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PrOTOTHERMOELASTIC STUDY (DARE FiEib) OF A BmaM
Wrrn L/d = 0.3
(Dark specks are due to dry ice.)

tory study was conducted of thermal stresses in short
>f various L/d-ratios exposed to dry ice on one surface.
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The results are pictorial in nature as shown in Figs. 7 t0 9. Of
. particular importance are the stresses at the ends of the beam,
an effect unimportant for the long beams treated previously in
this section. The experimental procedure was the same as used
for the long-beam study with the exception that no temperature
readings were obtained.

Fig. 7 illustrates the time-dependent nature of the thermal
stresses as well as the fairly severe end effects for a beam of L/d =
3.25. At the free ends, high shearing stresses can be observed
which extend into thé b&aii for a distance approximately equal

to the depth of the beam. Such behavior would be anticipated:

on the basis of the Saint Venant effect.

Figs. 8 and 9 represent elements with beam dimensions of
L/d = 1and L/d = 0.308, respectively. It is interesting to note
that the thermal-shock pattern at the upper edge and free end
regions in Figs. 7 to 9 is almost identical for short times. It is
only after relatively long times that the fringe pattern becomes
characteristically different for the various L/d-ratio elements,

CONCLUSIONS

On the basis of this exploratory study, it appears that the
phototh lastic technique has considerable promise as a
quantitative tool for verifying thermal-stress analyses. In
addition, the ability to observe the time-dependent behavior of
complete thermal-stress fields places photothermoelasticity in a
unique position in the experimental thermal-stress-analysis field.

More specifically, the following are the conclusions of this in-
vestigation:

(a) The optical and physical properties pertinent to the
analysis of thermal stresses have been obtained for Paraplex P-43
over a temperature range from 70 to —40 F.

(b) For the disk and long-beam models which are representa-
tive of interference and thermal-gradient type of thermal-stress
fields, respectively, good correlation was obtained between the
observed and theoretically determined fringe distributions.

(¢) For short beams, severe end effects were observed which
extend for a distance approximately equal to the beam depth.
During the initial stages of sudden temperature application, the
thermal-stress field at the upper edge and free-end regions
appears to be independent of the beam dimensions.

Analysis of Stresses and Strains Near the
End of a Crack Traversing a Plate

By G. R. IRWIN,* WASHINGTON, D. C.

" " 'A substantial fraction of the mysteries associated with

crack extension might be eliminated if the d iption of
fracture experi ts could include some ble esti-
mate of the stress conditions near the leading edge of a
crack particularly at points of onset of rapid fracture and

energy, for example, from movement of the forces applying ten-
gion to the material. For convenience this is referred to here
as the fixed-grip strain-energy release rate. Since the strain-
energy disappearance rate at any moment depends on the load

itudes rather than on movement of the points of load ap-

. at points of fracture arrest. It is pointed out that for

somewhat brittle tensile fractures in sit such that
a generalized plane-stress or a plane-strain analysis is
appropriate, the influence of the test configuration, loads,
and crack length upon the stresses near an end of the
crack may be expressed in terms of two parameters. One
of these is an adjustable uniform stress parallel to the
direction of a crack extension. It is shown that the other
parameter, called the stress-intensity factor, is propor-
tional to the square roct of the force tending to cause
crack extension. Both factors have a clear interpretation
and field of usefulness in investigations of brittle-fracture
mechanics.

INTRODUCTION

URING and subsequent to the recent World War, investi-
gations of fracturing have shared in the general growth
of applied-mechanics research. Among the fracture fail-

ures responsible for interest in this field were those of welded
ehips, gas-transmission lines, large oil-storage tanks, and pres-
surized cabin planes. The propagation of a brittle crack across
one or more platea in which the average tensile stress was thought
to be safely below the yield strength is & prominent feature of
these examples,

As a result of these investigations there was a revival of in-
terest in the Griffith theory of fracture strength (1).2 It was
pointed out independently by Orowan (2) and by the author (3)
that & modified Griffith theory is helpful in understanding the
development of a rapid fracture which is sustained with energy
from the surrounding stress field. Expositions of this idea have
been given (3, 4, 5) using such terms as fracture work rate and
strain-energy release rate.

