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Bearing Pressures and Cracks

Bearing Pressures Through a Slightly Waved Surface or Through a Nearly Flat Part of a
Cylinder, and Related Problems of Cracks

By H. M. WESTERGAARD,* CAMBRIDGE, MASS.

The task is undertaken of determining the bearing
pressures, and the stresses and deformations created by
them, in some cases that differ from those considered
by Hertz?in his classical study of contact. Thus two solids
are examined which, before loading, are in contact along
a row of evenly spaced lines in a horizontal plane, as indi-
cated in Fig. 1(a). Between these lines the surfaces have
a separation defined by a nearly flat cosine wave. A uni-
form pressure on top of the upper solid creates contact
over an area consisting of a row of strips, reduces the sepa-
ration of the solids between the strips, as suggested in
Fig. 1(b), and creates contact pressures distributed as
indicated in Fig. 1(c), with vertical rises in the diagram
of pressure at the edges of the strips. At a greater load
the width of the strip becomes equal to the wave length,

NoraTioN

2,9 = rectangular coordinates, y vertical

r, 0 = corresponding polar coordinates

z = z + iy = re = complex variable

Z = function of 2z, Equation [1], defining the
stresses by Equations [4] to [6]

Z'.Z,Z = derivative and first and second integral of Z,
Equations [2]

¢,, 0,, 7, = normal stresses and shearing stress in the di-
rections of z and y

£ = displacements in the directions of z and y

N0 = displacement n aty = 0

8 = initial separation of two surfaces

E G, = Young's modulus, modulus of elasticity in
shear, and Poisson’s ratio

F = Airy’s stress function

e = force on slice parallel to the z,y-plane one unit
thick, measurable in pounds per inch

P = average pressure or tension, measurable in
pounds per square inch

a,l = horizontal distances on axis of z

c, 01 = constants

Funcrion oF A ComPLEX VARIABLE USED As STrEss Funcrion

A stress function will be applied of a type which was introduced
by Carothers® in 1920 and, evidently independently, by N4dait
in 1921. Both expressed the significant values in terms of har-
monic functions, and both made use of the following fact: A
harmonic function of z and y can be obtained as the real part

1 Gordon McKay Professor of Civil Engineering and Dean of the
Graduate School of Engineering, Harvard University. Mem. A.S.M.E.

Presented by title at the Joint Meeting of The Applied Mechanics
and Hydraulic Divisions of THE AMERICAN SOCIETY OF MECHANICAL
ExcINEERs, Ithaca, N. Y., June 25-26, 1937.

Discussion of this paper should be addressed to the Secretary,
ASM.E., 20 West 39th Street, New York, N. Y., and will be ac-
cepted until August 10, 1939, for publication at a later date. Dis-
cussion received after the closing date will be returned.

NoTE: Statements and opinions advanced in papers are to be
understood as individual expressions of their authors, and not those
of the Society.

and the contact is complete. At still greater loads the
stresses increase as if the two solids were one. The pro-
cedure by which this problem is solved is demonstrated
first by showing its easy application to some well-known
cases, especially Hertz’s problem of circular cylinders in
contact.? %

Further applications are to'a noncircular cylinder rest-
ing on a solid with a flat top, with an initial separation of
the surfaces varying as the _fourth power of the distance
from the initial line of contact to partial contact of
two surfaces which are initially plane, except that one
of them has a ridge or several parallel ridges; and to
some related problems in which twe parts of the same
body are partially separated by the forming of one or
more cracks.

ReZ or the imaginary part ImZ of an analyﬁic function Z of

the complex variable z = z + 4y, with Z being written in the
forms

Z=Z3z =Z(z+1ty) = ReZ +4ImZ........ [1]
In the present applications it is expedient, as done by Mac-
Gregor,® to use the function Z itself as stress function.

