
Catastrophe Theory 
Things that change suddenly, by fits and starts, have long resisted 
mathematical analysis. A method derived fi-om topology describes 
these phenomena as examples of seven "elementary catastrophes" 

Scientists often describe events by con­
structing a mathematical model. In­
deed, when such a model is particular­

ly successful, it is said not only to describe 
the events but also to "explain" them; if the 
model can be reduced to a simple equation, 
it may even be called a law of nature. For 
300 years the preeminent method in build­
ing such models has been the differential 
calculus invented by Newton and Leibniz. 
Newton himself expressed his laws of mo­
tion and gravitation in terms of differential 
equations, and James Clerk Maxwell em­
ployed them in his theory of electromagnet­
ism. Einstein's general theory of relativity 
also culminates in a set of differential equa­
tions, and to these examples could be added 
many less celebrated ones. Nevertheless, as 
a descriptive language differential equations 
have an inherent limitation: they can de­
scribe only those phenomena where change 
is smooth and continuous. In mathematical 
terms, the solutions to a differential equa­
tion must be functions that are differenti­
able. Relatively few phenomena are that or­
derly and well behaved; on the contrary, the 
world is full of sudden transformations and 
unpredictable divergences, which call for 
functions that are not differentiable. 

A mathematical method for dealing with 
discontinuous and divergent phenomena 
has only recently been developed. The 
method has the potential for describing the 
evolution of forms in all aspects of nature, 
and hence it embodies a theory of great 
generality; it can be applied with particular 
effectiveness in those situations where grad­
ually changing forces or motivations lead to 
abrupt changes in behavior. For this reason 
the method has been named catastrophe 
theory. Many events in physics can now be 
recognized as examples of mathematical ca­
tastrophes. Ultimately, however, the most 
important applications of the theory may be 
in biology and the social sciences, where 
discontinuous and divergent phenomena 
are ubiquitous and where other mathemati­
cal techniques have so far proved ineffec­
tive. Catastrophe theory could thus provide 
a mathematical language for the hitherto 
"inexact" sciences. 

Catastrophe theory is the invention 
of Rene Thorn of the Institut des Hautes 
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Etudes Scientifique at Bures-sur-Yvette in 
France. He presented his ideas in a book 
published in 1972, Stabilite Structurelle et 
Morphogenese; an English translation by 
David H. Fowler of the University of War­
wick has recently been published. The the­
ory is derived from topology, the branch of 
mathematics concerned with the properties 
of surfaces in many dimensions. Topology 
is involved because the underlying forces in 
nature can be described by smooth surfaces 
of equilibrium; it is when the equilibrium 
breaks down that catastrophes occur. The 
problem for catastrophe theory is therefore 
to describe the shapes of all possible equilib­
rium surfaces. Thorn has solved this prob­
lem in terms of a few archetypal forms, 
which he calls the elementary catastrophes. 
For processes controlled by no more than 
four factors Thorn has shown that there 
are just seven elementary catastrophes. The 
proof of Thorn's theorem is a difficult one, 
but the results of the proof are relatively 
easy to comprehend. The elementary catas­
trophes themselves can be understood and 
applied to problems in the sciences without 
reference to the proof. 

A Model of Aggression 

The nature of the models derived from 
catastrophe theory can best be illustrated by 
example, and I shall begin by considering a 
model of aggression in the dog. Konrad Z. 
Lorenz has pointed out that aggressive 
behavior is influenced by two conflicting 
drives, rage and fear, and he has proposed 
that in the dog these factors can be mea­
sured with some reliability. A dog's rage is 
correlated with the degree to which its 
mouth is open or its teeth are bared; its fear 
is reflected by how much its ears are flat­
tened back. By employing facial expression 
as an indicator of the dog's emotional state 
we can attempt to learn how the dog's be­
havior varies as a function of its mood. 

If only one of the conflicting emotional 
factors is present, the response of the dog is 
relatively easy to predict. If the dog is en­
raged but not afraid, then some aggressive 
action, such as attacking, can be expected. 
When the dog is frightened but is not 
provoked to anger, aggression becomes im-

probable and the dog will most likely flee. 
Prediction is also straightforward if neither 
stimulus is present; then the dog is likely to 
express some neutral kind of behavior unre­
lated to either aggression or submission. 

What if the dog is made to feel both rage 
and fear simultaneously? The two control­
ling factors are then in direct conflict. Sim­
ple models that cannot accommodate dis­
continuity might predict that the two stim­
uli would cancel each other, leading again 
to neutral behavior. That prediction merely 
reveals the shortcomings of such simplistic 
models, since neutrality is in fact the least 
likely behavior. When a dog is both angry 
and frightened, the probabilities of both ex­
treme modes of behavior are high; the dog 
may attack or it may flee, but it will not 
remain indifferent. It is the strength of the 
model derived from catastrophe theory that 
it can account for this bimodal distribution 
of probabilities. Moreover, the model pro­
vides a basis for predicting, under particular 
circumstances, which behavior the dog will 
choose. 

To construct the model we first plot the 
two control parameters, rage and fear, as 
axes on a horizontal plane, called the con­
trol surface. The behavior of the dog is then 
measured on a third axis, the behavior axis, 
which is perpendicular to the first two. We 
might assume that there is a smooth contin­
uum of possible modes of behavior, ranging, 
for example, from outright retreat through 
cowering, avoidance, neutrality, growling 
and snarling to attacking. The most aggres­
sive modes of behavior are assigned the 
largest values on the behavior axis, the least 
aggressive the smallest values. For each 
point on the control surface (that is, for 
each combination of rage and fear) there is 
at least one most probable behavior, which 
we represent as a point directly above the 
point on the control surface and at a height 
appropriate to the behavior. For many 
points on the control surface, where either 
rage or fear is predominant, there will be 
just one behavior point. Near the center of 
the graph, however, where rage and fear are 
roughly equal, each point on the control 
surface has two behavior points, one at a 
large value on the behavior axis represent­
ing aggressive action, the other at a small 
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value representing submissive action. In ad­
dition we can note a third point that will 
always fall between these two, representing 
the least likely neutral behavior. 

