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Abstract Random elastic composites with residual str-
esses are examined in this paper with the aim of under-
standing how the prestress may influence the overall

mechanical properties of the composite. A fully non-
local effective response is found in perfect analogy with
the un-prestressed case examined in (Drugan, W.J. and

Willis, J.R., A micromechanics-based nonlocal constitu-
tive equation and estimates of representative volume el-
ement size for elastic composites. J. Mech. Phys. Solids

44 (4), 497–524, 1996). The second gradient approxima-
tion is considered and the impact of the residual stresses
on the estimate of the RVE size is studied whenever the

local response is used to describe the mechanical prop-
erties of the heterogeneous medium. To this aim, total
and incremental formulations are worked out in this

paper and the influence of both uniform and spatially
varying prestresses are studied. Among other results,
it is shown how rapid oscillations of relatively ”small”

residual stresses in most cases may result in the impos-
sibility of describing the overall behavior of the com-
posite with a local constitutive equation. On the other

hand, prestresses with relatively high amplitudes and
slow spatial oscillations may even reduce the RVE size
required for approximating the mechanical properties of

F. Dal Corso,
Department of Civil, Environmental and Mechanical Engi-
neering,
University of Trento,
via Mesiano 77, I-38123 Trento, Italy

L. Deseri,
Center for Nonlinear Analysis and Department of Mathemat-
ical Sciences, Carnegie Mellon University,
4811 Frew St., Pittsburgh PA 15213-3890 USA
E-mail: deseri@andrew.cmu.edu

un-prestressed heterogeneous media with a local consti-
tutive equation.

Keywords Prestressed random composites · Residual
stress · Micromechanics · Non-local elasticity · RVE
size

1 Introduction

The necessity of detecting residual stresses in compos-
ites is often a crucial issue in order to be able to pre-

vent undesired stress concentrations giving rise to lo-
cal damage, debonding, pull out, etc. Although non de-
structive experimental techniques already applicable to

detect residual stresses in metals, ceramics and other
materials may be useful for resolving such stresses in
composites, very little is known about their actual in-

fluence on the effective properties of the composite. The
interplay between the microstructure of heterogeneous
materials and the presence of residual stresses may be

studied through a new field theory based on the dis-
tinction between macro and sub-macroscopic geometry
through the approach developed in [8] and extended in

[9], [10], although a more direct approach developed in
[13] and extended in [14], [15], [21], [22] may be gen-
eralized to prestressed random elastic composites. This

paper devotes attention to this problem by focusing on
composites formed by randomly distributed ’small’ in-
clusions in a matrix; the theory is developed for any

shape although the examples are worked out for spher-
ical inclusions or voids (see e.g. [25] for the influence of
shape particles in the absence of residual stresses).

In the absence of residual stresses micromechanics
based effective explicit nonlocal constitutive equations
have been obtained in [13] for the first time; there the

effective response of random composites is evaluated
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starting from introducing a homogeneous comparison

solid, i.e. a constant fourth order tensor of elastic mod-
uli. Following [26], the stress generated by a compatible
strain field superimposed on this medium is considered

as a benchmark and the difference between the point-
wise stress and such a benchmark is the polarization
stress.

A probabilistic approach is then undertaken, where
a sample space is considered and, for the generic real-

ization of the composite a probability density is pre-
scribed. For each phase forming the composite a char-
acteristic function (also named indicator in the sequel)

is introduced to indicate the presence of a point in a
given phase for a given realization of the composite.
This characteristic function is used (i) to approximate

the moduli for the given realization through an ansatz
where fourth order tensors of constant moduli for each
phase multiply their corresponding indicator and (ii)

to express the unknown polarization stresses in each
phase.

One point and two points probability functions are
then defined on the basis of the probability density cited
above; the former generates a way to obtain the en-

semble average of such moduli and of the polarization,
where the latter is carried over through the analysis
and appears in the ensemble average of the Hashin and

Strickman functional, governing the pointwise polariza-
tion stresses. Stationarity of such effective functional
together with the averaging of the superimposed strain

field obtained by solving the balance of linear momen-
tum for the whole space lead to an integral equation
for the polarization stresses in each phase in terms of

the average of the superimposed strain field. The closed
form solution of such system of equations in general is
not possible and a space- Fourier transform approach

is undertaken to successfully characterize solutions.

Indeed, in [13] several key results have been ob-

tained, including a second strain gradient approxima-
tion of the integral response of the homogenized mate-
rial, with particular reference to statistically and mate-

rially isotropic media. Among other results, the impor-
tant issue of estimating the deviation from the second
gradient effective response of the local term alone has

been raised and specialized to the case of spherical in-
clusions. In particular, for a fixed deviation from nonlo-
cality, both extensions and shears have been accounted

for and estimates of the Representative Volume Ele-
ment (RVE) size in both cases have been achieved. This
procedure has been extended in the subsequent papers

cited above, where also a fourth order approximation
to the fully nonlocal response has been achieved. A re-
cent paper actually present a very robust computational

method for for generating unit cells with randomly dis-

tributed inclusions consistent with the concept of RVE

introduced in [13] and generalized in this paper in the
presence of residual stresses.

Furthermore, the non-local effective model obtained
in this paper permits improvement in the analysis of
strain localization recently performed in [2]-[6] through

introduction of size effect.

The key point of the method followed in the papers

mentioned above is to introduce a comparison solid with
constant elastic moduli which acts on the strain ten-
sor, compatible with an underlying displacement field,

and produces an idealized stress state. The difference
between the pointwise stress and the latter is the po-
larization stress which in this case is unique.

For the sake of simplicity, two-phase composites are

considered in the sequel although as in [13] the proce-
dure is valid in general.

The presence of residual stresses introduces a source
of non-uniqueness in the way in which the comparison
solid may be defined. The analysis in the sequel shows

that there are essentially four different families of op-
tions, here labeled with the letters A1, A2, A3 and B,
suitable to formulate and solve the problem of calculat-

ing the effective response of the composite.

To begin with, as in the classical approach for non

prestressed composites, all such formulations are char-
acterized by introducing a compatible strain field gen-
erating a reference stress through a fourth order tensor

of constant elastic moduli. The compatibility of such
strain is essential in order to express the stress-strain
response in terms of the Green’s function for the com-

parison medium defined on the whole three dimensional
space (see e.g. [26] appendix and [27] (Sect. III A 1),
[13] Sect. 2).

An arbitrary reference state for the comparison solid

may also be conceived: this could for instance coincide
with (A1, Sect. 3.1) the actual residual stress, (A2, Sect.
3.2) zero or (A3, Sect. 3.3) neither of the above. A

source of non uniqueness when choosing such a solid
then seems to arise, due to the fact that the polariza-
tion stress needed to generate the whole stress field may

have to comply with either choice. A Hashin and Strick-
man procedure analogous to that used in [13], namely
when residual stresses are absent, is pursued for each

case and the final averaged polarization stresses are ob-
tained in Sect. 4. There it is proved that such stress
turns out to be the same for each of the cases above and

hence in this respect they are equivalent; such ”family”
of choices for the comparison solid is then labeled A.

For two-phase composites, Section 4 shows that, in
general, formulation A does not yield a fully averaged
polarization stress, because the difference of the pre-

stresses in the two phases appears explicitly.
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Furthermore, an incremental formulation (B, Sect.
3.4), based on an objective measure of the stress incre-
ment, is proposed. The resulting formulation loses the
self-adjointess typical of all the other ones. As a result,

a functional suitable to extract the approximations to
the actual polarizations may formally be constructed
in the same form delivered by the first variation of the

Hashin and Strickman functional that could have been
considered if major symmetries of the governing fourth
order operator would occur.

Unlike formulation A, the system of integral equa-
tions for B has the advantage that the polarizations in
each phase depend upon fully averaged quantities, al-

though a drawback of formulation B is that only homo-
geneously prestressed media may be treated with this
approach.

