A Rational Analytic Theory of Fatigue

Paur C. Parss
Assistant Professor of Civil Engineering

Mario P. GoMEz* and WiLLiAM E. ANDERSON
Research Engineers, Boeing Airplane Company

=&
e
©

P. C. Paris

A great deal of effort has recently centered around
examination of the factors influencing the growth of
fatigue cracks. Fatigue has been considered a multi-
phase problem: e.g., initiation of a crack and its
growth are often considered as separate phenomena.
Tn contrast, the objective of this work is to show that
the growth of an initial “crack-like” imperfection to

~ a critical size, which causes static failure of a struc-
ture, may be described by a single rational theory.

Two loading parameters, the nature of the stress
field near the tip of a crack and the variation of this
field, are taken to control the rate of crack extension
in a given material. This hypothesis is proven by
using it to correlate data from three independent in-
vestigators. Since it shows a positive correlation of
all available data for crack-extension rates from 107
‘to 102 in. per cycle, the hypothesis may be used to
formulate a theory of fatigue that permits computing
the structural lives of complicated geometries from
simple laboratory tests of material properties.

The Stress Distribution Near the Tip of a Crack

The form of the stress distribution in the vicinity
of a crack root was given by Sneddon® in 1946 and
has recently been expanded by Irwin®® and Wil-
liams.¢ The unique character of this form, as Irwin
showed,? is a controlling factor in attempts to analyze
crack extension under static loads. We will show that
this same character becomes fundamental in crack
extension under cyclic loading upon the addition of
new concepts to desckibe the cyclic nature of the
joading.

* Mr. Gomez received his M. S. degree in Metallurgical
Engineering in 1958 at the University, after which he worked

for Boeing. He is now Senior Scientist at the Missile Sys-
tems Division of Lockheed Aircraft Corporation.
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Restricting this discussion to cracked bodies in
which the geometry and loading of the body are sym-
metric with respect to the plane of the crack results
in very little loss of generality. The nature of cracks
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F1G. 1. COORDINATES USED T'0 DESCRIBE STRESSES
INEAR A CRACK TP (f; 0,5 7,5 v)
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is to form most often on such planes, i.e., planes per-
pendicular to maximum-principle tension stresses.
Williams* and Irwin® have given the required forms
of stresses for other cases, but these will not be dis-
cussed further in this work.

The coordinates of points in a cracked body with
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SYMBOLS

a == the half crack length
b . =plate dimension parallel to a crack
F =2 loading force on a body
FO or FQ =a function of
K — the stress singularity-intensity factor
at the tip of a crack
K. — the critical value of K for a material
associated with a crack extension
under static load
L | =thelength of a plate
N —the number of load cycles since
initial loading :
P =the loading of a body
r, 8 =polar coordinates from the crack tip
%, ¥ —rectangular coordinates centered
with respect to a crack
& — the correction factor for K in plates
of finite width
8 = the ratio of maximum to minimum
load on a body during a load cycle
© = Poisson’s ratio '
oy = gross area stress or nominal stress level
Gz, Oy, Tzy =components of stress near a crack tip

oo(%) =the normal stress present at a crack
location before the crack appeared

Aa/AN or da/dN = the rate of crack extension

crack-plane symmetric geometry may be described as
in Fig. 1. If terms of higher order in r are ignored,
the elastic solution for stresses in the vicinity of the
crack tip for all such problems is '

= K cos—g— 1—{-sin—8—sin—3i .
T N2 2 2 2 1

= K cos—a— 1 ——sin—f)—sin—s—e—
% = N2 2 2 2 |’
K

= sin—q—cos—g—cos-?ﬁ- , (1)
TSN 2 2 2

Toe = T3z =0,
and
o, = 0(plane stress)

or

o, = ploz+ o) (plane strain)
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FIG. 2. A TYPICAL FATIGUE-PANEL CONFIGURATION
FOR WHICH TEST DATA WERE AVAILABLE

This result implies that the distribution of elastic
stress always has the same functional form near the
singularity caused by the sharp crack root and that
it differs only by a stress singularity-intensity factor,
K. This factor is linearly dependent upon the loads
on the body and also must contain a geometric factor
related to the crack length and other geometric prop-
erties of the body. An example is K = oVa for the
problem of a crack of length 2¢ in an infinite sheet
under a uniform tensile-stress field, o, perpendicular
to the crack. ’