If the behavior points for the entire con­
trol surface are plotted and then connected, 
they form a smooth surface: the behavior 

surface. The surface has an overall slope 
from high values where rage predominates 
to low values in the region where fear is the 
prevailing state of mind, but the slope is not 
its most distinctive feature. Catastrophe 
theory reveals that in the middle of the sur­
face there must be a smooth double fold, 

creating a pleat without creases, which 
grows narrower from the front of the sur­
face to the back and eventually disappears 
in a singular point where the three sheets of 
the pleat come together [see illustration be­
low]. It is the pleat that gives the model 
its most interesting characteristics. All the 
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AGGRESSION IN DOGS can be described by a model based on 
one of the elementary catastrophes. The model assumes that aggres­
sive behavior is controlled by two conflicting factors, rage and fear, 
which are plotted as axes on a horizontal plane: the control surface. 
The behavior of the dog, which ranges from attacking to retreating, is 
represented on a vertical axis. For any combination of rage and fear, 
and thus for any point on the control surface, there is at least one like­
ly form of behavior, indicated as a point above the corresponding 
point on the control surface and at the appropriate height on the be­
havior axis. The set of all such points makes up the behavior surface. 
In most cases there is only one probable mode of behavior, but where 
rage and fear are roughly equal there are two modes: a dog both angry 
and fearful may either attack or retreat. Hence in the middle of the 
graph there are two sheets representing likely behavior, and these 
are connected by a third sheet to make a continuous, pleated surface. 
The third or middle sheet, shown in gray, has a different Significance 
from the other two sheets: it represents least likely behavior, in this 
case neutrality. Toward the origin the pleat in the behavior surface 
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becomes narrower, and eventually it vanishes. The line defining the 
edges of the pleat is called the fold curve, and its projection onto the 
control surface is a cusp-shaped curve. Because the cusp marks the 
boundary where the behavior becomes bimodal it is called the bifur­
cation set and the model is called a cusp catastrophe. If an angry dog 
is made more fearful, its mood follows the trajectory A on the control 
surface. The corresponding path on the behavior surface moves to the 
left on the top sheet until it reaches the fold curve; the top sheet then 
vanishes, and the path must jump abruptly to the bottom sheet. Thus 
the dog abandons its attack and suddenly flees. Similarly, a fright­
ened dog that is angered follows the trajectory B. The dog remains 
on the bottom sheet until that sheet disappears, then as it jumps to 
the top sheet it stops cowering and suddenly attacks. A dog that is an­
gered and frightened at the same time must follow one of the two tra­
jectories at C. Whether it moves onto the top sheet and becomes ag­
gressive or onto the bottom sheet and becomes submissive depends 
critically on the values of rage and fear. A small change in the stimuli 
can produce a large change in behavior: the phenomenon is divergent. 
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points on the behavior surface represent the FEAR 

m6st probable behavior of the dog, with the 
exception of those on the middle sheet, 
which represent least probable behavior. 
Through catastrophe theory we can deduce 
the shape of the entire surface from the fact 
that the behavior is bimodal for some con-
trol points. 

In order to understand how the model 
predicts behavior we must consider the re­
action of the dog to changing stimuli. Sup­
pose that initially the dog's emotional state 
is neutral and can be represented by a point 
at the origin on the control surface. The 
dog's behavior, given by the corresponding 
point on the behavior surface, is also neu­
tral. If some stimulus then increases the 
dog's rage without affecting its fear, the be­
havior changes smoothly, following the up­
ward trend of the behavior surface, to more 
aggressive postures; if the rage is increased 
enough, the dog attacks. If the dog's fear 
now begins to increase while its rage re­
mains at an elevated level, the point repre­
senting its emotional state on the control 
surface must move across the graph toward 
the center. The point representing behavior 
must of course follow, but because the slope 
of the behavior surface in this region is not 
steep the behavior changes only slightly; the 
dog remains aggressive. 

As fear continues to increase, however, 
the behavior point must eventually reach 
the edge of the pleat. The novel and illumi­
nating properties of the model then become 
evident. At the edge of the pleat the sheet on 
which the behavior point has been traveling 
folds under and is thereby effectively anni­
hilated; with any additional increase in fear 
the sheet vanishes. The behavior state must 
therefore fall directly to the bottom sheet of 
the graph, which represents quite different 
modes of behavior. The aggressive states of 
the top sheet are no longer possible; there is 
no alternative but a sudden, and indeed cat­
astrophic, change to a meeker attitude. The 
model thus predicts that if an enraged dog 
is made progressively more fearful, it will 
eventually break off its attack and retreat. 
The sudden change in behavior might be 
called a flight catastrophe. 

The graph also predicts the existence of 
an opposite pattern of behavior: an attack 
catastrophe. In an initial state dominated 
by fear the dog's behavior is stabilized on 
the bottom sheet, but with a sufficient in-
crease in rage it passes the edge of the oppo-
site side of the pleat and jumps up to the top 
sheet and a more aggressive frame of mind. 
In other words, a frightened dog, if it is 
placed in a situation in which rage steadily 
increases, may suddenly attack. 