2 Governing equations

It is known that the elastic behavior of a material when

an infinitesimal strain field e(x) is superimposed on a
pre-existing stress state is defined by the following con-
stitutive relation

σ(x) = L(x)e(x) +Σ(x), (1)

where

– σ(x) is the Cauchy stress;

– L(x) is the fourth-order elastic tensor (exhibiting
the minor and major symmetries, Lijkl = Ljikl =
Lklij);

– e(x) is the symmetric part of H(x), the gradient of
the superimposed displacement field u(x), i.e.

e(x) = sym [H(x)] , H(x) = ∇u (2)

– Σ(x) is a stress taking into account the effects given
by the presence of a pre-existing stress [17],

Σ(x) = t(x)+H(x)t(x) + t(x)HT (x)− [trH(x)] t(x)︸ ︷︷ ︸
”geometrical terms”

+D [t(x), e(x)] ,

(3)

where the superscript T denotes the transpose, t(x)
represents the pre-existing (Cauchy) stress, and D
is a sixth-order tensor such that

e1 · D [t(x), e2] = e2 · D [t(x), e1]

for any pair e1, e2 of symmetric tensors (see [17]
and [23], [24]); in other words the fourth order ten-

sor D [t(x), ·] resulting from the action of D on the

prestress t(x), besides the obvious minor symme-

tries, it possesses the major ones too. Finally, the
infinitesimal rigid rotation tensor w(x) is given by
the decomposition rule

w(x) = H(x)− e(x) = skw [H(x)] . (4)

The linear constitutive relation (1) can be rewritten as

σ(x) = C∗(x)H(x) + t(x), (5)

where1

C∗(x) = L(x) + I� t(x) + (t(x)� I)TT − t(x)⊗ I︸ ︷︷ ︸
”geometrical terms”

+D [t(x), ·] ,
(6)

where TT =
∑

ijkl δjkδilei ⊗ ej ⊗ ek ⊗ el is the ”trans-
poser” operator, namely the fourth order tensor allow-
ing for transposing any second order tensor. It is worth

noting the tensor C∗(x) then exhibits left minor sym-
metries only, namely C∗

ijkl = C∗
jikl ̸= C∗

ijlk.
Equation (6) is actually showing that the response

can be anisotropic due to the presence of non-zero pre-
stress t(x) even in the case of initially isotropic mate-
rials.

Balance equations may be written for the stresses
and the body forces in two possible ways.

– Total formulation. Considering the presence of a

body force vector f(x), the equilibrium of the medium
is expressed by

divσ(x) + f(x) = 0, (7)

from which the equilibrium condition for the body
when no superimposed displacement field is consid-
ered, u = 0, follows

div t(x) + f ∗(x) = 0, (8)

where f ∗(x) represents the pre-existing body force.
– Incremental formulation. An objective measure of

increment in the Cauchy stress may be introduced
by looking at the structure of the constitutive equa-
tion (5) and (3):

◦
σ(x) = σ(x)− t(x)−w(x)t(x) + t(x)w(x), (9)

which is in fact insensitive to the rigid body rota-
tions. For this stress increment a linear constitutive
relation may be provided by replacing σ with (5) to

get the following expression:

◦
σ(x) = C(x)e(x), (10)

1 Here (A�B)U := AUBT , for any triple of second order
tensors A, B, U.
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where

C(x) = L(x)+I� t(x) + t(x)� I− t(x)⊗ I︸ ︷︷ ︸
”geometrical terms”

+D [t(x), ·] .

(11)

Unlike C∗(x) introduced above, the tensor C(x) ex-
hibits both minor symmetries, namely Cijkl = Cjikl =
Cijlk, although major symmetries are still not present2

; from now on this entity will be carried over to
represent the elastic constitutive information acting
on the pure strain variable e(x) accounting for the

presence of prestress.
Considering relations (7)-(8), the equilibrium condi-
tion can be obtained in terms of the stress increment
◦
σ(x),

div
◦
σ(x) +

◦
f(x) = 0, (12)

where an objective measure of the increment in the

body force,
◦
f, has been introduced

◦
f(x) = f(x)− f ∗(x) + div [w(x)t(x)− t(x)w(x)] .

(13)

3 ‘Total’ formulations

The governing equations introduced in terms of the to-
tal quantities may allow for evaluating the effective re-
sponse for heterogeneous materials by following proce-

dures analogous to the one introduced by Drugan and
Willis in [13]. There a comparison solid with constant
moduli was introduced and considered to fill out the

entire three dimensional space R3 and a Hashin and
Shtrikman functional was singled out to find the effec-
tive response for an elastic random composite.

There, the effective response is obtained by consid-
ering the entire space to be filled out by a compar-
ison medium with (homogeneous) constitutive tensor

L0, on which loading is performed through the body
force f(x) and for which the solution of the boundary
value problem (7), (1), with Σ(x) ≡ 0, is given by

{σ0(x), e0(x), u0(x)}, where e0(x) := sym[∇u0(x)].
In the presence of residual stresses obviouslyΣ(x) ̸=

0 and phases are described by the linearized constitu-

tive relation (1) introduced above; the procedure high-
lighted above may also apply, provided that the pre-
stress will be carried over the whole analysis. This in-

troduced multiple choices for the comparison medium,
giving rise to apparently different formulations, which

2 We note that C∗(x)e(x) = C(x)e(x), since e(x) =
sym[H(x)].

will be denoted by A1, A2 and A3. In spite of this pos-

sible non-uniqueness, in the sequel it is shown that all
three approaches turn out to be equivalent.

3.1 Formulation A1

The linearized constitutive relation (1) can be rewritten

as follows:

σ(x) = L0e(x) + τ (x) +Σ(x), (14)

where τ (x) is the stress polarization field,

τ (x) = [L(x)− L0] e(x). (15)

This choice entails having the whole residual stress ac-
tually present in the real material to prestress the cho-

sen comparison solid.
By substituting the linearized constitutive equation

(14) in the balance for linear momentum (7) we obtain

the following expression:

div [L0e(x)] + f(x) + div [τ (x) +Σ(x)] = 0, (16)

which solution for the superimposed deformation field
e(x) is given as follows:

e(x) = e0(x)−
∫
R3

Γ 0(x−x′) [τ (x′) +Σ(x′)] dx′, (17)

after adapting (Willis, 1977), where

[Γ 0(x− x′)]ijkl =
∂2 [G0(x− x′)]jk

∂xi∂x′
l

∣∣∣∣∣
(ij),(kl)

. (18)

In eqn. (18), (ij) and (kl) stand for symmetrization on
these indexes and G0(x) is the infinite–homogeneous–
body Green’s function for the comparison material given

as solution of

L0 ijkl

∂2 [G0(x)]jm
∂xi∂xl

+ δkmδ(x) = 0, (19)

where δkm is the Kronecker delta and δ(x) is the three-

dimensional Dirac delta function. Equation 17 exhibit
a fully nonlocal character, which is encountered in [13]
for non-prestressed random elastic composites and in

[7] thin films.
Using the definition (15) of the stress polarization

in eqn. (17), we obtain

e0(x) = [L(x)− L0]
−1

τ (x)

+

∫
R3

Γ 0(x− x′) [τ (x′) +Σ(x′)] dx′,
(20)

in which the stress polarization τ (x) is the stationary

value for the functional written below:
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H[τ (x)] =

∫
R3

{
τ (x) · [L(x)− L0]

−1
τ (x)

+τ (x) ·
∫
R3 Γ 0(x− x′)τ (x′)dx′

−2τ (x) ·
[
e0(x)−

∫
R3

Γ 0(x− x′)Σ(x′)dx′
]}

dx.

(21)

This formulation is used to characterize the effective
response of random composites as in [13]. Related issues

arising in systems with uncertain parameters and in
are treated in [11], [12]. Considering a sample space
S in which α represents the individual member, the

characteristic function χr(x;α) defines the presence in
the point x of phase r for the realization α,

χr(x;α) =

{
1, if x ∈ phase r;
0, if x /∈ phase r.

(22)

Since the ensemble average ⟨f(x)⟩ of a function f(x) is

defined as

⟨f(x)⟩ ≡
∫
S
f(x;α)p(α)dα, (23)

where p(α) represents the probability density of the re-
alization α within the sample space S, it follows that
the (one-point) probability to have phase r at x is

Pr(x) = ⟨χr(x)⟩ ≡
∫
S
χr(x;α)p(α)dα, (24)

while the (two–point) probability to have phase r at x

and simultaneously phase s at x′ is

Prs(x,x
′) = ⟨χr(x)χs(x

′)⟩

≡
∫
S
χr(x;α)χs(x

′;α)p(α)dα = Prs(x− x′).

(25)

Restricting attention to composite materials with
homogeneous phases (i.e. each phase r is characterized
by constant Lr with r = 1, .., n), the fourth-order elastic

tensor L(x, α) and its ensemble average are

L(x;α) =
n∑

r=1

Lrχr(x;α) ⇒ ⟨L(x)⟩ =
n∑

r=1

LrPr(x).

(26)

The polarization stress field τ is chosen to have the
following form:

τ (x;α) =

n∑
r=1

τ r(x)χr(x;α), (27)

which, as discussed in [13], is the most general one

for one-point and two-points probability correlations in
(21). This will provide an approximation for the stress
polarization, in which the functions τ r(x) will be de-

termined in the sequel through a variational argument
based on the probabilistic version of (21).