The further functions Z’, Z, and Z are the derivative and first
and second integrals of Z, so that

dz Bl o 4 02
''m — 2 = — e LI R
Z 2 g L (21
The properties of derivatives are noted
OReZ R olmZ i ) olmZ _ ﬁaReZ - ImZ'...[3]
oz oy oz oy

In a restricted but important group of cases the normal stresses
and the shearing stress in the directions of z and y can be stated
in the form

R VAR T e ) [4]
o, = ReZ + yImZ’ ................ [5]
fog o PRAE ik bt (6]

2 Heinrich Hertz, Crelle's Journal fiir die reine und angewandte
Mathematik, vol. 92, 1881, p. 156 (also in his Gesammelte Werke,
vol. 1, 1895, p. 155). See, for example “Theory of Elasticity,” by
8. Timoshenko, MeGraw-Hill Book Co., Inc., New York, N. Y., 1934,
pp. 339-350.

3 “Plane Strain: The Direct Determmatlon of Stress,” by 8. D.
Carothers, Proceedings of the Royal Society of London, series A, vol.
97 1920 pp. 110-123, especially p. 119.;

“Uber die Spannungsverteilung in einer durch eine Einzelkraft
beln.ater.en rechteckigen Platte,” iby A, Nédai, Der Bauingenieur,
vol. 2, 1921, pp. 11-16, especially-p. 12. Nédai applied the function,
to express curvatures and twists of elastic glabs. The curvatures and
twists can be interpreted as stresses through Airy’s stress function.

#The Potential Function Method for:thé Solution of Two-Di-
mensional Stress Problems,” by C. W. MacGregor, Trans. American
Mathematical Society, vol, 38, np,.1, July, 1935, pp. 177-186.

A-49



A-50

By referring to Equations [3] it is observed that these stresses
satisfy the two conditions of equilibrium of the form

Or, Oy _ 7
aa:+by R L QR [7]

The limitation of this type of solution appears in Equations
[4] to [6], which require that

g, =c,andr, =0aty=0............. [8]

With deformation in the direction perpendicular to the z, y-
plane prevented, the displacements £ and 7 in the directions of =
and y are defined by the formulas

26t = (1—2p) ReZ —yImZ............. (91
2Gn = 2(1 — p) InZ — yReZ............ [10]

For, it is found that these displacements define the stresses in
Equations [4] to [6] through Hooke’s law, which can be stated
in the form

- oc| % p_ (% ~a[E LD
6=—2G[DI+1—'2;1 aa:+ag):]and i (by+bw)
.1

A useful observa.tion from Equation [10] is that the value of
naty =0is
1— = 2(1 — p? 4
"="g A ImZ = L"E_L) e S landg [12]
It is noted, furthermore, that the Airy function defining the
stresses by the equations
o*F
ﬁn

oF
% = and r,, =— Forait i [13])

T =

= RaB 4 yIMZ L. v e i [14]

In a slice parallel to the z, y-plane one unit thick the total vertical
foree transmitted between two points is the increase of the deriva-
tive

oF L2
iy Rel + gm0 800 e L0 aas [15]

between the points. Similarly, the total horizontal force trans-
mitted between two points is the increase of

O g M B L R N T R [16]
between the points.

INTRODUCTORY APPLICATION TO BoussiNEsQ's PrRoOBLEM

The semi-infinite solid y = 0, with y positive downward, is
under consideration. The function

Rl B o [ A G e [17]
gives Z = —log(z/e) = = [log(r/c) + 3 (0 - g)] . (18]
that is ReZ = Pl — (0/2)]/%:oniinneiininnins (19]

According to Equations [15] and [19], in a slice parallel to the
zy-plane and one unit thick the total vertical force transmitted
between § = v and @ = 0is—P. It is concluded that Equation
[17] represents the solution of Boussinesq's problem in two di-
mensions for a normal pressure P concentrated at z = 0. The
familiar formulas for stresses and displacements are obtained
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readily by substituting from Equations [17] and [18] in Equa-
tions [4], [5], [6], [9], and [10].