Finally, consider the behavior of a dog 
whose mood is initially neutral as its rage 
and fear are increased simultaneously. The 
behavior point is initially at the origin and 
under the influence of the conflicting stimu­
li it moves straight forward on the graph. At 
the singularity, however, where the behav­
ior surface becomes pleated, the point must 
move onto the top sheet as the dog grows 
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CONTROL FAcrORS in the model of aggression are rage and fear, which in dogs can be 
measured by facial expression. Rage is reflected by the extent to which the mouth is opened, 
and fear is revealed by the degree to which the ears are flattened back. From these indicators it 
is possible to judge the dog's emotional state, and through the model to predict its behavior. 

NEITHER RAGE NOR FEAR 
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RAGE AND FEAR 

FLIGHT NEUTRALITY 

LIKELIHOOD FUNcrION determines the behavior of the dog under the conflicting influ­
ences of rage and fear. When neither stimulus is present, the most likely behavior is neutrality; 
rage alone elicits aggression, fear alone submission. When the dog is made both angry and fear­
ful, the likelihood graph becomes bimodal: attack and flight are both favored, and neutrality is 
the least likely response. The bimodality is reflected in the behavior surface of the cusp catas­
trophe, which has two sheets representing most likely behavior where both stimuli are present. 

67 

© 1976 SCIENTIFIC AMERICAN, INC



more aggressive or onto the bottom one as it 
becomes less aggressive. Which sheet is se­
lected depends critically on the dog's state 
of mind just before it reaches the singulari­
ty. The graph is said to be divergent: a very 
small change in the initial conditions results 
in a large change in the final state. 

The Cusp Catastrophe 

The line that marks the edges of the pleat 
in the behavior surface, where the top and 
bottom sheets fold over to form the middle 
sheet, is called the fold curve. When it is 
projected back onto the plane of the control 
surface, the result is a cusp-shaped curve. 
For this reason the model is called the cusp 
catastrophe. It is one of the simplest of the 
seven elementary catastrophes, and so far it 
has been the most productive. 

The cusp on the control surface is called 
the bifurcation set of the cusp catastrophe, 
and it defines the thresholds where sudden 
changes can take place. As long as the state 
of the system remains outside the cusp, be­
havior varies smoothly and continuously as 
a function of the control parameters. Even 
on entering the cusp no abrupt change is 

observed. When the control point passes all 
the way through the cusp, however, a catas­
trophe is inevitable. 

Everywhere inside the bifurcation set 
there are two possible modes of behavior; 
outside it there is only one mode. Moreover, 
in the cusp there are just two modes of be­
havior even though the behavior surface 
there has three sheets. That is because the 
middle sheet in the pleated region is made 
up of points representing least probable be­
havior. The middle sheet is included in the 
graph primarily so that the behavior sur­
face will be smooth and continuous; the 
behavior point never occupies the middle 
sheet. Indeed, there is no trajectory on the 
control surface that could bring the behav­
ior point onto the middle sheet. Whenever 
the fold curve is crossed, the point jumps 
between the top and bottom sheets; the mid­
dle sheet is said to be inaccessible. 

The construction of this model began 
with an essentially determinist hypothesis: 
that the behavior of the dog could be pre­
dicted from its emotional state, as reflected 
in its facial expression. The bimodality of 
the resulting graph may seem at first to 
undermine that hypothesis, since the exis-
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tence of two possible modes of behavior for 
a given emotional state makes unambiguous 
prediction impossible. Indeed, it is true that 
if we know only the present emotional state 
(and if that state falls within the bimodal 
region of the graph), we cannot predict 
what the dog will do. The determinism of 
the model is restored, however, and the 
model is made more sophisticated, when we 
consider an additional factor as we make 
predictions. The behavior of the dog can be 
predicted if we know both its present emo­
tional state and the recent history of its 
emotions. It should come as no surprise 
that the effects of frightening an enraged 
dog are different from those of angering a 
frightened dog. 

Aggressiveness is not, of course, a 
uniquely canine trait, and the model de­
scribes a mechanism that might operate in 
other species as well. Consider, for example, 
the territorial behavior of certain tropical 
fishes that establish permanent nesting sites 
on coral reefs. The parameters controlling 
aggression might in this case be the size of 
an invading fish and proximity to the nest; 
the behavior is once again described by a 
cusp catastrophe. A fish foraging far from 
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CATASTROPHE MACHINE invented by the author exhibits dis­
continuous behavior that can be described by a cusp catastrophe. The 
machine consists of a cardboard disk pivoted at its center, with two 
rubber bands attached at a point near the perimeter. The unstretched 
length of each rubber band is approximately equal to the diameter of 
the disk. The free end of one rubber band is fixed to the mounting 
board and the machine is operated by moving the other rubber band, 
the free end of which is deSignated the control point. The behavior 
measured is the angle formed by the fixed point, the pivot and the 
point at which the two rubber bands are attached to the disk. Many 

movements of the control point cause only smooth rotation of the 
disk, but in some cases the disk swings suddenly from one side to the 
other. If all the positions of the control point at which such sudden 
movements take place are marked, a diamond-shaped curve is gener­
ated. The curve is made up of four cusps, each forming the bifurcation 
set of a cusp catastrophe. Moving the control point along the trajec­
tory shown in color, there is no movement at point A, but the disk 
turns suddenly at B. If the path of the control point is reversed, it 
passes B uneventfully, but the disk moves when the control point 
reaches A. Inside the cusp there are two stable positions of the disk. 