In order to evaluate the ensemble average of the

probabilistic version of (21), unlike for the case of non
prestressed composites, the ansatz must be considered
also for the following fields

– the pre-existing Cauchy stress t,
– the gradient of superimposed displacement H;

from which ansatz for the sixth-order tensor D follows.
Henceforth, we have

t(x;α) =

n∑
r=1

tr(x)χr(x;α),

H(x;α) =
n∑

r=1

Hr(x)χr(x;α),

(28)

from which the symmetric and skew symmetric part of

H(x;α) follow:

e(x;α) =

n∑
r=1

er(x)χr(x;α),

w(x;α) =
n∑

r=1

wr(x)χr(x;α),

(29)

and hence the stress Σ(x), eqn. (3), for the realization
α follows

Σ(x;α) =
n∑

r=1

Σr(x)χr(x;α). (30)

Restricting attention to statistically uniform com-

posites, the one-point Pr(x), eqn. (24), and two-point
Prs(x,x

′), eqn. (25), probabilities are not affected by
translations and making ergodic assumption we have

Pr(x) = Pr = cr, Prs(x,x
′) = Prs(x− x′), (31)

where cr is the volume concentration of the phase r.
Results on the autocorrelation function for polycrystals

may be found in [19].
Using eqns. (28), (29), (30), (31) in the ensemble

average of the functional (21) yields

⟨H[τ (x)]⟩ =
n∑

r=1

cr

∫
R3

τ r(x) ·
{
δL−1

r τ r(x)− 2e0(x)
}
dx

+

n∑
r,s=1

∫
R3

τ r(x) ·
{∫

R3

Γ 0(x− x′)

[τ s(x
′) + 2Σs(x

′)]Prs(x− x′)dx′}dx,
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(32)

which is stationary when (r = 1, .., n)

cre0(x) = crδL−1
r τ r(x)

+
n∑

s=1

∫
R3

Γ 0(x− x′) [τ s(x
′) +Σs(x

′)]Prs(x− x′)dx′,

(33)

where we set:

δLr = Lr − L0. (34)

Equations (28)-(29) may be substituted in the ex-
pression (17) in order to obtain e0, so that the ensemble
average of such field leads to the following expression

relating e0, the average strain ⟨e⟩ and the (unknown)
polarizations of each phase:

⟨e⟩(x) = e0(x)−
n∑

s=1

cs

∫
R3

Γ 0(x−x′) [τ s(x
′) +Σs(x

′)] dx′,

(35)

which is used together with the stationarity condition
(33) to get the following system of integral equations
for τ r(x) (r = 1, .., n) in terms of es(x) and Σs(x),

cr⟨e⟩(x) = crδL−1
r τ r(x)

+
n∑

s=1

∫
R3

Γ 0(x− x′) [τ s(x
′) +Σs(x

′)] [Prs(x− x′)− crcs] dx
′.

(36)

Once the system of integral equations (36) is solved

for the unknowns τ r(x) (r = 1, .., n), the ensemble av-
eraged polarization can be obtained

⟨τ ⟩(x) =
n∑

r=1

crτ r(x), (37)

and it can be used in the ensemble average of the con-
stitutive equation (14),

⟨σ⟩(x) = L0⟨e⟩(x) + ⟨τ ⟩(x) + ⟨Σ⟩(x). (38)

3.2 Formulation A2

The constitutive relation (1) may be recast in such a
way that a new choice of the polarization stress may

contain the entire residual stress, so that the compari-
son medium remains completely un-prestressed. In this
case such equation may be written in the usual form

σ(x) = L0e(x) + p(x), (39)

where the polarization field p(x) has been introduced

such that

p(x) = [L(x)− L0] e(x) +Σ(x) (40)

holds.
The fact that this polarization contains the prestress

changes the effective response in a nontrivial way, as
will be shown in the sequel. Furthermore, although the
choice just made is different from (14) made in the pre-

vious section for A1, the methodology carried through
this and the following section remains the same as the
one introduced before, actually based on [13].

Henceforth, by substituting the constitutive equa-
tion (39) in the balance of linear momentum (7) we
obtain the following expression:

div [L0e(x)] + f(x) + divp(x) = 0, (41)

which solution for the superimposed deformation field
e(x) is given by

e(x) = e0(x)−
∫
R3

Γ 0(x− x′)p(x′)dx′, (42)

again by adapting the argument given in the previous

section for equation (17).
Using the definition (40) of the stress polarization

in eqn. (42), we obtain

e0(x) = [L(x)− L0]
−1

[p(x)−Σ(x)]

+

∫
R3

Γ 0(x− x′)p(x′)dx′,
(43)

in which p(x) is the stationary value for the functional

H[p(x)] =

∫
R3

{
p(x) · [L(x)− L0]

−1
p(x)

+p(x) ·
∫
R3

Γ 0(x− x′)p(x′)dx′

−2p(x) ·
[
e0(x) + [L(x)− L0]

−1
Σ(x)

]}
dx.

(44)

Using eqns. (27), (31) and an ansatz for the polarization
p, eqn. (40), analogous to that used in formulation A1,
eqn. (28), i.e.

p(x;α) =

n∑
r=1

pr(x)χr(x;α), (45)

the ensemble average of the functional (44) may be ex-
pressed in the following form by

⟨H[p(x)]⟩ =
n∑

r=1

cr

∫
R3

pr(x) ·
{
δL−1

r [pr(x)− 2Σr(x)]− 2e0(x)
}
dx

+
n∑

r,s=1

∫
R3

pr(x) ·
{∫

R3

Γ 0(x− x′)ps(x
′)Prs(x− x′)dx′

}
dx;
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(46)

this turns out to be stationary whenever the following

relation holds (r = 1, .., n)

cre0(x) = crδL−1
r [pr(x)−Σr(x)]

+
n∑

s=1

∫
R3

Γ 0(x− x′)ps(x
′)Prs(x− x′)dx′.

(47)

By using eqns. (28), (29) in the ensemble averaging of
the superimposed deformation field (42) the following

relation between e0 and the average strain and the (un-
known) polarizations of each phase results:

⟨e⟩(x) = e0(x)−
n∑

s=1

cs

∫
R3

Γ 0(x− x′)ps(x
′)dx′. (48)

The latter equation together with the stationarity con-
dition (33) yield the following system of integral equa-

tions for pr(x) (r = 1, .., n) in terms of es(x), and
Σs(x),

cr⟨e⟩(x) = crδL−1
r [pr(x)−Σr(x)]

+
n∑

s=1

∫
R3

Γ 0(x− x′)ps(x
′) [Prs(x− x′)− crcs] dx

′.

(49)

Once the system of integral equations (36) is solved
for the unknowns pr(x) (r = 1, .., n), the ensemble av-

erage can be obtained

⟨p⟩(x) =
n∑

r=1

crpr(x), (50)

and it can be used in the ensemble average of the con-
stitutive equation (39),

⟨σ⟩(x) = L0⟨e⟩(x) + ⟨p⟩(x). (51)

3.3 Formulation A3

As a third possibility, the comparison solid may be cho-
sen to be in an arbitrarily prestressed state which then

may not necessarily coincide with the corresponding
field existing in the actual material. Although this may
seem a bit artificial, the final in averaged response of

the composite obtained in this way will show that this
approach is actually equivalent to the previous two.

In this case, the constitutive relation (1) may be
rewritten as

σ(x) = L0e(x) +Σ0(x) + q(x), (52)

where the stress polarization field q(x) and a compari-

son pre-existing stress Σ0 have been introduced,

q(x) = [L(x)− L0] e(x) +Σ(x)−Σ0(x). (53)

In this case the polarization contains the manifestation

of the difference of the prestresses.

Using the linearized constitutive equation (52) in

the equilibrium equation (7) yields

div [L0e(x)] + f(x) + divΣ0(x) + divq(x) = 0, (54)

which solution for the superimposed deformation field
e(x) is given by (Willis, 1977)

e(x) = e0(x)−
∫
R3

Γ 0(x−x′) [Σ0(x
′) + q(x′)] dx′. (55)

Using the definition (53) of the stress polarization
in eqn. (55), we obtain

e0(x) = [L(x)− L0]
−1

[q(x) +Σ0(x)−Σ(x)]

+

∫
R3

Γ 0(x− x′) [Σ0(x
′) + q(x′)] dx′,

(56)

in which the stress polarization q(x) is the station-
ary value for the functional

H[q(x)] =

∫
R3

{
q(x) · [L(x)− L0]

−1
q(x)

+q(x) ·
∫
R3

Γ 0(x− x′) [2Σ0(x
′) + q(x′)] dx′

−2q(x) ·
[
e0(x) + [L(x)− L0]

−1
[Σ(x)−Σ0(x)]

]}
dx.

(57)

Using eqns. (28), (31) and the following ansatz for

the polarization stress field,

q(x;α) =
n∑

r=1

qr(x)χr(x;α), (58)

the ensemble average of the functional (57) is expressed

by

⟨H[q(x)]⟩ =
n∑

r=1

cr

∫
R3

qr(x) ·
{
δL−1

r [qr(x) + 2Σ0(x)

−2Σr(x)] −2e0(x) + 2

∫
R3

Γ 0(x− x′)Σ0(x
′)dx′

}
dx

+
n∑

r,s=1

∫
R3

qr(x) ·
{∫

R3

Γ 0(x− x′)qs(x
′)Prs(x− x′)dx′

}
dx,

(59)
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which is stationary when (r = 1, .., n)

cre0(x) = cr
{
δL−1

r [qr(x) +Σ0(x)−Σr(x)]

+

∫
R3

Γ 0(x− x′)Σ0(x
′)dx′

}
+

n∑
s=1

∫
R3

Γ 0(x− x′)qs(x
′)Prs(x− x′)dx′.