Rows oF Foncr.s
Equation [17] suggests consideration of two modified functions

P P
Zy=—1i-— =—f— . ..[20]
f i lcot (wz/l) and Z, ‘!sin D [20]
Near z = 0 both approach Z in Equation [17]. Further inspee-

tion shows that Z, represents a row of equal pressures P at z
=0, =1 = 2!,....,andZ,reprmntsarowofpressuresPat
z=0,=2] =4],....andarowof pulls Patz = =], =3l =5

. on the solid y 0. When y becomes great, Z; converges
t.oward —P/l, making the stresses in Equations [4] to [6] con-
verge toward a uniform pressure P/I; while Z, converges toward
zero, making the stresses converge toward zero, as they should
under the self-balancing load.

DEMONSTRATION BY APPLICATION T0 HERTZ'S PROBLEM OF Two
CircurAr CyLinpERs IN CoNTACT

The solid y = 0 is considered again. As stress function is chosen

Z=———l:\/(a’—z’)+u] .......... [21]

or 7 =—— [\/(a’ —z? + y*—1i2zy) +i'1“y:|--[22]

At y = 0 the shearing stress r,, = 0, and the normal stresses,
according to Equations [4] and [5], are both equal to ReZ.
Accordingly

o, =g, =0aty=0,z<—aqgorz>a....... (23]
o, = 0, = —(2P/ma?) /(a* —z?)
A TR R o e e At [24]

Equations [23] and [24] show that the diagram of pressures on
the surface y = 0 can be drawn as a half-ellipse between z =
—a and z = a; outside there is no load. The total pressure on
the slice one unit thick is P.

When z becomes numerically great, with y remaining positive,
one may write

V@t —z?) = —iz /(1 — (a¥/29)] = —iz (1 —a¥/2:? — ..)
..[25]

Therefore, Z in Equation [21] converges toward Z in Equation
[17], which represents Boussinesq’s problem.

In the interval —a < z < @ at y = 0 Equations [12] and
[22] give

it O R |
i el IR

dz E xEa?

that is, along the axis of z there is produced a constant concave
curvature
— ¥
...
R dz? wEat

If instead of being initially flat along the axis of z the sur-
face has an initial convex curvature equal to that in Equation
[27], under the pressures defined by Equation [24] the surface
will be flattened out and become plane in the interval —a < z <a;
outside this interval it will be flattened out less.

It follows that if two parallel eylinders with radii R are pressed
together by the load P per unit of length, the width 2a of the
strip of contact will be defined by a in Equation [27], which agrees
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with Hertz’s classical solution. With a known, the contact pres-

sures are defined by Equation [24] and the stresses and displace- ¥

ments in the surrounding region by Equations [21], [4], [5], i |

[6], 9], and [10]. | 155 l,«_/"

BeariNg Pressure THROUGH SLIGETLY WAVED SURFACE IL T[ 1 )
Equation [21] suggests investigation of the stress function |‘
| . - 4
Z il mgs_ﬂ} | +/[sin? (ra/l) — sin? (x2/1)] + i sin (xz/)} (a) Initial Separation
sin? (ra/l)

.. [28]

as applying to the solid ¥ = 0. It is assumed that a < I/2. By
computing as in Equation [25], it is found that when y is positive s 4 L
and great compared with a, Equation [28] may be replaced 1 9

by
Z=—tpeot(wz/l)......ccccocn.. [29] ta—--—d a—s— T P T

According to the comments on Equations [20], Z in Equation
[29] represents a row of pressures pl with spacing [ at y = 0,
and a uniform pressure p at great values of y.