ENERGY FUNCTION governs the behavior of the catastrophe ma­
chine. The machine tends always to assume a position of minimum 

energy, that is, the disk rotates to minimize the tension on the rubber 
bands. When the control point is outside the bifurcation set, there is 
only one position of minimum energy, corresponding to the one stable 
position of the disk. As the control point is moved across the bifurca-
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tion set a second local minimum develops at A, and eventually it be­
comes deeper than the original one. The machine cannot shift to the 
new local minimum, however, because it is separated from it by a lo­
cal maximum. Only when the control point crosses the second line of 
the cusp at B is the local maximum eliminated; the equilibrium then 
breaks down and the machine moves suddenly to the new minimum. 
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its nest would flee on meeting a larger ad­
versary; once it reached the "defense" pe­
rimeter of its own territory, however, its 
attitude would suddenly change and it 
would tum to defend its nest. Conversely, if 
the fish were threatened in its nest, it would 
chase the invader, but only until it reached 
the "attack" perimeter of its own territory, 
where it would abandon the chase and re­
turn to its nest. The distance from the nest 
at which the behavior would change would 
be determined by the cusp lines of the bifur­
cation set. Because of the shape of the cusp, 
the model makes the interesting prediction 
that the "defense" perimeter is smaller than 
the "attack" perimeter. Moreover, the size 
of both perimeters depends on the size of 
the adversary; a larger invader could ap­
proach the nest more closely before the fish 
would be provoked to fight. The model 
readily accounts for an observed feature of 
fish behavior: in mating pairs of territorial 
fish the partner that happens to be closer to 
the nest offers the more vigorous defense. 

Models of Human Behavior 

The cusp catastrophe also provides an 
interpretation of certain kinds of human be­
havior. For example, an argument often in­
volves a display of aggression, and its prog­
ress is strongly influenced by anger and fear. 
A cusp catastrophe can be constructed with 
these emotions as the control parameters 
and with the intensity of the conflict as the 
behavior axis. 

At the origin on the behavior surface is 
the most unemotional behavior: rational 
discussion. As anger and fear increase, the 
behavior point moves forward on the graph 
into the pleated region of the surface, where 
the behavior is bimodal. The opponents are 
then denied access to sober discourse, and 
they must either make stronger assertions 
or make concessions. With an additional 
escalation of emotion the available modes of 
behavior diverge further, and the alterna­
tives are invective or apology; finally the 
opponents must choose between fury and 
tears. Once the argument has become a 
heated one a small increase in either anger 
or fear can cause an abrupt shift in behav­
ior. An aggressive advocate who begins to 
waver in his opinion may abandon his posi­
tion and apologize; a timid opponent forced 
to make repeated concessions may suddenly 
lose his temper and become truculent. The 
model even suggests a strategy for effective 
persuasion. If an argument is likely to in­
duce both anger and fear, then it is best to 
state one's case and leave, allowing emo­
tions to subside and enabling one's oppo­
nent to regain access to rational thought. 

Another human behavioral pattern that 
can be described by the cusp model is self­
pity and the catharsis that sometimes re­
lieves it. In this case the controlling parame­
ters, analogous to anger and fear, are the 
less extreme emotions frustration and anxi­
ety. Moreover, the behavior axis measures 
not overt behavior, which in animals is the 
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CUSP MODEL of the catastrophe machine erects a pleated behavior surface over one segment 

of the bifurcation set, such as the cusp nearest the disk_ Each point on the top and bottom sheets 
of the behavior surface gives the position of the disk having minimum energy for that position of 
the control point_ Within the bifurcation set, where there are two stable positions of the disk, 
there are likewise two local minimums, one on the top sheet and the other on the bottom sheet_ 
The middle sheet represents the local maximum in the energy function_ Catastrophic changes 
in angular position are observed whenever the control point moves all the way across the cusp_ 

only kind that can be observed, but underly­
ing moods, which in man can be identified 
directly. A typical range of moods might 
extend from anger and annoyance through 
neutral moods to dejection and self-pity. 

In the model a large increase in anxiety 
induces a persistent mood of self-pity; the 
point representing the mood is trapped on 
the bottom sheet of the pleated behav­
ior surface [see top illustration on page 75]. 
Self-pity is a defensive attitude commonly 
adopt�d by children, and it often seems that 
sympathy is powerless to alleviate it. A sar­
castic remark, on the other hand, may pro­
voke a sudden loss of temper and by releas­
ing tension may open a pathway back to a 
less emotional state. It is unfortunate that 
sarcasm should succeed where sympathy 
fails, but the cause of that irony is apparent 
in the model. The sarcasm brings an in­
crease in frustration, and as a result the 
point representing mood travels across the 
behavior surface as far as the fold curve; 
having reached the extremity of the bottom 
sheet, it is forced to make a catastrophic 
jump to the top sheet, and self-pity is trans­
formed into anger. 

These examples of the cusp catastrophe 
offer an interesting and apparently success­
ful model of certain modes of animal and 
human behavior, but it is a phenomenologi­
cal model only; it cannot yet be said to 

explain the behavior. The question of why a 
dog or a fish behaves as it does has not been 
answered but merely recast at a level of 
greater abstraction. We must now ask why 
the model works. In particular, why does 
the behavior point follow the surface to the 
edge of a pleat, then catastrophically jump 
to another sheet? Why does it not tunnel 
smoothly from one surface to another so 
that there is a gradual transition? What 
mechanism holds the state of the system on 
the behavior surface? The answers to these 
questions can best be approached through 
another example of the cusp catastrophe, 
one dealing with the behavior of a much 
simpler system than a dog, a fish or a man. 