(60)

Making use of eqns. (28), (29) in the ensemble av-

eraging of the superimposed deformation field (55), a
relationship among e0, the average strain field ⟨e⟩(x)
and the (unknown) polarizations qr(x), (r = 1, .., n), is

obtained:

⟨e⟩(x) = e0(x)−
n∑

s=1

cs

∫
R3

Γ 0(x− x′)qs(x
′)dx′

−
∫
R3

Γ 0(x− x′)Σ0(x
′)dx′.

(61)

This relation is used together with the stationarity
condition (60) to get the following system of integral

equations for qr(x) (r = 1, .., n) in terms of es(x) and
Σs(x),

cr⟨e⟩(x) = crδL−1
r [qr(x) +Σ0(x)−Σr(x)]

+
n∑

s=1

∫
R3

Γ 0(x− x′)qs(x
′) [Prs(x− x′)− crcs] dx

′.

(62)

Once the system of integral equations (62) is solved
for the unknowns qr(x) (r = 1, .., n), the ensemble av-

erage can be obtained

⟨q⟩(x) =
n∑

r=1

crqr(x), (63)

and it can be used in the ensemble average of the lin-
earized constitutive equation (52),

⟨σ⟩(x) = L0⟨e⟩(x) +Σ0(x) + ⟨q⟩(x). (64)

4 Incremental approach: formulation B

A comparison solid may be introduced for the compos-

ite by looking at the incremental formulation stated in
Sect. 2. In particular, relation (10) may be rewritten as
follows

◦
σ(x) = L0e(x) + ρ(x), (65)

where the stress polarization field ρ(x) has been intro-

duced.
Although C(x), eqn. (11), has minor symmetries

only, we recall that the comparison medium is here de-

fined by a constant tensor L0 exhibiting major symme-
tries.

Because both eqns. (10) and (65) hold, the polar-

ization appearing in the latter expression must satisfy
the following relationship

ρ(x) = [C(x)− L0] e(x). (66)

Using the incremental linearized constitutive relation

(65) in the balance of linear momentum (7) we obtain
the following equation:

div [L0e(x)] +
◦
f(x) + divρ(x) = 0. (67)

By adapting the argument given in Sect. 2 for (17) we
have that the solution of (67) for the superimposed de-

formation field e(x) may be expressed as follows:

e(x) = e0(x)−
∫
R3

Γ 0(x− x′)ρ(x′)dx′. (68)

Using the definition (66) of the stress polarization in
eqn. (68), we obtain

e0(x) = [C(x)− L0]
−1

ρ(x) +

∫
R3

Γ 0(x− x′)ρ(x′)dx′,

(69)

which, unlike equations (20), (43), (56), is character-

ized by the non-self adjoint operator [C(x)− L0]
−1

.
For this reason a Hashin and Shtrikman functional for
which (69) represents its stationary point cannot be

constructed. Nevertheless, a weak form of such inte-
gral equation may be considered by introducing a field
of ‘virtual’ polarizations ρ∗(x) and by defining a new

functional K[ρ(x);ρ∗(x)] in the following form:

K[ρ(x);ρ∗(x)] =

∫
R3

{
ρ∗(x) · [C(x)− L0]

−1
ρ(x)

+ρ∗(x) ·
∫
R3

Γ 0(x− x′)ρ(x′)dx′ − ρ∗(x) · e0(x)
}
dx;

(70)

whenever such functional achieves value equal to zero
for arbitrary choices of the test field ρ∗(x) equation (69)

is in fact recovered.
Restricting attention to composite materials with

homogeneous phases homogeneously prestressed3 (i.e.
each phase r is characterized by constant Cr with r =

3 The further hypothesis of constant eigenstress tr within
each phase r is crucial in solving the integral equation for the
polarization stress ρ through Fourier transforming.
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1, .., n), the fourth-order elastic tensor C(x, α) and its

ensemble average are

C(x;α) =
n∑

r=1

Crχr(x;α) ⇒ ⟨C(x)⟩ =
n∑

r=1

CrPr(x),

(71)

and using eqns. (28), (31) and the following ansatz for

the polarization stress and its test counterpart,

ρ(x;α) =
n∑

r=1

ρr(x)χr(x;α),

ρ∗(x;α) =

n∑
r=1

ρ∗
r(x)χr(x;α),

(72)

the ensemble average of the functional (70) is expressed

by the following relation:

⟨K[ρ(x);ρ∗(x)]⟩ =
n∑

r=1

cr

∫
R3

ρ∗
r(x) ·

{
δC−1

r ρr(x)− e0(x)
}
dx

+
n∑

r,s=1

∫
R3

ρ∗
r(x) ·

{∫
R3

Γ 0(x− x′)ρs(x
′)Prs(x− x′)dx′

}
dx,

(73)

which is zero for any arbitrary field ρ∗
r(x) (r = 1, .., n)

if and only if the following system of integral equations
holds:

cre0(x) = crδC−1
r ρr(x)

+
n∑

s=1

∫
R3

Γ 0(x− x′)ρs(x
′)Prs(x− x′)dx′.

(74)

Using eqns. (71) and (72) in (68) and taking the
ensemble average of the superimposed deformation field
we get:

⟨e⟩(x) = e0(x)−
n∑

s=1

cs

∫
R3

Γ 0(x− x′)ρs(x
′)dx′, (75)

which is used together with (74) to get the following
system of integral equations for ρr(x) (r = 1, .., n):

cr⟨e⟩(x) = crδC−1
r ρr(x)

+
n∑

s=1

∫
R3

Γ 0(x− x′)ρs(x
′) [Prs(x− x′)− crcs] dx

′.

(76)

Once the system of integral equations (76) is solved for
the unknowns ρr(x) (r = 1, .., n), the ensemble average

⟨ρ⟩(x) =
n∑

r=1

crρr(x) (77)

can be obtained and it can ultimately be used to com-

pute the following expression:

⟨ ◦σ⟩(x) = L0⟨e⟩(x) + ⟨ρ⟩(x), (78)

namely the average of the incremental constitutive re-
lation (65).

5 Effective non-local constitutive equations

From the previous sections we may notice that the dif-
ferent choices of polarizations τ (x), p(x), q(x) and ρ(x)
are related to one another. This is summarized in the

following list of equations:

p(x) = q(x) +Σ0(x) = τ (x) +Σ(x)

= ρ(x) + t(x) +w(x)t(x)− t(x)w(x).
(79)

In the sequel, attention will be focused on two-phase

composites in order to evaluate their effective response
according to the three total formulations (A1, A2, A3)
and the incremental approach (B) previously introduced.

5.1 Two-phase composites

Restricting now, for simplicity, attention to the case of
two-phase composites, we have that

Prs(x− x′)− crcs = cr (δrs − cs)h(x− x′) no sum,

(80)

where h(x − x′) is the two-point correlation function

[28], the integral equations systems (36), (49), (62), (76)
can be rewritten respectively as follows (r = 1, 2):

(A1) cr⟨e⟩(x) = crδL−1
r τ r(x) + cr

2∑
s=1

(δrs − cs)∫
R3

Υ 0(x− x′) [τ s(x
′) +Σs(x

′)] dx′,

(A2) cr⟨e⟩(x) = crδL−1
r [pr(x)−Σr(x)]

+cr

2∑
s=1

(δrs − cs)

∫
R3

Υ 0(x− x′)ps(x
′)dx′,

(A3) cr⟨e⟩(x) = crδL−1
r [qr(x) +Σ0(x)−Σr(x)]

+cr

2∑
s=1

(δrs − cs)

∫
R3

Υ 0(x− x′)qs(x
′)dx′,

(B) cr⟨e⟩(x) = crδC−1
r ρr(x)

+cr

2∑
s=1

(δrs − cs)

∫
R3

Υ 0(x− x′)ρs(x
′)dx′,
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(81)

after setting

Υ 0(x) = Γ 0(x)h(x). (82)

Fourier transforms of the previous equations are con-
sidered in the sequel. To this end, the following form

of the three-dimensional Fourier transform f̃(ξ) of any
function f(x) and its inverse are defined as follows:

f̃(ξ) =

∫
R3

f(x)eiξ·xdx,

f(x) =
1

8π3

∫
R3

f̃(ξ)e−iξ·xdξ,

(83)

where i is the imaginary unit, ξ is the position in the
transformed space and · represents the scalar product

between vectors.

