spaces (Li

and Shu 2005) (these two approaches are mathe-

matically equivalent (Li and Shu 2005)).

Even though the DG schemes in (Hu and Shu 

1999, Li and Shu 2005) are successful in approx-

imating the Hamilton-Jacobi Eq. (12), it involves 

rewriting it as a conservation law satisfied by the 

derivatives of the solution φ. It is desirable to 

design a DG method which solves directly the so-

lution φ to the Hamilton-Jacobi Eq. (12). The 

scheme of Cheng and Shu (2007) serves this pur-

pose. It starts from the alternative formulation of 

DG schemes given in Eq. (5) which does not re-

quire explicit integration by parts to the original 

PDE to write down the DG scheme. Further de-

velopment and application of this method to prob-

lems in optimal control are given in (Bokanowski 

et al. 2010, 2011, 2013). Excellent simulation 

results are ob-tained for nonlinear control 

simulations in these
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references.

Another DG method which solves directly the

Hamilton-Jacobi Eq. (12) is that of Yan and Os-

her (2011). This method is motivated by the local

discontinuous Galerkin (LDG) method for solving

second order partial differential equations (Cock-

burn and Shu 1998).

5 Concluding remarks

In this short survey article we have given an

overview of discontinuous Galerkin (DG) methods

applied to computational fluid dynamics (CFD)

problems. A few representative examples of re-

cent developments are given to illustrate the vi-

tality of this research area. The DG method has

many advantages for large scale computing, espe-

cially for massively parallel (exascale) computing

environments. Future research in DG methods

might include study on reliable and efficient error

indicators to guide h-p adaptivity, thus realizing

the full power of DG methods for such adaptiv-

ity; more efficient and reliable limiters for solutions

with strong shocks, which do not affect accuracy

in smooth regions and do not affect convergence

to steady state solutions; and DG methods with

non-polynomial basis functions for multiscale and

turbulence modeling applications. It can be ex-

pected that such further research in DG methods

will lead to the expansion of their application in

CFD and other scientific and engineering areas.
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计算流体力学中的间断 Galerkin 方法述评

舒其望 †

Division of Applied Mathematics Brown University Providence, RI 02912, USA

摘要 间断 Galerkin (DG)方法结合了有限元法 (具有弱形式、有限维解和试验函数空间)和有限

体积法 (具有数值通量、非线性限制器) 的优点, 特别适合对流占优问题 (如激波等线性和非线性

波) 的模拟研究. 本文述评 DG 方法, 强调其在计算流体力学 (CFD) 中的应用. 文中讨论了 DG 方

法的必要构成要素和性能特点, 并介绍了该方法的一些最近研究进展, 相关工作促进了 DG 方法

在 CFD 领域的应用.

关键词 间断 Galerkin (DG) 方法, 计算流体力学

Chi-Wang Shu has been a faculty member with Brown University since 1987. He served as

the Chairman of the Division of Applied Mathematics from 1999 to 2005, and is now the

Theodore B. Stowell University Professor of Applied Mathematics. His research interest

includes high order finite difference, finite element and spectral methods for solving hyper-

bolic and other convection dominated partial differential equations, with applications to

areas such as computational fluid dynamics, semi-conductor device simulations and com-

putational cosmology. He is one of the major developers of several very popular high order

accurate schemes including weighted essentially non-oscillatory (WENO) finite difference

schemes, Runge-Kutta discontinuous Galerkin methods, and strong stability preserving

(SSP) time discretizations. He served as the Managing Editor of Mathematics of Computation between 2002

and 2012, is now the Chief Editor of Journal of Scientific Computing and the Co-Chief Editor of Methods and

Applications of Analysis, and he currently serves in the editorial boards of 14 other journals including Journal

of Computational Physics and Science China Mathematics. His honors include the First Feng Kang Prize of

Scientific Computing in 1995 and the SIAM/ACM Prize in Computational Science and Engineering in 2007. He

is an ISI Highly Cited Author in Mathematics, a SIAM Fellow in the inaugural class, and an AMS Fellow in the

inaugural class.

† E-mail: shu@dam.brown.edu