A Catastrophe Machine 

Elementary catastrophes can be generat­
ed at will with a simple device made from 
stiff cardboard, rubber bands and a few oth­
er materials. The heart of the machine is a 
disk of cardboard pivoted at its center and 
with two rubber bands attached at a point 
near the perimeter. The free end of one rub­
ber band is attached at a point outside the 
disk; the other rubber band serves to con­
trol the motion of the disk) and the position 
of its free end is designated the control point 
[see upper illustration on opposite page]. 

The catastrophe machine is operated by 
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moving the control point in the plane of the 
disk. In many cases the result is smooth 
rotation of the disk; in one region, however, 
in the vicinity of a point diametrically oppo­
site the anchorage of the fixed rubber band, 
smooth movement of the control point can 
cause abrupt motion of the disk. If the posi­
tion of the control point is marked each 
time the disk jumps, a concave, diamond­
shaped curve is generated. This curve is 
made up of four connected cusps, the bifur­
cation sets of four cusp catastrophes., 

If we consider only one of the four cusps, 
such as the one closest to the disk, the corre­
sponding behavior surface can be construct­
ed by arranging the fold curve so that it lies 
directly over the cusp. For any position of 
the control point outside the cusp the be­
havior surface has only one sheet and the 
disk has only one stable position. If the con­
trol point is inside the cusp, the behavior 
surface has three sheets, but again the mid­
dle one is to be excluded because it corre­
sponds to an unstable equilibrium. As a re­
sult there are two stable positions for the 
disk. That the behavior of the machine con­
forms to this model can be verified by mov­
ing the control point from left to right 
across the graph. The disk moves smoothly 
and only slightly until the control point 
reaches the right edge of the cusp; the disk 
then suddenly turns as the behavior point 
falls off the extremity of the bottom sheet 
and jumps to the top one. When the path of 
the control point is reversed, the point 
crosses the right edge of the cusp unevent­
fully and the disk continues to move 
smoothly until the left edge of the cusp is 
reached; this time the behavior point jumps 
from the top sheet to the bottom one., 

In the catastrophe machine the cause of 
this behavior is readily discovered: it is the 
tendency of all physical systems in which 
friction is important to assume a state of 
minimum energy. The energy to be mini­
mized is the potential energy stored in the 
rubber bands, and the disk therefore rotates 
until the tension on the two rubber bands is 
at a minimum. At that position the machine 
is in stable equilibrium. Unless energy is 
added to the system the machine must re­
main at the equilibrium point; the process 
that keeps it there is called the dynamic. 

The operation of the dynamic can be 
demonstrated by a series of graphs, each 
one showing for a single position of the con­
trol point the energy of the machine for all 
possible rotations of the disk [see lower illus­
tration on page 68]. As long as the control 
point is outside the cusp the graph is a 
smooth curve with a single trough, or mini­
mum, and the state of the machine will al­
ways move swiftly to the state of minimum 
energy at the bottom of the trough. As the 
control point enters the interior of the cusp 
a second trough, or local energy minimum, 
develops next to the original one. This sec­
ond trough gradually grows deeper, but the 
machine cannot enter it because the two 
troughs are separated by a small peak, a 
local energy maximum. The state of the ma­
chine does not change until the second 
trough coalesces with the local maximum. 
This takes place as the control point crosses 
the second cusp line, and the state of the 
machine is then carried swiftly by the dy­
namic to a new unique position of minimum 
energy. 

The significance of the dynamic becomes 
apparent when it is revealed that the behav-
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FIVE PROPERTIES characterize phenomena that can be described by the cusp catastrophe. 
The behavior is always bimodal in some part of its range, and sudden jumps are observed be­
tween one mode of behavior and the other. The jump from the top sheet of the behavior surface 
to the bottom sheet does not take place at the same position as the jump from the bottom sheet 
to the top one, an effect called hysteresis. Between the top and bottom sheets there is an inac­
cessible zone on the behavior axis; the middle sheet, representing least likely behavior, has been 
omitted for clarity. Finally, the cusp catastrophe implies the possibility of divergent behavior. 
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ior surface of the cusp catastrophe is the 
graph of all the minimums and maximums 
of the energy function. Outside the cusp 
there is a single energy minimum and there 
are no maximums; the behavior surface 
therefore has a single sheet. At the cusp line 
a new local minimum and maximum are 
created, and consequently two new sheets 
form in the behavior surface. The state of 
the machine can never lie stably on the mid­
dle sheet because that is a position of maxi­
mum energy. 

The mathematical procedure for drawing 
the behavior surface comes from elementa­
ry calculus: the behavior surface is a graph 
of all the points where the first derivative of 
the energy function is equal to zero. It is not 
necessary to understand how this operation 
is performed; it is sufficient to know that the 
first derivative is zero wherever the graph of 
the energy function is horizontal (where its 
slope is zero). It is horizontal only at the 
minimums and maximums and at inflection 
points. The minimums form the stable top 
and bottom sheets, the maximums form the 
unstable middle sheet and the inflection 
points form the fold curve that marks the 
boundaries of the sheets. 

The behavior associated with the cusp 
farthest from the disk could be analyzed in 
the same way that we have explained the 
nearer cusp. The two cusps at the sides, 
however, differ in a crucial respect: for them 
the energy function is inverted, so that in­
side the cusp there are two points-corre­
sponding to two positions of the disk-with 
maximum energy and only one point with 
minimum energy. The dynamic compels 
the machine to remain in the single stable 
position of minimum energy. On the behav­
ior surface also the positions of minimums 
and maximums are reversed: the middle 
sheet represents stable energy minimums, 
the top and bottom sheets represent un­
stable maximums. The behavior point 
therefore can lie only on the middle sheet. 
The graph is called a dual cusp catastrophe. 