Computing such transform for (81) leads to the fol-
lowing expressions (r = 1, 2):

(A1) cr⟨ẽ⟩(ξ) = crδL−1
r τ̃ r(ξ)

+crΥ̃ 0(ξ)
2∑

s=1

(δrs − cs)
[
τ̃ s(ξ) + Σ̃s(ξ)

]
,

(A2) cr⟨ẽ⟩(ξ) = crδL−1
r

[
p̃r(ξ)− Σ̃r(ξ)

]
+crΥ̃ 0(ξ)

2∑
s=1

(δrs − cs) p̃s(ξ),

(A3) cr⟨ẽ⟩(ξ) = crδL−1
r

[
q̃r(ξ) + Σ̃0(ξ)− Σ̃r(ξ)

]
+crΥ̃ 0(ξ)

2∑
s=1

(δrs − cs) q̃s(ξ),

(B) cr⟨ẽ⟩(ξ) = crδC−1
r ρ̃r(ξ)

+crΥ̃ 0(ξ)

2∑
s=1

(δrs − cs) ρ̃s(ξ),

(84)

where

Υ̃ 0(ξ) =
(
Γ̃ 0 ∗ h̃

)
(ξ) =

1

8π3

∫
R3

Γ̃ 0(ξ − ξ′)h̃(ξ′)dξ′.

(85)

Upon introducing the ‘stiffness-like’ operators

T̃rs(ξ) = δLrK̃(ξ)H̃rs(ξ),

T̃∗
rs(ξ) = δCrK̃∗(ξ)H̃∗

rs(ξ),

(86)

where

K̃(ξ) =
[
Υ̃

−1

0 (ξ) + c1δL2 + (1− c1)δL1

]−1

,

H̃rs(ξ) =
δrs
cs

Υ̃
−1

0 (ξ) + δL1 + δL2 − δLr,

K̃∗(ξ) =
[
Υ̃

−1

0 (ξ) + c1δC2 + (1− c1)δC1

]−1

,

H̃∗
rs(ξ) =

δrs
cs

Υ̃
−1

0 (ξ) + δC1 + δC2 − δCr,

(87)

and their inverse

T̃−1
rs (ξ) = crδL−1

r δrs + cr (δrs − cs) Υ̃ 0(ξ),(
T̃∗
rs

)−1

(ξ) = crδC−1
r δrs + cr (δrs − cs) Υ̃ 0(ξ),

(88)

the systems (81) take the form (r = 1, 2)

(A1)
2∑

s=1

T̃−1
rs (ξ)τ̃ s(ξ) = cr⟨ẽ⟩(ξ)

−crΥ̃ 0(ξ)

2∑
z=1

(δrz − cz) Σ̃z(ξ),

(A2)
2∑

s=1

T̃−1
rs (ξ)p̃s(ξ) = cr⟨ẽ⟩(ξ) + crδL−1

r Σ̃r(ξ),

(A3)

2∑
s=1

T̃−1
rs (ξ)q̃s(ξ) = cr⟨ẽ⟩(ξ)

+crδL−1
r

[
Σ̃r(ξ)− Σ̃0(ξ)

]
,

(B)
2∑

s=1

(
T̃∗
rs

)−1

(ξ)ρ̃s(ξ) = cr⟨ẽ⟩(ξ).

(89)

Solutions for such systems of equations may be eas-
ily provided as follows (r = 1, 2):

(A1) τ̃ r(ξ) =
2∑

s=1

csT̃rs(ξ)⟨ẽ⟩(ξ)

−
2∑

s,z=1

csT̃rs(ξ)Υ̃ 0(ξ) (δsz − cz) Σ̃z(ξ),

(A2) p̃r(ξ) =
2∑

s=1

csT̃rs(ξ)⟨ẽ⟩(ξ) +
2∑

s=1

csT̃rs(ξ)δL−1
s Σ̃s(ξ),

(A3) q̃r(ξ) =

2∑
s=1

csT̃rs(ξ)⟨ẽ⟩(ξ)

+
2∑

s=1

csT̃rs(ξ)δL−1
s

[
Σ̃s(ξ)− Σ̃0(ξ)

]
,

(B) ρ̃r(ξ) =

2∑
s=1

csT̃∗
rs(ξ)⟨ẽ⟩(ξ).
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(90)

Finally, from the Fourier transform of the stress po-

larization fields (90) we are able to obtain their ensem-
ble averages through the Fourier Transform of eqns.
(37), (50), (63), (77), i.e.

(A1) ⟨τ̃ ⟩(ξ) =
2∑

r,s=1

crcsT̃rs(ξ)⟨ẽ⟩(ξ)

−
2∑

r,s,z=1

crcsT̃rs(ξ)Υ̃ 0(ξ) (δsz − cz) Σ̃z(ξ),

(A2) ⟨p̃⟩(ξ) =
2∑

r,s=1

crcsT̃rs(ξ)⟨ẽ⟩(ξ)

+

2∑
r,s=1

crcsT̃rs(ξ)δL−1
s Σ̃s(ξ),

(A3) ⟨q̃⟩(ξ) =
2∑

r,s=1

crcsT̃rs(ξ)⟨ẽ⟩(ξ)

+

2∑
r,s=1

crcsT̃rs(ξ)δL−1
s

[
Σ̃s(ξ)− Σ̃0(ξ)

]
,

(B) ⟨ρ̃⟩(ξ) =
2∑

r,s=1

crcsT̃∗
rs(ξ)⟨ẽ⟩(ξ).

(91)

Upon evaluating the ensemble averages of the ‘stiffness-
like’ operators

⟨T̃⟩(ξ) =
2∑

r,s=1

crcsT̃rs(ξ),

⟨T̃∗⟩(ξ) =
2∑

r,s=1

crcsT̃∗
rs(ξ),

(92)

evaluating the dimensionless tensor:

S̃(ξ) = c1(1− c1) (L1 − L2) K̃(ξ), (93)

and the stress-like variables

Σ̃1(ξ) = L1L−1
0 Σ1(ξ), Σ̃2(ξ) = L2L−1

0 Σ2(ξ),

(94)

eqns. (91) can be rewritten as follows:

(A1) ⟨τ̃ ⟩(ξ) = ⟨T̃⟩(ξ)⟨ẽ⟩(ξ)− S̃(ξ)
[
Σ̃1(ξ)− Σ̃2(ξ)

]
,

(A2) ⟨p̃⟩(ξ) = ⟨T̃⟩(ξ)⟨ẽ⟩(ξ) + ⟨Σ̃⟩(ξ)

−S̃(ξ)
[
Σ̃1(ξ)− Σ̃2(ξ)

]
,

(A3) ⟨q̃⟩(ξ) = ⟨T̃⟩(ξ)⟨ẽ⟩(ξ) + ⟨Σ̃⟩(ξ)− Σ̃0(ξ)

−S̃(ξ)
[
Σ̃1(ξ)− Σ̃2(ξ)

]
,

(B) ⟨ρ̃⟩(ξ) = ⟨T̃∗⟩(ξ)⟨ẽ⟩(ξ).

(95)

After simple manipulations, we conclude that the ef-

fective constitutive models arising from the three total
formulations, eqns. (38), (51), (64), are actually equiv-
alent,

(A1) ≡ (A2) ≡ (A3).

This important point means that the result is not af-

fected by the choices of comparison solids considered
before; in other words, the following ways to proceed
are equivalent:

– the residual stress in the real material is left to pre-
stress the comparison solid, so the polarization does
not carry over any residual stress field;

– the comparison medium is chosen to be completely
un-prestressed, so that the corresponding polariza-
tion carries over the whole residual stress;

– the comparison solid undergoes an arbitrary pre-
stress, which may not necessarily coincide with the
residual stress existing in the heterogeneous medium,

so that the corresponding polarization carries over
the difference between the real and the arbitrary
prestress.

In the sequel we then shall refer to these three for-
mulations with the label A.

Inverse Fourier transforms of (95), and the convo-
lution theorem, are employed in order to evaluate the
spatial distributions of the stress polarizations associ-

ated with the remaining two formulations A and B, i.e.:

(A) ⟨τ ⟩(x) =
∫
R3

{⟨T⟩(x− x′)⟨e⟩(x′)

−S(x− x′) [Σ1(x
′)−Σ2(x

′)]} dx′,

(B) ⟨ρ⟩(x) =
∫
R3

⟨T∗⟩(x− x′)⟨e⟩(x′)dx′.

(96)

Approximating ⟨e⟩(x′) and Σk(x
′) (k = 1, 2) by

the first three-terms of their Taylor expansions in the
neighbourhood of the position x may be considered as

follows:

⟨e⟩(x′) ≃ ⟨e⟩(x) + (x′ − x)∇⟨e⟩(x)

+
1

2
(x′ − x)(x′ − x)∇∇⟨e⟩(x),

Σk(x
′) ≃ Σk(x) + (x′ − x)∇Σk(x)

+
1

2
(x′ − x)(x′ − x)∇∇Σk(x),

(97)
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so that polarization fields (96) admit the following forms:

(A) ⟨τ ⟩(x) ≃
[∫

R3

⟨T⟩(x− x′)dx′
]
⟨e⟩(x)

+

[∫
R3

⟨T⟩(x− x′)(x′ − x)dx′
]
∇⟨e⟩(x)

+
1

2

[∫
R3

⟨T⟩(x− x′)(x′ − x)(x′ − x)dx′
]
∇∇⟨e⟩(x)

−
[∫

R3

S(x− x′)dx′
]
[Σ1(x)−Σ2(x)]

−
[∫

R3

S(x− x′)(x′ − x)dx′
]
∇ [Σ1(x)−Σ2(x)]

−1

2

[∫
R3

S(x− x′)(x′ − x)(x′ − x)dx′
]

∇∇ [Σ1(x)−Σ2(x)] ,

(B) ⟨ρ⟩(x) ≃
[∫

R3

⟨T∗⟩(x− x′)dx′
]
⟨e⟩(x)

+

[∫
R3

⟨T∗⟩(x− x′)(x′ − x)dx′
]
∇⟨e⟩(x)

+
1

2

[∫
R3

⟨T∗⟩(x− x′)(x′ − x)(x′ − x)dx′
]
∇∇⟨e⟩(x).