At the surface y = 0 one finds in the interval —a < z < a

ressvre P

&llltllllllllllll’/llll IR

(b) Contact over Distances 2a '

(Oy)yeo

|
= o = Raz = — 22 AT
O i sin?(wa/l) i il Ii o : m_L
—sin(xz/l)] . .. .[30] (c) Distribution of Pressures

and in the intervala < z <l —a F1g. 1 Beaming Pressures THROUGH SLIGHTLY WaAVED SURFACE

oo =0,=ReZ=0...............[31)

The function Z is periodie, and the period is I. The values are
repeated in the similar intervals. The stripsnl —a < z < nl Fressvre
+ a are loaded by pressures — g, defined numerically by Equa- piir bbb b ll’;l. P i fl tid
tion |30]; the remaining strips are unloaded. | ¥

Within the loaded strips of the surface Equation [28] gives o

| Lt
| [ad £
H - L

Ve T

(a) Initial Separation s

Over the whole surtace ImZ is antisymmetrical with respect to S

the center lines z = nl/2 of the strips. By referring to Equation ; G L, &

[12] it is then found that within the loaded strips the deflection g (T . e

1
of the surface can be stated as ’, "/ RN
—pu? Ll o /’ oA A oy
o 20— o (A — WOl leosCre/) — 1] oo H / | . \ |
E =E sin? (zxa/l) ,___T / ; f, i \\ \\‘u-__ o ey
with the integration constant being the same for all the loaded

strips. ( b) Dfsfr/buz‘mn af Contact Pressure
Assume now that instead of being initially flat the surface is -G, for Different Lengths of Contact
slightly waved, having the equation

— - —

e p sin(2xz/1) ‘L

sin?(wa/l)

——— —

g

Aetraiaht
Line

ﬂf?_g

Yo =i e e . [34]

.
g GU"

4(1 — p)pl f 2

with i e AR,

CATI o)

5'\

Maximum Fressure

@
(=11
Maximum Press.

i
#9,~
Then under the pressures defined by Equation [30] the ordinates Arerz_ge Pressure p Half Length of Confact a
Yo + mo of the deformed surface will be zero within the loaded (c) (d)
strips. The loaded strips will be flattened out and be contained in
a single plane. A further examination of ImZ as defined by
Equation [28] shows that ¥ + 70 will be positive between the
loaded strips.

It is concluded that if another solid of the same material and
shape is placed in contact with the one considered, so that the Half Length of Contact a
axis of = becomes an axis of symmetry, and if thereafter a uni- e)
form pressure p is produced at numerically large values of y.
the contact pressures will be as defined by Equation [30]; the

Arerage Fressure P

2" —I

Fia. 2 Diacrams oF Bearing Pressures THRouGH SLIGHTLY
WAVED SURFACE
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area of contact through which the pressures are transmitted
will consist of the strips of width 2a defined by Equation [35].
Equations [34] and [35] are verified by Equation [27] when a
is small compared with 1.

Tt is noted that the initial separation of the two surfaces, be-
fore pressure is applied, is

s = (¢/2)[1 — cos(2xz/D)] = ¢ sin*(xz/l), Smx = c...[36]

The conclusions that were drawn continue to apply if the two
nearly flat surfaces in contact have a different shape, as long as
the initial separation is defined by Equations [36].

Fig. 1 illustrates this case. Fig. 2 shows some results obtained
from Equations [30] and [35].

NoncircunarR CyrninpEr WirH NearLy Frar Borrom

The function

8P 6 + a/Dv@— 2N + ... [37]
3wat
applied' to the solid ¥ = 0, is examined first for numerically
great values of z. By writing

) 7, 198

-\/(a’—z’)=h—z'z(1 ————— -
Z in Equation [37] is found to converge toward Z in Equation
[17], which represents Boussinesq’s problem. Again, at dis-
tances great compared with a the stresses are as in Boussinesq’s
problem, and the total load on the slice one unit wide is P.

At y = 0 only the interval —a < z < aisloaded; the pressures
are —ReZ. At z = 0 the pressure is 8/3x times the average,
that is, less than the average; the maximum pressure occurs
at some distance from the center of the load. These pressures
can be produced by contact of two solids. The required initial
separation s is computed by considering the interval —a < =z
< a. One finds

g
i d ol Tl B R
E 3wEat

The lower solid may have a flat top while the upper solid is a
noncircular eylinder shaped at the bottom according to a parabola
of fourth degree.