The Role of the Dynamic 

The success of catastrophe theory in ac­
counting for the behavior of the catastrophe 
machine can now be explained. The crucial 
concept is that of the dynamic, which has 
two functions. First, it holds the behavior 
point firmly on the top or bottom sheet of 
the behavior surface. If the disk is turned by 
hand against the force of the rubber bands 
and is then released, the dynamic brings 
it sharply back to equilibrium, that is, it 
brings the behavior point back onto the 
surface. Second, when the behavior point 
crosses the fold curve, it is the dynamic that 
causes the catastrophic jump from one 
sheet to the other. 

The same principles can be applied to 
the psychological models considered above. 
The likelihood functions of these models 
are analogous to the energy function in the 
catastrophe machine, except that the roles 
of minimums and maximums are reversed. 
The top and bottom sheets of the behavior 
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surface are made up of all the points repre­
senting maximum likelihood and the mid­
dle sheet is made up of those representing 
minimum likelihood. An important ques­
tion remains: What is the dynamic? In the 
model of aggression what compels the dog 
to express the most likely behavior, and in 
the model of self-pity why is the "most like­
ly mood" the one that is adopted? 

An energy minimum in a physical system 
such as the catastrophe machine is a special 
instance of a concept called an attractor. In 
this case it is the simplest kind of attrac­
tor, a single stable state, and its effect is 
like that of a magnet: everything within its 
range of influence is drawn toward it. Un­
der the influence of the attractor the sys­
tem assumes a state of static equilibrium. 

In the psychological models there must 
also be attractors, although they need not 
be as simple as this one. The attractor of 
a system that is in dynamical equilibrium 
consists of the entire stable cycle of states 
through which the system passes. For ex­
ample, a bowed violin string repeats the 
same cycle of positions over and over at its 
resonant frequency, and that cycle of posi­
tions represents an attractor of the bowed 
string. 

In the psychological models the obvious 
place to seek attractors is in the neural 
mechanisms of the brain. Of course the 
brain is far more complicated and less well 
understood than a violin string, but its bil­
lions of neurons are known to be organized 
in large, interconnected networks that form 
a dynamical system; the equilibrium states 
of any dynamical system can be represented 
by attractors. Some of these attractors may 
be single states, but others are more likely to 
be stable cycles of states, or higher-dimen­
sional analogues of stable cycles. As various 
parts of the brain influence one another, the 
attractors appear and disappear, in some 
cases rapidly and in others slowly. As one 
attractor gives way to another the stability 
of the system may be preserved, but often it 
is not; then there is a catastrophic jump in 
the state of the brain. 

Thom's theory states that all possible 
sudden jumps between the simplest attrac­
tors-points of static equilibrium-are de­
termined by the elementary catastrophes. 
Thus if the brain dynamic had only point 
attractors, it could exhibit only the elemen­
tary catastrophes. That is not the case; one 
obvious item of evidence for more compli­
cated attractors is the alpha rhythm of brain 
waves, a cyclic attractor. The rules gov­
erning jumps between cyclic attractors and 
higher-dimensional ones are not yet known; 
they must include not only elementary 
catastrophes but also generalized catastro­
phes, and their study is today an active area 
of research in mathematics. Hence as yet 
there is no complete theory for the descrip­
tion of all brain dynamics. Nevertheless, the 
elementary catastrophes provide meaning­
ful models of some brain activities. The 
models are explicit and sometimes disarm­
ingly simple, but the powerful mathemati­
cal theory on which they are based implicit-
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CATHARTIC RELEASE FROM SELF-PITY is described by a cusp catastrophe in which 
anxiety and frustration are conflicting factors influencing mood. Self-pity is induced by an in­
crease in anxiety; it can be relieved by some event, such as a sarcastic remark, that causes an in­

crease in frustration. As the control point crosses the cusp the mood changes catastrophically 
from self-pity to anger; the resulting release of tension gives access to calmer emotional states. 
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BEHAVIOR OF THE STOCK MARKET is described by a model in which the controlling 
parameters are excess demand for stock and the proportion of the market held by speculators 
as opposed to that held by investors. The behavior itself is measured by the rate at which the in­
dex of stock prices is rising or falling. The control factors are oriented not as conflicting factors 
but as normal and splitting factors. A fall from the top sheet to the bottom represents a crash; 
the slow recovery is effected through feedback of the price index on the control parameters. 
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Iy allows for the complexity of the underly­
ing neural network. 

The concept of an attractor of the brain 
dynamic provides what is needed in our 
models of human and animal behavior. The 
neural mechanism responsible for a mood 
such as self-pity is not known, but the exis­
tence of the mood as a stable state im­
plies that that mechanism is an attractor. 
Indeed, in the model of self-pity every point 
on the behavior surface corresponds to an at­
tractor for the system in the brain that de­
termines mood. If that neural system is dis­
turbed in some way, it is quickly returned, un­
der the influence of an attractor, to the behav­
ior surface, just as the catastrophe machine 
returns to equilibrium. Abrupt changes in 
mood are encountered when the stability 
of an attractor breaks down, allowing the 
mood-determining system to come under 
the influence of another attractor, toward 
which it immediately moves. 

Through this hypothetical mechanism 

catastrophe theory provides a model not 
only of expressed behavior but also of the 
activity of the brain that directs the behav­
ior. The model is probably most appropri­
ate to primitive regions such as the mid­
brain, where the networks are highly inter­
connected and therefore may act as a unit. 
(In the phylogenetically younger cerebral 
cortex, patterns of activity are much more 
complex.) The psychological models we 
have considered are largely concerned with 
emotion or mood, and it is thought that 
the part of the midbrain called the limbic 
system is primarily responsible for generat­
ing mood. 