The basic idea of the modified Griffith theory is that, at onset
of unstable fast fracturing, one can equate the fracture work per
unit crack extension to the rate of disappearance of strain energy
from the surrounding elastically strained material. The term,
disappearance of strain energy, refers to the loss of strain energy
which would occur if the system were isolated from receiving

1 Buperintendent, Mechanics Division, U. 8. Naval Research Labo-
ratory.
* Numbers in parentheses refer to the Bibliography at the end of the

paper.

Presented at the Applied Mechanics Division Summer Con-
ference, Berkeley, Calif., June 13-15, 1957, of THE AMERICAN So-
c1eTY OF MECcHANICAL ENGINEERS,

Discussion of this paper should be addressed to the Secretary,
ASME, 29 West 39th Street, New York, N. Y., and will be accepted
until October 10, 1957, for publication at a later date. Discussion
received, after the closing date will be returned.

Nore: Statemenis and opinions advanced in papers are to be
understood as individual expressions of their authors and not those
of the Society. Manuseript received by ASME Applied Mechanics
Division, February 19, 1956. Paper No. 57—APM-22.
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plication, use of the fixed-grip strain-energy release-rate concept
is not limited to fixed-grip experiments.

It is the purpose of this paper to describe the relation of these
terms to the elastic stresses and strains near the leading edge of
a somewhat brittle crack. For purposes of this paper “somewhat
brittle’” means that a region of large plastic deformations may
exist close to the crack but does not extend away from the crack
by more than a small fraction of the crack length.

Previous investigations (3-7) have established a viewpoint with
respect to the mechanies of fracturing which may be summarized
in part as follows:

The fixed-grip strain-energy release rate has the same role as an
influence controlling time rate of crack extension as the longitudi-
nal load has in controlling time rate of plastic extension of & tensile
bar. In the latter case the foree per unit area tending to cause
plastic extension is the longitudinal stress, In the former case a
motivating force per unit thickness can be defined quite generally
in terms of the rate of conversion of strain energy to thermal
energy during crack extensi This g lized force is the rate
of decrease of the fixed-grip strain energy with crack extension on
a unit-thickness basis. Also this energy rate can be regarded as
composed of two terms: (e) The strain-energy loss rate associated
with erable displ ts of the points of load applica-
tion (assumed zero in this discussion); and (b) the strain-energy
loss rate associated with extension of the fracture accompanied
only by plastic strains local to the crack surfaces, The second of
these two terms, herein called G, appears to be the force compo-
nent most directly related to crack extension and the one with the

most practical usefulness,

Determination of characteristic values of G for onset or arrest
of rapid fracturing and the appli of such i t8 to
“fail-safe’’ design proced have been di d elsewbere (4, 5,

8, 9). It will be shown here that the tensile stresses near the
crack tip and normal to the plane of the crack are determined by
the force tendency G. The di jon is arranged so as to de-
velop relationships useful in the analysis of fracture experiments
whether the purpose of the work is to determine characteristic
G-values or simply to determine the stress field near the leading
edge of the crack.

The material of this paper is, at one point, related to Sneddon’s
snalysis of stresses near an embedded erack having the shape of a
flat circular disk (10). Otherwise, for simplicity and bearing in
mind the service fracture failures referred to in the foregoing,
discussion is restricted to a straight crack in a plate. It is as-
sumed the plate thickness is small enough compared to the crack
length so that generalized plane stress constitutes a useful two-
dimensional viewpoint. In addition it is assumed the crack is
moving, as brittle cracks generally do move, along a path normal
to the direction of greatest tension, so that the component of shear
stress resolved on the line of expected extension of the crack is
zero.

—
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REPRESENTATIVE STRESS FIELDS ASS0C1ATED WiTH CRACKS

A paper by Westergaard (11) gave a convenient semi-inverse
method for solving a certain claea of pl.m&ctrun or plane-stress
problems. LetZ, Z, and Z' rep derivatives with
respect to z of a function Z(z), where z ia (z + ¢y). Assume that
the Airy stress function may be represented by

FuRZ+yImZ................ {1]
then
NF
g,=——=ReZ —ylmZ'.............[2]
P v
3;
a-'g%I:-ReZ-{—yImZ' ............. Bl
AF
T"=_$v-—yROZl ............. 4]
By choices of the fi jon Z(z), We d showed solutions for

stress distribution as influenced by bearing pressures or cracks in
& variety of situations. The class of problems which can be solved
in this way is limited to those such that r,, is zero along the z-axis.