(98)

As observed in [13], convolution integrals in the whole
space and their first moments can be simplified by mak-

ing use of the following identities:∫
R3

f(x− x′)dx′ = f̃(ξ = 0),∫
R3

f(x− x′)(x′ − x)dx′ = i∇ξ f̃(ξ = 0),∫
R3

f(x− x′)(x′ − x)(x′ − x)dx′ = −∇ξ∇ξ f̃(ξ = 0).

(99)

5.2 Local response to homogeneous prestress and
superimposed strain fields

If the prestress and superimposed strain are constant
fields, the composite obviously responds with local terms

only, namely:

(A) ⟨σ⟩ =
[
L0 + ⟨T̃⟩(0)

]
⟨e⟩+ ⟨Σ⟩ − S̃(0) (Σ1 −Σ2) ,

(B) ⟨ ◦σ⟩ =
[
L0 + ⟨T̃∗⟩(0)

]
⟨e⟩.

(100)

This situation is of great interest since it allows for

highlighting the local part of the overall response of the
composite and, as in [13], may be utilized as a bench-
mark against approximate expressions entailing second

gradient terms for the effective constitutive equation
of the composite when spatially nonconstant fields are
considered.

5.3 Isotropic phase distribution

Isotropic distributions of the phases, possible anistropic

in terms of constitutive behaviour, are considered in the
sequel. Under this restriction, it is known from [13] that
the two-point correlation function h(x) satisfies

h(x) = h(|x|) ⇒ h̃(ξ) = h̃(|ξ|). (101)

Through this property, Drugan and Willis in [13]

have shown that

Υ̃ 0(0) =
1

4π

∫
|ξ|=1

Γ̃ 0(ξ)dS,

∂Υ̃ 0

∂ξm
(0) = 0,

∂2Υ̃ 0

∂ξm∂ξn
(0) =

1

4π

∫
|ξ|=1

(3ξmξn − δmn) Γ̃ 0(ξ)dS

∫ ∞

0

h(r)rdr,

(102)

and therefore,

⟨T̃⟩,m(0) = ⟨T̃∗⟩,m(0) = S̃,m(0) = 0,

⟨T̃⟩,mn(0) = −c1(1− c1) (δL1 − δL2)

K̃(0)Υ̃
−1

0 (0)Υ̃ 0,mn(0)Υ̃
−1

0 (0)K̃(0) (δL1 − δL2) ,

⟨T̃∗⟩,mn(0) = −c1(1− c1) (δC1 − δC2)

K̃∗(0)Υ̃
−1

0 (0)Υ̃ 0,mn(0)Υ̃
−1

0 (0)K̃∗(0) (δC1 − δC2) ,

S̃,mn(0) = −⟨T̃⟩,mn(0) (δL1 − δL2)
−1

.

(103)

Because the quantities ⟨T̃⟩,m(0), ⟨T̃∗⟩,m(0) and S̃,m(0)
vanish, the approximation for the polarization stress

(98) simplifies as
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(A) ⟨τ ⟩(x) ≃ ⟨T̃⟩(0)⟨e⟩(x)− 1

2
∇ξ∇ξ⟨T̃⟩(0)∇∇⟨e⟩(x)

−S̃(0) [Σ1(x)−Σ2(x)]

+
1

2
∇ξ∇ξS̃(0)∇∇ [Σ1(x)−Σ2(x)] ,

(B) ⟨ρ⟩(x) ≃ ⟨T̃∗⟩(0)⟨e⟩(x)− 1

2
∇ξ∇ξ⟨T̃∗⟩(0)∇∇⟨e⟩(x),

(104)

so that the effective responses (38) and (78) turn
out to be approximated by the following expressions:

(A) ⟨σ⟩(x) ≃
[
L0 + ⟨T̃⟩(0)

]
⟨e⟩(x)

−1

2
∇ξ∇ξ⟨T̃⟩(0)∇∇⟨e⟩(x)

+⟨Σ⟩(x)− S̃(0) [Σ1(x)−Σ2(x)]

+
1

2
∇ξ∇ξS̃(0)∇∇ [Σ1(x)−Σ2(x)] ,

(B) ⟨ ◦σ⟩(x) ≃
[
L0 + ⟨T̃∗⟩(0)

]
⟨e⟩(x)

−1

2
∇ξ∇ξ⟨T̃∗⟩(0)∇∇⟨e⟩(x).

(105)

The comparison medium is chosen as usual to be
coincident with the matrix in which the random inclu-
sions are contained, namely

L0 = L2. (106)

It follows that the dimensionless tensor S̃(0) appearing
in eqn. (93) can be related to ⟨T̃⟩(0) in a simple way

S̃(0) = c1Ĩ− ⟨T̃⟩(0) (L1 − L2)
−1

, (107)

so that its second derivative simplifies as follows

S̃,mn(0) = −⟨T̃⟩,mn(0) (L1 − L2)
−1

. (108)

Taking into account all the simplified expressions

above, the non-local constitutive equations (105) may

be rewritten in the forms:

(A) ⟨σ⟩(x) ≃
[
L0 + ⟨T̃⟩(0)

]
⟨e⟩(x) +Σ2(x)

+⟨T̃⟩(0) (L1 − L2)
−1

[Σ1(x)−Σ2(x)]

−1

2
∇ξ∇ξ⟨T̃⟩(0) {∇∇⟨e⟩(x)

+ (L1 − L2)
−1 ∇∇ [Σ1(x)−Σ2(x)]

}
,

(B) ⟨ ◦σ⟩(x) ≃
[
L0 + ⟨T̃∗⟩(0)

]
⟨e⟩(x)

−1

2
∇ξ∇ξ⟨T̃∗⟩(0)∇∇⟨e⟩(x).

(109)

Equations (109) yield both the total and the incre-
mental forms of the non-local constitutive relations for

a two-phase composite with isotropic phase distribution
in the presence of a pre-existing stress state.

In analogy with [13], from such relations we note

that while there is the dependence on the average of the
superimposed strain ⟨e⟩(x) and its second derivative
for both the total and the incremental approach, the
dependence on the prestress in the total formulation is

given in terms of the difference Σ1(x)−Σ2(x) and its
second derivative.

5.4 Isotropic phases

In the sequel we particularize the obtained results to
composites containing isotropic phases, i.e.

L1 ijkl =

(
κ1 −

2

3
µ1

)
δijδkl + µ1 (δikδjl + δilδjk) ,

L2 ijkl =

(
κ2 −

2

3
µ2

)
δijδkl + µ2 (δikδjl + δilδjk) .

(110)
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In this case, the components of ⟨T̃⟩(0) and its second

gradient are the following (see [13]):

⟨T̃⟩ijkl(0) =
c1(κ1 − κ2)(3κ2 + 4µ2)

3κ1 + 4µ2 − 3c1(κ1 − κ2)
δijδkl

+
5c1µ2(µ1 − µ2)(3κ2 + 4µ2) (δikδjl + δilδjk)

5µ2(3κ2 + 4µ2) + 6(1− c)(µ1 − µ2)(κ2 + 2µ2)
,

⟨T̃⟩ijkl,mn(0) = −c1(1− c1)H

{B1δijδklδmn +B2 (δikδjlδmn + δilδjkδmn)

+B3 (δijδkmδln + δijδknδlm + δimδjnδkl + δinδjmδkl)

+B4 (δikδjmδln + δikδjnδlm + δilδjmδkn + δilδjnδkm

+ δimδjkδln + δimδjlδkn + δinδjkδlm + δinδjlδkm)} ,
(111)

where

B1 =
4

3
(3A1 + 2A2 + 2A3) (3κB − 2µB)µB + 4A1µ

2
B,

B2 = 4A2µ
2
B , B3 = −3

4
B1, B4 = −3

4
B2,

A1 =
4

105

3κ0 + µ0

µ0(3κ0 + 4µ0)
, A2 = − 1

35

3κ0 + 8µ0

µ0(3κ0 + 4µ0)
,

A3 = −3

4
A1, A4 = −3

4
A2,

κB =
(κ1 − κ2)(3κ2 + 4µ2)

3κ2 + 4µ2 + 3(1− c1)(κ1 − κ2)

µB =
5µ2(µ1 − µ2)(3κ2 + 4µ2)

5µ2(3κ2 + 4µ2) + 6(1− c1)(µ1 − µ2)(κ2 + 2µ2)
,

(112)

and

H =

∫ ∞

0

h(r)dr, (113)

so that in the case of nonoverlapping identical spherical

inclusions

H = a2
(2− c1)(1− c1)

5(1 + 2c1)
. (114)

Finally, in the case of isotropic material, the sixth-
order tensor D can be expressed as follows (see [17]):

D [t, e] = β(1)(tre)(trt)I+ β(2)(trt)e

+β(3) {(tre)t+ [tr(et)]I}+ β(4) [et+ te] ,
(115)

where β(j) (j = 1, ..., 4) represent material dimension-

less constants.