Features of the Cusp Model 

The preceding examples and analysis 
suggest several features common to all cusp 
catastrophes. One invariant characteristic 
is that the behavior is bimodal over part of 
its range, and sudden changes are observed 
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BUCKLING OF AN ELASTIC BEAM is controlled by load and compression, which are re­
spectively normal and splitting factors in a cusp catastrophe. If the beam is fiat, an increase in 
compression forces it to buckle upward or downward. If it buckles upward, a subsequent in­
crease in load drives the control point across the cusp, causing a catastrophic downward motion. 
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from one mode of behavior to the other. In 
addition, the pattern of the sudden 
changes exhibits the effect called hysteresis, 
that is, the transition from the top sheet to 
the bottom one does not take place at the 
same point as the transition from the bot­
tom sheet to the top one. The sudden 
change does not come at the middle of the 
cusp but is delayed until the bifurcation set 
is reached. Another characteristic is that 
inside the cusp, where the behavior be­
comes bimodal, the middle zone on the be­
havior axis becomes inaccessible. Finally, 
the model implies the possibility of diver­
gence, so that a small perturbation in the 
initial state of the system can result in a 
large difference in its final state. These five 
qualities-bimodality, sudden transitions, 
hysteresis, inaccessibility and divergence­
are related to one another by the model 
itself. If any one of them is apparent in a 
process, the other four should be looked for, 
and if more than one is found, then the 
process should be considered a candidate 
for

' 
description as a cusp catastrophe. 

One process where the five qualities can 
be detected is the development of hostilities 
between nations, a situation with obvious 
analogies to the models of aggression and 
argument. The control parameters in those 
models were rage and fear; here we substi­
tute threat and cost. The behavior axis de­
scribes the possible actions of the nation, 
ranging from full-scale attack to lesser mili­
tary responses such as blockade through 
neutrality to appeasement and surrender. 
In a situation where threat and cost are both 
high public opinion often becomes bimodal 
as the nation is divided into "doves" advo­
cating surrender and "hawks" advocating 
attack. The dynamic in the model is the 
sensitivity of the government to the will of 
its constituency; the government continu­
ously adapts its policy in order to increase 
its support, and therefore it remains on the 
behavior surface. From the model we can 
deduce and recognize the possible catastro­
phes. A threatened nation may make re­
peated concessions, but there is a limit be­
yond which further threat elicits a sudden 
declaration of war. Conversely, as costs rise 
a nation may escalate a war, but there is a 
limit beyond which further costs may result 
in a sudden surrender. Hysteresis is recog­
nizable in the delays observed before declar­
ing war or surrendering. The inaccessible 
region of the behavior axis is the middle 
zone representing negotiation or compro­
mise. Finally, divergence can be observed 
in a conflict between two equally strong 
nations, in which the distribution of pub­
lic opinion is similar, but the response of 
the governments is quite different, one be­
coming increasingly aggressive as the other 
grows more submissive. 

Another candidate for analysis as a cusp 
catastrophe is the behavior of the stock 
market, where the terms "bull market" and 
"bear market" suggest an obvious bimodal­
ity. Moreover, a crash, or collapse, of the 
market is readily explained as a catastroph-
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ic jump from one sheet of the behavior sur­
face to the other. 

In the construction of the model a small 
modification is necessary. In this case the 
control axes do not diverge on each side of 
the cusp, as they do in all the previous ex­
amples; instead one axis comes straight for­
ward on the graph, bisecting the cusp, and 
the other is perpendicular to the cusp [see 
bottom illustration on page 75]. The param­
eter that bisects the cusp is called a splitting 
factor, since increasing it causes a progres­
sively larger divergence between the top 
and bottom sheets. The other factor is the 
normal factor, since at the back of the be­
havior surface the behavior increases con­
tinuously with it. 

In the stock-market model the normal 
factor is excess demand for stock; the split­
ting factor is perhaps more difficult to iden­
tify, but it might be related to the amount of 
stock held by speculators compared with 
that held by long-term investors. The be­
havior axis is best measured by the rate of 
change of the index of stock prices. A mar­
ket with a rising index is a bull market, and 
its behavior point is on the top sheet; a 
falling index, or bear market, places the be­
havior point on the bottom sheet. 

The mechanism of the crash can now be 
understood. A market with some excess de­
mand and a high proportion of speculators 
is a bull market, on the top sheet of the 
behavior surface. A crash can be precipi­
tated by any event that reduces demand 
enough to push the behavior point over the 
fold curve. The larger the share of the mar­
ket held by speculators, the severer the 
crash. One is immediately prompted to ask 
why the subsequent recovery is usually 
slow, and why there is no "upward crash" 
from a bear market to a bull one. The proba­
ble answer is that the behavior axis (the rate 
of change of the index) has an influence on 
the control parameters through a feedback 
loop. A falling, bear market discourages 
speculation, but after a while the resulting 
undervaluation encourages long-term in­
vestment; as a consequence after a crash the 
splitting factor is reduced and the market 
moves back on the graph to the region 
where the behavior surface is no longer bi­
modal. As confidence grows and produces 
excess demand the index rises, but slowly 
and smoothly, without catastrophes. Specu­
lation is now encouraged and ' investment 
discouraged, and the stage is set for another 
cycle of boom and bust. 