Now the Griffith-Irwin theory of static strength of
bodies containing cracks may be resolved from this
discussion in the following fashion: Identical inten-
sity factors of elastic stress will result in identical
yield zones near the tips of cracks in the same ma-
terial if the yield zones are small compared to the
region of applicability of the stresses given by Eq.
(1). As discussed in previous works,® the size of the
yield zone may be shown to be small if the nominal
stresses in the body are well below the yield point.
Therefore, regardless of the appearance of a small
yield zone, there will be some critical value of the
stress singularity intensity, K., near the tip of a
crack that will cause static crack extension in a given
material. The above hypothesis is the equivalent of
the Griffith-Irwin theory, which was originally based
on energy considerations.
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The Sigaificance of Stress-Intensity Factors
in Fatigue

The stress-intensity factor may be considered to
be a measure of the effect of the loading and the
geometry of a body on the stress intensity near the
root of a crack. Therefore, as the loads on a body
vary and as the geometry changes by crack exten-
sion, the instantaneous values of K reflect the effects
of these changes at the crack root.

Let B8 be the ratio of maximum to minimum load
on a cracked body during a cycle of loading. Then,
since K is directly proportional to the magnitude of
the Ioad, B is also the ratio of Kpyux to K, regard-
less of the geometry of the body; that is,

Therefore the stresses near the root of a crack are
completely described by Kpax and B in a given ma-

terial, since these two parameters give both the in-

tensity and variation of the effects of loading and
geometry.

A theory of fatigue crack extension may now be
hypothesized as follows: Since, as has been shown,
during a cycle of loading the stresses and strains near
the tip of a crack are completely specified by Kpax
and f8, we can reasonably assume that any phenom-
ena occurring in this region are controlled by these
parameters. The amount of crack extension per cycle
of loading is just such a phenomenon, or, in func-
tional form,
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FIG. 3. CRACK EXTENSION-RATE DATA ON 2024-T3 ALUMINUM ALLOY CORRELATED FROM TESTS
BY THREE INDEPENDENT INVESTIGATORS
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Experimental Evidence

It is pertinent to examine the above hypothesis in
the light of available experimental data. Many in-
vestigators™®%® have measured crack-extension rates
due to cyclic loading in aluminum alloys by using the
configuration shown in Fig. 2. The majority of these
tests have been performed with minimum loads near
zero, or B = oo ; therefore from examination of Eq.
(3), these results for a given material should form
a single curve on a plot of Kuax s Aa/AN. For such
a configuration Kuas may be computed from®

K = a0,V a,

V4 +2(a/b)

where %= 5 (@/b — (a/b)"

@

-if a<b.

The results of this attempt at correlation of crack
extension-rate data are shown on Figs. 3 and 4. It is

Nar

worthy of special note that the data on these curves
are from three independent investigators, using many
specimen sizes, i.e., widths from 1.8 to 12 in., thick-
nesses from 0.032 to 0.102 in., and lengths from 5 to
35 in. The testing frequencies varied from 50 to 2000
cpm, and the maximum stresses on the gross area
varied from 6 to 30 ksi. On each graph, the materials
are both clad metals and bare metals. Therefore the
correlation shown is surely more than coincidental.

On the presumption that such curves may be ob-
tained for various values of 8 for a given material
from laboratory tests, this discussion proceeds to
formulate the necessary elements of an analytic the-
ory of fatigue, these results being applied in the fol-
lowing sections.

An Analytic Theory of Fatigue

Knowledge of the material-property curves in the
form of Figs. 3 and 4, with the addition of curves for
other 8 values, implies the functional form of Eq. (3)
as given. Further, given the loading and geometry
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FIG. 4. CRACK EXTENSION-RATE DATA CORRELATION FOR 707 5.T6 ALUMINUM ALLOY
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~ of a structure, 8 is known from the load ratio during

any cycle, N, or
‘ g =8\ . ®)

Moreover, K may be computed for any crack length,
a, and the maximum load as given during the Nth
cycle, or

K pox = Kuax (N,0)- (©)

Therefore, for a problem with the above specifica-
tion, Eq. (5) and Eq. (6) may be substituted into
Eq. (3) to give

da/dN = F(N,a), N

where the functional form of F is known, point by
point, from the data given, and effects of loading
history are neglected.

The solution to Eq. (7) may be found provided an
initial crack size may be specified, or some equivalent
condition may be stated. In practice, maximum im-
perfection sizes may be stipulated on the basis of
material quality, production methods, and inspection
technique, for in practice we know that fatigue cracks
grow from just such imperfections. Then Eq. (7)
may be integrated, at least by numerical procedures,
to generate a complete crack history for the structure.
The most difficult phase of this analysis is the com-
putation of K for a given load and crack length, as
will be commented upon later. '

Relationships to Classical Fatigue Theory

Suppose the material-property curves of the form
of Figs. 3 and 4 are known for a specimen that has
been subjected to an ordinary fatigue test and has
developed an easily measurable crack in a given num-
ber of cycles. By using these curves and the measured
crack length, the crack-extension rates may be inte-
grated backward to determine an effective initial im-
perfection size.