6 Quantitative estimates of minimum RVE size

In analogy with [13], this section is devoted to obtain

quantitative estimates of the minimum size ℓ of the
RVE (Representative Volume Element) required to ap-
proximate the second order nonlocal response of the

prestressed solid with its local part (100) within a max-
imum fixed small discrepancy. In other words, a max-
imum fixed error must not be exceeded whenever the

local effective response is considered to approximate the
overall constitutive behavior of the random composite
in comparison to the full second gradient non-local de-

scription (109).

In order to achieve such minimum size we compare
the non-local response originated by superimposition
of a sinusoidal strain field upon a prestress field to the

local part of the overall constitutive equation for the
random composite,

(A) ⟨σ⟩(x) =
[
L0 + ⟨T̃⟩(0)

]
⟨e⟩(x) +Σ2(x)

+⟨T̃⟩(0) (L1 − L2)
−1

[Σ1(x)−Σ2(x)] ,

(B) ⟨ ◦σ⟩(x) =
[
L0 + ⟨T̃∗⟩(0)

]
⟨e⟩(x),

(116)

where for the total approach the local part of the rela-
tion has been recast in a slightly more revealing way.

In particular, we examine the following cases:

– deformable (and void) inclusions

e1(x) = e2(x) = ⟨e⟩(x) = e sin

(
2πx1

ℓ

)
, (117)

– rigid inclusions

e1(x) = 0, e2(x) =
⟨e⟩(x)
1− c1

= e sin

(
2πx1

ℓ

)
,

(118)

where e represents the amplitude tensor of the super-
imposed deformation and ℓ is its wavelength.

For the sake of simplicity in the numerical examples
we assume null pre-existing stress t within the inclu-
sions,

t1(x) = 0 ⇒ Σ1(x) = 0, (119)

and we neglect the presence of superimposed infinitesi-

mal rotations,

w1(x) = w2(x) = 0 ⇒ H1(x) = e1(x), H2(x) = e2(x).

(120)
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An example is explored by considering aluminum

as the matrix material; in particular we refer to the
following Poisson’s ratio for the matrix

ν2 =
3κ2 − 2µ2

2(3κ2 + µ2)
= 0.33, (121)

and we use the values for the material constants β
(i)
2

reported in [17] and obtained in [18],

β
(1)
2 = 0.89, β

(2)
2 = 0.96,

β
(3)
2 = −2.63, β

(4)
2 = −4.54.

(122)

As far as the inclusion phase is concerned, we consider
three different cases:

– void inclusions (µ1 = κ1 = 0);

– rigid inclusions (µ1 = κ1 → ∞);
– alumina inclusions (µ1 = 6.65µ2, ν1 = 0.2).

In the next sections sinusoidal strain fields superim-

posed either upon a constant prestress for both cases A
and B or a sinusoidal distribution for the total formu-
lation A alone are considered.

6.1 Constant prestress

Considering a sinusoidal strain superimposed upon a
constant prestress field,

t2(x) = t, (123)

where t is the ‘tensorial’ amplitude of the prestress, the

non-local decription (109) leads to

(A)⟨σ⟩(x) =
{[

L2 + ⟨T̃⟩(0) + 2π2

ℓ2
⟨T̃⟩,11(0)

]
[
e− [L1 − L2]

−1
Ω
]
+ L1 [L1 − L2]

−1
Ω
}
sin

(
2πx1

ℓ

)
+
[
L1 − L2 − ⟨T̃⟩(0)

]
[L1 − L2]

−1
t,

(B)⟨ ◦σ⟩(x) =
[
L0 + ⟨T̃∗⟩(0) + 2π2

ℓ2
⟨T̃∗⟩,11(0)

]
e sin

(
2πx1

ℓ

)
,

(124)

valid for non-rigid inclusions, where

Ω = (1 + β
(4)
2 )

(
et+ te

)
− tr (e) t+ β

(1)
2 (tre)(trt)I

+β
(2)
2 (trt)e+ β

(3)
2

{
(tre)t+ [tr(et)]I

}
,

(125)

while in the particular case of rigid inclusions (L1 →
∞), the non-local description (109) simplifies as follows:

(A) ⟨σ⟩(x) = t+ {(1− c1)[
L2 + ⟨T̃⟩(0) + 2π2

ℓ2
⟨T̃⟩,11(0)

]
e+Ω

}
sin

(
2πx1

ℓ

)
,

(B) ⟨ ◦σ⟩(x) = (1− c1)[
L0 + ⟨T̃∗⟩(0) + 2π2

ℓ2
⟨T̃∗⟩,11(0)

]
e sin

(
2πx1

ℓ

)
.

(126)

To evaluate the error in the local effective response
with respect to the non-local response, we consider the

related variations in the only component of stress σij

(or
◦
σij) conjugate to the only non-zero superimposed

strain eij . Since in eqn. (124) we have the sum of a con-
stant value and a sinusoidal function (which amplitude

depends both on local and non-local terms), in order to
estimate the minimum RVE size, we impose that the
ratio between such amplitudes (for the reference stress

component σij or
◦
σij) does not exceed a fixed error-

threshold α, i.e.

∣∣∣∣Non-local termij

Local termij

∣∣∣∣ ≤ α. (127)

Criteria (127) yields the estimate of the minimum RVE
size ℓ; this is found to behave like the square root of a

function of c1 and of the amplitude t.

In Figs. 1-2 the influence of uniform normal pre-

stress on the minimum RVE size ℓN (superimposed nor-
mal average strain, e11) and ℓS (superimposed shear
average strain, e12), respectively, is shown for the three

cases considered (voids, rigid inclusions, elastic inclu-
sions formed by alumina).

Fig. 1 reveals that either for the total (A) and the in-
cremental (B) approaches normal constant prestress t11
acting on composites exhibiting randomly distributed

spherical rigid inclusions causes high deviation of the
RVE size with respect to the un-prestressed case. The
total response is also affected by the presence of elastic

inclusions (alumina in this case), whereas if voids are
present the discrepancy between the prestressed and
un-prestressed case are minimal. On the other hand,

the incremental response is sensitive to all types of in-
clusions. The presence of compressive prestress when
either elastic or rigid inclusions are present tends to

significantly lower the RVE size, whereas tensile pre-
stresses has the opposite effect. This behaviour is re-
versed if voids are present, although this is significant

only for the incremental response.
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Fig. 2 confirms that, similarly to unprestressed ma-

terials, the minimun RVE size defined by the superim-
position of sinusoidal shear average strain is less restric-
tive than the corresponding condition arising with the

superimposition of sinusoidal normal strain, ℓS < ℓN .

Finally, results (not reported here for conciseness)

about pure shear prestresses t12 turn out not to influ-
ence the response given by either A and B formulations,
ultimately leading to the conclusion that constant nor-

mal prestresses t11 are the only responsible for signifi-
cant deviation of the RVE size from the values achieved
for the un-prestressed composite.

6.2 Sinusoidal prestress

In this section formulation A is employed to study the

influence on the RVE size of spatially varying residual
stresses. To this purpose, sinusoidal strains superim-
posed on sinusoidal prestresses are considered, where

the latter may be written in the following form:

t2(x) = t sin

(
2πx1

L

)
, (128)

where the subscript 2 indicates that this is the prestress
of the matrix, L is the wavelength characterizing the
prestress and t is the ‘tensorial’ amplitude. By virtue of

trigonometric identities, the non-local description (109)
leads to the following expression of the total stress

⟨σ⟩(x) =
[
L2 + ⟨T̃⟩(0) + 2π2

ℓ2
⟨T̃⟩,11(0)

]
e sin

(
2πx1

ℓ

)

+

[
L1 − L2 − ⟨T̃⟩(0)− 2π2

L2
⟨T̃⟩,11(0)

]
[L1 − L2]

−1
t sin

(
2πx1

L

)

+
1

2

[
L1 − L2 − ⟨T̃⟩(0)− 2π2

(
ℓ− L

ℓL

)2

⟨T̃⟩,11(0)

]

[L1 − L2]
−1

Ω cos

[
2πx1

(
1

L
− 1

ℓ

)]

−1

2

[
L1 − L2 − ⟨T̃⟩(0)− 2π2

(
ℓ+ L

ℓL

)2

⟨T̃⟩,11(0)

]

[L1 − L2]
−1

Ω cos

[
2πx1

(
1

L
+

1

ℓ

)]
,

(129)

valid for non-rigid inclusions, where Ω is defined by

eqn. (125), and we distinguish four different periodic

functions with their respective wavelengths and their

local and non-local amplitude.