In particular, if a large plate contains a single crack on the z-
axis whose length is small pared to the plate di ions or a
colinear series of such cracks, and if the applied loads are such
that 7,, is gero along the z-axis, then the stress distribution is
readily constructed with the aid of Westergaard’s semi-inverse
procedures.

Two examples of such problems were given by Westergaard
(11) as follows:

1 A central straight crack of length 2 along the z-axis in an
infinite plate with a biaxial field of tension o at large di
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RECOVERABLE
CRACK OPENING

S
o
i
S SN

Fre.1 Orrming or o CracKk 3y Wepen Forcos

In all of these probl & unif , — 0.y, MAY be

added to the va.lue of ¢, given by Equatlon [2). Smee linearized

are d to apply, one may obtain the Z-

function for combined tension and wedge action by adding the

appropriate Z-funetion for tension to the appropriate Z-function
for a pair of wedge forces.

As an extending crack moves across a plate of finite width the
crack may attain sufficient length 8o that the tensile forces acting
to cause crack extension are not sufficiently accurate when ob-
tained using infinite plate relations such as those of Equations
[5) and {7]. The major adjustment required is that of the total
load across the 2-axis from the end of the crack to the side of the
plate. A convenient way to make this adjustment, if the crack is
centered, is to use expressions for Z such as in examples 2 and 5.
The side boundaries of the plate would then be taken to ocour at

from the crack
[
20 = T 1

2 A series of equally spaced straight cracks of length 2a, on
the z-axis in an infinite plate with biaxial stress o, as before, and

. with the distance between the crack centers, |

Z(2) =

- °
[1 _ (sm ra/l)!]’/l ............
sin wz/l

Three additional ! btainable with the semi-inverse
procedure suggested by Westergaard are as follows:
3 8ingle crack along the z.axis extending from —a to @ with
& wedge action applied to produce a pair of “splitting forces’ of
magnitude P located at z = b (see Fig. 1)
[1 — (b/a)
w(z — bz L1 — (a/2)
4 The situation of example 3 with an additionsal pair of forces
of magnitude Patz = —b
2Pa [1 — (b/a) T}
x(e* — %) L1 —~ (a/2)
5 Example 3 repeated along the z-axis at intervals [, and with
the wedge action centered so that b is sero

2(z) =

Z(z) =

]-Ys
Pm? m?
Z(z) = e ] ol B [NRRPRPRS 191

z = —1/2 and z = +1/2. In the stress distributions resulting
from examples 2 and 5 the shearing stress Ty i8 26r0 along the side
boundanea However, the sxde boundaries are represented as
8 ion of z-di loads which should be

a.bsent Depending upon the objectives of the stress analysis this
defect may be outweighed in importance by the eonvenience of
having an appr lution of the problem in form.
Suppose, next, that the situation to be studied is a crack extend-
ing across a finite-width plate from one of the plate side bound-
aries. Let the intersection of the crack with the side boundary be
the origin of co-ordinates and let the line of crack extension be the
positive portion of the z-axis, the end of the crack beingatz = g.
It will be assumed that weights or blocks have been set against the
side boundaries so as to prevent or greatly reduce the tendency of
these boundaries to move in the negative x-direction as the crack

extends. In this event Z-functions similar to those of examples -

2 and 5 may again be employed as a convenient means for obtain-
ing & compact approximation to the stress distribution. In this
situation the side boundaries of the plate would be assumed to be
atz = Qand at z = [/2.

In any of the foregoing examples the only stress acting at the
edges of the crack is the optional added stress in the z-direction
—ur,,. An uncertamty a8 to proper choice of 7,, exists for the

y of a erack extending from one side
of a ﬁmte-mdth plau In addmon, if the crack moves rapidly,
determination of the stress distribution away from the crack will
require a8 dynamic-stress analysis,

Srarss ENVIRONMENT OF THE END oF TR CRACK

However, the stress distribution near the end of the crack can be
expressed () independently of uncertainties of both magnitude of
applied loads and of the dynamic unloading influences, and () in
such a way that records from several strain gages placed near the

SEPTEMBER, 1957

STRAIN
GAUGE

F16. 2 RELATION OF r AND & 70O ¥ AND (¢ — @) AND ExaMrLES OF
LocaTions roR STrAIN GacBs

ePd t’rf the crack serve to determine the “crack-tip stress distribu-
tloCn.onaider for all of the five examples the substitution of varia-
blea
zZ=0 4 ret?
where
= (r - a4+ y*and tan @ = y/(z ~ a)
as shown in Fig. 2.