Frat Surraces Wite ONE or More Ripces

Fig. 3(a) shows two solids with surfaces that are initially plane
except for a single ridge on one of the surfaces at z = 0. Under
the pressure p contact is missing in the intervals —a < z < 0
and 0 < z < a. The same situation may be created by driving
a plug in between the two surfaces. The stress function

Z=—pvV0—a¥e®)................ [40]

represents this case, with the provision that a uniform horizontal
tension, for example, s, = p may be superposed. Fig. 3(b)
shows the distribution of the pressures of contact. The force P
at the ridge is found by stating Z near z = 0 for y > 0 in the
two forms

Z=—ipafe = Plaxz).. ... 5. [41]
which gives

The value of a will depend not only on p but also on the height
and sharpness of the ridge.

Tig. 3(c) shows the related problem of a number of equal paral-
lel ridges with spacing I. The corresponding stress function is

oo %) ain’(m/l)]
P \/[1 preryl SRR [43)
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Fi1g. 4 INTERNAL CRACK

INTERNAL CrACK

Fig. 4 shows an internal erack which has opened from z =
—a to z = a under the influence of an average tension p. The
function

Z =pf/11— (@] ...cccaeeen.... [44]

solves the problem. Z converges toward p when z becomes
numerically great. At y = 0 one finds outside the crack the

tension
oy =p/v[1—(@/t)]....cccv....... [45]
and within the length of the crack the opening
Do = 4(1—_"".).[,1@ s 4(1—-_—@’\/(0’—2’).._[46]

E E
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which shows the shape of the crack to be elliptic. The concentra-
tion of stress and the infinite slope dno/dz at z = =a are subject
to the usual interpretation applicable to singularities. A uni-
form horizontal compressive stress p may be superposed without
disturbing the remaining features of the solution.

Equation [44] suggests examination of the function

L __sin¥(xa/l)
Z = p/J[l sin’(rz/l)] ............ [47]

At numerically great values of y this function converges toward p
and defines a uniform tension p. Aty = 0 the function accounts

for a system of cracks, each of length 2a, with centers at z =
O, =1 =21 ..

The function
Z1 =7 o

with Z as in Equation [44] or [47], accounts for a crack or a
system of cracks at y = 0, created by a liquid pressure p in the
cracks as the only load.

Crack OPENED BY WEDGE

Fig. 5(a) shows a crack opened by a wedge exerting pressures P.
The stress functions

P a P z
Z, = L J; and Z, =—m{;-- [49][50]

represent two possible solutions, which require different loads
at the outer boundary. Fig. 5(b) and (¢), show the correspond-
ing diagrams of stresses at ¥y = 0. A change of the load on the
outer boundary may bring about the change from Z, to Z,, re-
placing the concentration of tension in Fig. 5(b) by the diagram
of finite compressive stresses in Fig. 5(c). The form of the
latter diagram near z = 0, with the vertical tangent at z = 0,
should be considered as characteristic of brittle materials, such
as concrete.®

¢ ““Stresses at a Crack, Size of the Crack, and the Bending of Re-
inforced Concrete,” by H. M. Westergaard, Journal American Con-
crete Inst., November-December, 1933, or, Proceedings, vol. 30,
1934, pp. 93-102. Contains an analysis of this feature of cracks.

¥ =
P
(2) ! X
2 -
o TRIBOROTIR
)50
(b} lp
X
(C) 1P }‘q}pu
X
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Fic. 5 Crack OpPENED BY WEDGE

An internal crack which has been opened between z = —a
and z = a by a wedge exerting the pressure P at z = 0 is ac-
counted for by the stress function

Z = Pa/[xz/(z2—a®)].............. [51]

This function shows concentration of tension at z = =a, and
vanishing stresses at great distances from the crack. If an ex-
ternal pressure is superposed, of the magnitude p defined by
Equation [42], Z in Equation [51] will be replaced by Z in Equa-
tion [40], and the concentration of tension is replaced by moder-
ate compressive stresses.

ConcrLuping COMMENT

It is easy to add further examples. Those that have been shown

indicate a type of problem to which the method that was used
lends itself.