In the case of rigid inclusion (L1 → ∞), the non-
local description (109) takes the following simplified

form:

(A) ⟨σ⟩(x) = (1− c1)

[
L2 + ⟨T̃⟩(0) + 2π2

ℓ2
⟨T̃⟩,11(0)

]
e sin

(
2πx1

ℓ

)
+ t sin

(
2πx1

L

)
+
1

2
Ω

{
cos

[
2πx1

(
1

L
− 1

ℓ

)]
− cos

[
2πx1

(
1

L
+

1

ℓ

)]}
.

(130)

It is worth noting that in the rigid inclusion case the
amplitude of the stress depends only on the magnitude

of the prestress and not on its wavelength L.

In order to evaluate the error encountered by as-
suming the local effective constitutive equation instead

of the full second gradient non-local response, we com-
pare the corresponding descriptions for the component
of stress σij conjugate to the only non-null superim-

posed strain eij . The minimum RVE size below which
the non local description is required is obtained as-
suming a ‘pointwise’ criteria for the maximum value

achieved by the reference stress component σij , namely

4∑
c=1

∣∣∣Non-local term(c)
ij

∣∣∣
4∑

c=1

∣∣∣Local term(c)
ij

∣∣∣ ≤ α. (131)

This enforces that the ratio between the extra-amplitude
given by the non-local response and the amplitude given
by the local one is bounded by a fixed error α.

The case of matrix with voids is examined at first
in Figs. 3 and 4. The former deals with superimposed
sinusoidal longitudinal strains, characterized by wave-

length ℓN , on sinusoidal normal prestresses of wave-
length LN . In this case, no matter what the amplitude
of the prestress is, the shorter LN the higher the am-

plification on ℓN ; more specifically, if the ratio between
the prestress wave length and the diameter of the voids
LN/a is 0.5 the RVE size measured through the ratio

ℓN/a tends to be very high even for very dilute compos-
ites and, hence, the resulting behavior is fully nonlocal.
This is definitely the case for small and moderate pre-

stress amplitudes (Fig. 3 left and center). In the first
of such two cases relatively less oscillating normal pre-
stresses show practically a behavior analogous to the

un-prestressed case (labelled with D-W in the figures
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since the results display the approach of Drugan and

Willis in [13]). When higher amplitudes of the prestress
are considered (Fig. 3 right), then even oscillations of
the prestress relatively moderate, such as LN/a = 2

may cause a rapid increase of the RVE size for rela-
tively diluted composites. From the last two figures it
is displayed how a drastic reduction of the RVE may

be obtained whenever longitudinal strains are superim-
posed on relatively slowly oscillating prestresses (such
as LN/a = 4) with moderate to high amplitudes.

The analogous of the previous case applied to shear
strains superimposed on oscillating shear prestress, Fig.
4. In this situation, unlike for the case of longitudinal

strains superimposed on normal prestresses, rapidly os-
cillating residual shear stresses with small amplitudes
do not cause the blow-up of the RVE size (Fig. 4 left).

As the amplitude of the prestress increases, this blow-
up phenomenon arises even in this case. If the shear pre-
stress has slower oscillations and higher amplitude, the

deviation from the un-prestressed case becomes more
and more evident, resulting on a drastic reduction on
the RVE size required to represent the overall response

of the composite with the local term alone for the given
threshold α.

Figs. 5 and 6 display similar analysis for elastic
(alumina) inclusion case, where sinusoidal longitudinal
strains and shears are superimposed on sinusoidal nor-

mal prestresses respectively. Trends already seen in Fig.
4 for the case of voids are similarly observed for elastic
inclusions, even when longitudinal strains act together

with normal prestresses. Higher amplitudes and slower
spatial oscillation of the prestress significantly reduce
the RVE size, whereas the danger of relatively small

amplitudes with very rapid oscillations may result ei-
ther in a magnification of the RVE size with respect to
the un-prestressed case or on its blow-up. The cases of

e11 superimposed to t12 and e12 superimposed to t11 are
not displayed in this paper because they give very sim-
ilar estimates to the RVE size as in the un-prestressed

case. Whenever rigid inclusions within an elastic matrix
form the random composite the results of superimpos-
ing longitudinal strains on normal or shears and shear

strains on shear prestresses are displayed in Figs. 7 and
8 respectively. Since in this case no dependence on the
prestress wavelength L appears, eqn. (130), no blow-up

is ever observed. Furthermore, the RVE size is less than
that estimated in [13] without prestress no matter what
the concentration of rigid inclusions is. Hence, in such a

case, the RVE size estimated without residual stresses
is an upper bound on the actual RVE size effectively
required to approximate the overall response with the

local term alone.
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Fig. 1 Dimensionless minimum size of the RVE ℓN/2a as a function of the concentration of void (green), rigid (red) and
alumina (blue, ν1 = 0.2 and µ1 = 6.65µ2) inclusions c1 such that an error of 5%, eqn. (127), is not exceeded with the local
effective response given by approaches A and B, eqns. (124), (126). Amplitude deformation e11 is considered superimposed to
an amplitude prestress state with only non-null component t11 = 5 · {−10−2; 0; 10−2}µ2 in a matrix with ν2 = 0.33.
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effective response given by approach A and B, eqns. (124), (126). Amplitude deformation e12 is considered superimposed to
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wavelengths of the prestress LN = {0.5; 1; 2; 4}2a such that an error of 5%, eqn. (131), is not exceeded with the local effective
response given by approach A, eqn. (129). Amplitude deformation e11 = 10−3 is considered superimposed to an amplitude
prestress state with only non-null component t11 = 5 · {10−4; 10−3; 10−2}µ2 in a matrix with ν2 = 0.33. Corresponding null
prestress (D-W) case (Drugan and Willis, 1996) is reported dashed.
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Fig. 4 Dimensionless minimum size of the RVE ℓS/2a as a function of the concentration of the void inclusions c1 for different
wavelengths of the prestress LS = {0.5; 1; 2; 4}2a such that an error of 5%, eqn. (131), is not exceeded with the local effective
response given by approach A, eqn. (129). Amplitude deformation e12 = 10−3 is considered superimposed to an amplitude
prestress state with only non-null component t12 = 5 · {10−4; 10−3; 10−2}µ2 in a matrix with ν2 = 0.33. Corresponding null
prestress (D-W) case (Drugan and Willis, 1996) is reported dashed.
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Fig. 5 Dimensionless minimum size of the RVE ℓN/2a as a function of the concentration of the alumina (ν1 = 0.2, µ1 = 6.65µ2)
inclusions c1 for different wavelengths of the prestress LN = {0.3; 0.5; 1; 2}2a such that an error of 5%, eqn. (131), is not
exceeded with the local effective response given by approach A, eqn. (129). Amplitude deformation e11 = 10−3 is considered
superimposed to an amplitude prestress state with only non-null component t11 = 5 · {10−4; 10−3; 10−2}µ2 in a aluminum
matrix with ν2 = 0.33. Corresponding null prestress (D-W) case (Drugan and Willis, 1996) is reported dashed.
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Fig. 6 Dimensionless minimum size of the RVE ℓS/2a as a function of the concentration of the alumina (ν1 = 0.2, µ1 = 6.65µ2)
inclusions c1 for different wavelengths of the prestress LS = {0.3; 0.5; 1; 2}2a such that an error of 5%, eqn. (131), is not
exceeded with the local effective response given by approach A, eqn. (129). Amplitude deformation e12 = 10−3 is considered
superimposed to an amplitude prestress state with only non-null component t12 = 5 · {10−4; 10−3; 10−2}µ2 in a aluminum
matrix with ν2 = 0.33. Corresponding null prestress (D-W) case (Drugan and Willis, 1996) is reported dashed.
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Fig. 7 Dimensionless minimum size of the RVE ℓN/2a as a function of the concentration of the rigid inclusions c1 for any
value of wavelength of the prestress such that an error of 5%, eqn. (131), is not exceeded with the local effective response given
by approach A, eqn. (129). Amplitude deformation e11 = 10−3 is considered superimposed to an amplitude prestress state
with only non-null component t11 = 5 · {10−4; 10−3; 10−2}µ2 in a matrix with ν2 = 0.33. Corresponding null prestress (D-W)
case (Drugan and Willis, 1996) is reported dashed.
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Fig. 8 Dimensionless minimum size of the RVE ℓS/2a as a function of the concentration of the rigid inclusions c1 for any
value of wavelength of the prestress such that an error of 5%, eqn. (131), is not exceeded with the local effective response given
by approach A, eqn. (129). Amplitude deformation e12 = 10−3 is considered superimposed to an amplitude prestress state
with only non-null component t12 = 5 · {10−4; 10−3; 10−2}µ2 in a matrix with ν2 = 0.33. Corresponding null prestress (D-W)
case (Drugan and Willis, 1996) is reported dashed.