If one assumes quantities such as r/a and r/(a — b) may be
neglected in comparison to unity, one finds in each case

BG\'/ cos 6/2 .8 3_0)
o, = ( ,> \/(2’-) (l + sin— sin— }...... [to]

and

[
1y ©08
o, = (%;) \/(;) (1 - sin%sin 3—20) — e ... {11}

where E is Young’s modulus. G is independent of  and of § and
will be discussed in following sections of this paper.

For a crack traversing a plate, the thickness of which is con-
siderably smailer than the crack length, a generalised plane-stress
viewpoint is appropriate and o, is zero. However, for comparison
with results obtained by Sneddon (10) one may consider for the
moment the set of three extensional stresses which would pertain
to a plane-st. Sneddon studied the stress distribution
predicted by linear eluhc theory in the vicinity of a “penny-
shaped’’ crack embedded in a much larger solid material and sub-
jeoted to tension perpendicular to the plane of the crack. For the
oxtennonal stresses in the close neu;hborhood of the crack outer

gave identical to Ex i (o]
and [ll] Wlﬂ) regard to the fu.nctlonﬂ relationship of ¢, and 7,
to r and 6. A third extensional stress directed parallel to the
outer boundary of the penny-shaped crack was given by Sneddon
with the remark that no counterpart to this third extensional
stress existed in a two-dimenpsional analysis of stresses near a
cmk However, the remark applleu only to the two-dimensional
lised plane strees. For the two-dimen-
nonn.l analysis assuming: plane strain the third extensional stress,
which is Poisson’s ratio times the sum of o, and ,, asin Equntlom!
(10} and [11), is the part to Sneddon’s third
strees component. Thus for any amall region around the outer
boundary of Sneddon’'s penny-shaped crack, the stresses, strains,
and displ. d to a si which is locally one
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of plane strain. The preceding oomm;em. becomes mt.\m.wely ob-
vious when one iders that, in Sneddon’s all particle
displacerents lie in planes which contain the axis of symmetry.
These planes would approximate to a set of parallel planes within
any region whose dimensions are very emall compared to distance
from the region to the axis of symmetry.

Force TENDING T0 CaUSE CRACK EXTENSION

As the crack extends, an energy from 1 or
strain energy into other forms ocours in the vicinity of the crack.

h

The process is such that transfer of strain energy to heat domi-

nates,

G is the maguitude of this energy exchange associated with unit
extension of the crack and may be regarded as the force tending to
cause crack extension. Thu may be seen as follows:

The lmen lasticit; Ming from E i [51

h (111 pond toap ic shape for the crack open-
ing near the crack tip. In Fig. 3 the urigin of z, y-co-ordinates has
been shifted 8o that the crack opening, shown by the dashed line,

CRACK 1
OPENING L

TENSION I

Fr6. 3 Linzar-Evastic-Tumory CRaCk OPENINGS AND StREssEs
Near ENp or 4 Crick

extendstoz = c. Itis assumed c is very small compared to the
length of the crack. If y-direction tensions given by

1
S(p)=1p (?) ‘\/22:;) ............. (12)

are exerted on the edges of the crack fromz = Otox = o, and p
is increased from sero to 1, the crack is closed up 2o that the crack
opening appears to end at the origin as shown by the full line,
The factor p may be regarded as a proportional loading parame-
ter. To the same approximation as Equation [10], the crack
opening from z = 0 to z = a at any time during the closure opera-
tion is given by

Y
op) = (1 - p) -%(%3) e = D). (13]

Since the degree of closure is a linear function of 8, the work done
by the closing forces as p is varied from sero to 1 is given by

f ,(nv(o)dz-—f‘(“‘”) ds = a... [14]

Thus o is the “fixed grip’’ loes of energy from the stmn-energy

field as the crack extends by the a and the
force interp: ion of G is app:
For h tical simplicity the f i Joulation was
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based upon the linesr elasticity stresses and crack-opening dis-
ts in the i diate vicinity of the crack tip. One