Using this computed initial imperfection size makes
it possible to calculate the number of load cycles Te-
quired for failure of the specimen at any stress level.
Therefore the complete S-N curve for a material may
be computed by this process; moreover, the whole
S-N curve can be obtained from a single specimen,
since curves of the material properties for several 8
values may be generated during the same test.

An accumulative damage theory is automatically
present in the preceding analysis, which replaces
Miner’s empirical hypothesis of damage. ‘The Soder-
berg or Goodman diagrams being likewise empirical,
this paper presents a rational analytic theory. Asis
evident, the form of the analysis lends itself well to
statistical analyses.
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FiG. 5. A CRACK IN AN INFINITE SHEET WITH CONCEN-
TRATED FORCES APPLIED TO CRACK SURFACE

Computation of K, the Stress-Intensity Pactor

By use of data on materials, in the form of Fig. 3,
the inherently nonlinear problem of structural life
has been resolved to require only the computation of
instantaneous values of K as the crack propagates
through the structure. Since K is the elastic-stress
intensity factor for stresses near a crack tip, the prob-
lem has been essentially linearized from the point of
view of mechanics, a method that permits the use of

well-known techniques in attacking the problem.

Irwin® has given the solution to the problem shown
in Fig. 5, which may be applied by superposition tech-
nique (as a Green’s Function) to solve all problems
of sheet-skins containing internal cracks. This meth-
od, which is described in detail in Reference 6, will
be outlined here.

Consider the general and arbitrary x-axis symmet-
ric plane-stress problem containing a crack, illus-
trated by Fig. 6(a). This may be considered to be
a free body removed from a gross structure, and may
be chosen large enough in size that the crack itself
has very little influence on the magnitude and distri-
bution of the boundary forces and stresses shown.
Thus we may proceed to solve the plane-stress prob-
fem for this sheet, but we find considerable difficulty
in problems of doubly connected regions. As an al-
ternative, this problem may be considered:to be the
sum of two problems, i.e., those in Fig. 6 (b) and (c).
The first, (b), is the solution to the same problem
with no crack present; the second, (c), is the solu-
tion with the same geometry as the original problem,
(a), but with loads on the crack surfaces only, of
equal and opposite intensity to the stresses that occur
at the crack location in (b). This approach ensures
that the sum of the boundary forces in (b) and (c)
are identical to those in (a), and thus their sum is the
solution to (). :

Now we desire only to determine the stress inten-
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Fic. 6. THE REDUCTION OF A PROBLEM, (a), INTO TwoO
SiMPLER PROBLEMS, (b) and (c), FOR COMPUTATIONS OF
STRESS SINGULARITY - INTENSITY FACTORS

sity factor, K, for the problem, which is the sum of
the stress intensity factors, K’ and K”, for problems
(b) and (c). Since K is the intensity of the singu-
larity of stresses at the crack tip—note 1/V/r in
Eq. (1)—and this singularity is not present, in (b),
then

. K =0. 8

The task remaining is to determine K” for problem
(c), since, observing Eq. (2),

K =K". : “

Thus the solution to all problems of the type of (a)
is reduced to finding the stress, o, (x), on the crack
axis with no crack present, as in (b), and using this
stress as the loading in (c).

To find the value of the stress singularity, K”, for
(c), Irwin's solution® for the stress singularity in
Fig. 5 gives

P(a+b)
K= tap@=—oy a0

4

Taking (10) as a Green’s Function, the stress sin- -

gularity, K”, is given by

" _ oo(x) (a+x)}
K=K ﬁ_\/—f ———————-—dx, (11)
which may be further simplified by y-axis symmetry,

2\/ do(x)
f @ xz)‘d (12)
Hence all the general problems of the form of Fig.
6(a) may be attacked by solving the problem for the

stresses, o, (), along the crack axis with the crack .

absent, and integrating the result by Eq. (11) or ~

Eq. 12

Equally powerful techniques may be presented for
other general classes of problems, Therefore we con-
clude that, in general, K may be computed easily in
most of the problems of interest for engineering
purposes.

Conclusion

On the basis of the experimental data given, it is
evident that rates of crack growth—for example,
those in 2024-T3 and 7075-T6 skins of aircraft struc-
ture—may be computed by the theory presented over
a wide range of nominal stress levels and crack sizes.
The ramifications of such broad correlation imply an
analytic theory of fatigue based on a concept of

growth from initial imperfections through which .-

structural life may be predicted.
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