JOURNAL OF APPLIED MECHANICS

The stresees near the crack tip predicted by linear elasticity
thoory are calculable from Equations [10] and {11] except for

should not assume, however, that local stress rel ion and
orack-opening distortion by plastic low necessarily change the
rate of loas of strain energy with crack extension from that indi-
cated in the f ing by an appreciabl t. The p d

ledge of the i factor (BG/x)'/1, which appears in the
expressions both for o, and for ¢, and the nddmve uniform stress
factor —o,,, which appears in the expression for o,.
of strain gages which permits debermmnt:on nt' f.hese

leading to Equation [14] is equivalent to finding the derivative
with respect to crack length of the total strain energy under fixed-
grip conditi The it to this calculation from a small
circular region enclosing the crack tip is relatively small. In
situations such as those of Equations [5] through [9], the fraction

of G contributed from this region is, in fact, only about a third of ~ -

the ratio of the outer radius of the region to the half length g of

the crack. Thus if plastic strains near a crack affect the stress

field only within distances from the crack, small in relation to the

crack length, then the mﬂuence of these plastic strains on the
leulation of § is pondingly small,

REMARKS ON MEASUREMENT METHODS

Consider the situation suggested earlier of a crack moving in the
z-direction across s large plate. As the erack moves under and
beyond a strain gage placed close to its path for ¢, measurement,
Fig. 2, the gage output is expected to rise and then fall to a smalt
value. An uncertsinty in interpretation of the gage record in
terms of stress will exist if #,, is uncertain. If it can be assumed
that o, is zero then, using Equations {10] and [11]

Ee¢, = ¢, — vo, =

B ./10056/2[ . l i 3_0]
(,_) Vi (I=»+ (1 + ) sinosin 7. {15

where v is Poisson’s ratio. By puttingr = y csc 6 and differentiat-
ing with respect to 6 with y-tonstant, one finds ¢, should be
greatest when the gage position relative to the end of the crack is
at @ = 70 deg. This result is quite insensitive to the assumed
value of ¥ (unpublished calculations by L. Mandden and J. H.
Hancock based upon Equation [9]).

A better situation for analysis purposes exists if both €, and ¢,
are measured. In this event one has

E
5= (G 7% T 18]

Differentiating Expression [10] for o, with respect to & holding
y constant, one finds the maximum will occur when the measure-
ment position is at 73.4 deg. As a crack moves under and beyond
the position of measurement of ¢, and ¢, the quantity (¢, + ve,)
plotted against time should have a8 maximum at that angle. Thus
with 6, r, and (¢, + »¢,) known for a particular location of the
erack, the stress-intensity factor (£G/7x)"% and the crack exten-

two factors serves to di ine the k-tip strees d

The region in which the st arethus d is an annular
region which excludes any large distortions close to the erack but
which extends outward only a small fraction of the erack length.

—— s CoNCLUSIONS
The stress field near the end of a somewhat brittle tensile frac-

ture, in situations of generalized plane stress or of plane strain, |

can be ted by a t set of i The

most significant of these parameters, the intensity factor, is §

(BG/x)"/ for plane stress where G is the force tending to cause
crack extension,* When the experimental situation permits use
of strain gagesat distances from the crack tip, small compared to

the crack length, values of G and o,, may be evaluated con- |

veniently by measuring local strain at selected positions.
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" For plane strain, one substitutes E /(1 —~ #9) for E in the expression
lor the meu-mtenmty factor. No change in the magmtude of the

sion force G existing at the moment of that crack location can be
calculated.

factor ocours because G, for plane etrain, is (1 — »%)
umee G for plane atress.
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Stresses in a Perforated Strip

By CHIH-BING LING,! TAIWAN, CHINA

'!‘hu paper presents an mn!yhc lolutwn of the classical

P dealing with the st: in an infinite strip having
an ically located perforating hole. The solu-

twn ia applicable to any -treu aystem acting in the strip,
hich is symmstrical mthroq:-dtothehuoflymmetry
of the strip. The required stress function is constructed
by using four ‘series of biharmonic functions and a bi-
harmonic integral. The four series of biharmonic func-
tmnl are formed from a class of periodic harmonic fanc-
tions specially colutructed for the purpose. The aoluhon
can be ded as a jon of the probl
the sense that, unlike the previous solutions by Howhnd
Steveneon, and nght for a symmetrically perforated
-trip, it js valid in the entire strip. Numerical enmplel
are given for the fund tal cases of longitudinal ¢
and transverse bending.

INTRODUCTION
HE stresses in an infinite strip having a symmetrically
located perforating hole when the strip is under a longi-~
tudinal tension were investigated by Howland (1)tin 1930

. The method used in his solution is tially one of

approximations such that the required solution is the sum of a
series “of biharmonic functions any one of which cancels the
normal and tangential stresses on one of the boundaries due to

METHOD OF SOLUTION

Consider an infinite strip of uniform width 25, perforated un-
symmetrically by a circular hole of radius Ab. Let the origin of
the eo-ordinates be at the center of the hole and the z-axis pmllel
‘to the edges™ of thé strip. For the
co-ordinates (z, y) henceforth will be regarded as dimensionlees
quantities referring to a typical length b or one half of the width
of the strip. The edges of the strip will be represented by the
linesy = 1 — ¢ and (—1 — ¢), respectively, as shown in Fig. 1;
¢ being & quantity numerically lesa than unity.

4

Y=r-c

Ym—t-c

Fig.1 Tez Srtare, LENaTs BEive MoASURED BY b

Suppose that in the ab of the hole the stresses in the strip

the previous solution. Later, Howland in 1934 with the eollab
ration of Stevenson (2) extended the method to unsymmetrical
stress systems acting in the same symmetrically perforated
strip, and worked out in detail the cases of transverse bending
with or witkout shear. The longitudinal tension case as just
mentioned also was solved by Knight (3) in 1934 in a way which
is more direct than that used by Howland. Nevertheless, all
the solutions are valid in the neighborhood of the hole only,

In this paper an analytic solution for the stresses in an in-
finite strip having an unsy trically located perforating hole

are derived from a basic stress function xe. In order to allow
for the effect of the hole, an auxllm.ry ntreu funcuon X is con-
structed, using series of suitable bi and a
biharmonic integral, such that the corresponding stresses vanish
at z infinity or the ends of the strip as well as along the edgea.
This is added to Xo 80 that the required stress function is given by

will be p i. The solution is licable to any stress
system acting in the strip, whioch is symmetrical with respect to
the line of symmetry of the strip. The required stress function
is constructed by using four series of biharmonic functmns md
a biharmonic integral. The four series of bih

X ™ XoF Xtovoreneoniairaonnnas i

The b dary conditions at the rim of the hole are then satisfied
by adqumng the eoeﬂiments of superpontlon attached to the series
The b ions have singu-

larmes at the origin. Such singularities eventually will be ex-
cluded from the material of the strip by the perforating hole.

are formed from a class of periodic harmonic functions as de-
fined i in Appendix 1. The present solution can be regarded as &

lution of the problem in the sense that, unlike the
premouu solutions, it is vahd in the entire strip. In what fol-
lows, the method of solution is first described and then numemal

examples are given for the fund: tal cases of I 1
tension and transverse bending.

‘Dimtor. A i R h Lab v, 1 ioh .]50,
Aeﬁn;Dn'eM Jemin Sinica, Taipei.

’ Numbers in pmtbem refer to the Bxbho;nphy at the end of
the pa;
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8 further that the basic stress function is even in z; that

is, it‘i_:uymmetrioa.l with respect to the y-axis or the line of sym-
metry of the strip. Consequently, the auxiliary stress function
is also even in 2. It will be constructed as follows

Xi= 1Y AuSulm ) + 50 Y, Dudua(z, 1)
=0 =1 B
+ 8 3 (U + BuSualz ) + 5 Y Cu {(y + )8ulz, )
e s =1

+ Bui(z, )/(2s. — 1} + 82 f " (¥a(m) cosh m(y + o)
0

+ Ya(m) (y + ¢ sinh m(y + ¢) + Ya(m) sinh m(y + ¢)
+ Ym) (y + c) cosh m(y + e)} cosmzdm...... 21

where 8, are periodic harmonic funetions deﬁned in Appeudxx 1;

Ay, Bs,, . . . being coefficients of sup ion and ¢, ark y

functions. The auxiliary stress function thus constructed satis-
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