As was pointed out above, most applica­
tions of catastrophe theory have been in 
biology and the human sciences, where oth­
er modeling techniques are often unin­
formative, but there are many situations in 
physics (a science with a highly developed 
mathematical language) where the theory 
can contribute to understanding. One such 
instance is the transition between the liquid 
phase and the gaseous phase of matter. We 
can rewrite the equations of J. D. van der 
Waals as a cusp catastrophe where temper­
ature and pressure are conflicting control 
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PHASE TRANSITIONS between the liquid and the gaseous state of matter conform to a mod­
ified cusp model in which temperature and pressure are the control factors. Ordinarily both 
boiling and condensation take place at the same values of temperature and pressure. Thus there 
are catastrophic changes, but there is no hysteresis. Under special circumstances, however, a 
vapor can be cooled below its dew point and a liquid can be heated above its boiling point, so 
that the behavior surface is followed all the way to the fold curve. The critical point, where liq­
uid and gas exist simultaneously, is represented by the singularity where the pleat disappears. 

factors and density is the behavior axis. The 
top sheet is then the liquid phase and the 
bottom sheet the gaseous phase; the two 
catastrophes represent boiling and conden­
sation. The vertex of the cusp is the critical 
point, where liquid and gas exist simulta­
neously. By going around the back of the 
cusp a liquid can be converted into a gas 
without boiling. 

Under exceptional circumstances the 
physical System can be made to follow the 
behavior surface all the way to the edge of 
each sheet. With due care, for example, liq­
uid water can be heated well beyond its 
normal boiling point and water vapor can 
be cooled below its dew point before the 
phase transitions take place. Such super­
heating and supercooling are employed in 
the bubble chambers and cloud chambers 
used to detect subatomic particles. Ordinar­
ily, however, a substance boils and condens­
es at the same temperature and pressure, so 
that a "clilf" forms in the behavior surface, 
cutting across the middle of the pleat [see 
illustration above]. The formation of the 
cliff is explained by a rule called Maxwell's 
convention, and it reflects the fact that the 
model is a statistical one, averaging the be­
havior of many particles. 

Another cusp catastrophe in physics, 
which is derived from the work of Leon­
hard Euler in the 1 8th century, is the buck-

ling of an elastic beam under horizontal 
compression and a vertical load. The com­
pression is a splitting factor, the load a nor­
mal factor. An increase in compression 
causes the behavior point to move forward 
on the graph, into the region of the cusp, 
where the beam has two stable states, one 
buckled upward and the other downward. 
If the initial buckling is upward, increasing 
the load can move the behavior point across 
the cusp, causing the beam to snap suddenly 
downward. The effect can be observed with 
a piece of cardboard held between the fin­
gers. When it happens to a girder support­
ing a bridge, the result is a catastrophe in 
both the mathematical and the mundane 
sense. 

Another beautiful example in physics is 
provided by the bright geometric patterns 
called light caustics, which are created 
when light is reflected or refracted by a 
curved surface. A familiar caustic is the 
cusp-shaped curve that sometimes appears 
on the surface of a cup of coffee in bright 
sunlight; it is caused by the reflection of the 
sun's rays from the inside of the cup. 

Another familiar caustic, which exhibits 
temporal as well as spatial discontinuities of 
brightness, is the changing pattern on the 
bottom of a swimming pool in sunlight. The 
rainbow is a family of colored caustic cones. 
More complex caustics can be produced by 
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CATASTROPHE CONTROL BEHAVIOR 
DIMENSIONS DIMENSIONS 

FOLD 1 1 

en 
Cl CUSP 2 1 
(5 0.. 
en SWALLOWTAIL 3 1 ::J 
<..l 

BUTTERFLY 4 1 

HYPERBOLIC 3 2 
en 
<..l 
:J ELLIPTIC 3 2 1i5 
:::< 
::J PARABOLIC 4 2 

FUNCTION 

.1 x' - ax 3 

.1 x, - ax _ .1 bx2 4 2 

.1 XS _ ax- .1 bx2 _ .1 ex' 5 2 3 

.1 x6 _ ax - .1 bx2 - .1 ex' - .1 dx' 6 2 3 4 

x' + y' + ax + by + exy 

x' - xy2 + ax + by + ex2 + ey2 

x2y + yo + ax + by + ex2 + dy2 

FIRST DERIVATIVE 

x2 - a 

x' - a - bx 

x, - a - bx - ex2 

XS - a - bx - ex2 - dx' 

3x2 + a + ey 
3y2 + b + ex 
3x2 - y2 + a + 2ex 

- 2xy + b + 2ey 
2xy + a + 2ex 
x2 + 4y' + b + 2dy 

SEVEN ELEMENTARY CATASTROPHES describe all possible 
discontinuities in phenomena controlled by no more than four fac· 
tors. Each of the catastrophes is associated with a potential function 
in which the control parameters are represented as coefficients (a, b, 

c, d) and the behavior of the system is determined by the variables (x, 
y). The behavior surface in each catastrophe model is the graph of all 
the points where the first derivative of this function is equal to zero 
or, when there are two first derivatives, where both are equal to zero. 

shining a beam of light in a concave mir· 
ror or through spherical or cylindrical len· 
ses (such as a light bulb or a beaker filled 
with water). In this application catastrophe 
theory has led to a better understanding 
of the phenomenon; Thorn has shown that 
stationary caustics can have only three 
kinds of singular point. A mathematical 
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subtlety of the catastrophe-theory analysis 
of light caustics is that there is no dynamic; 
instead there is a variational principle that 
gives equal importance to both minimums 
and maximums. 

The cusp catastrophe is a three-dimen· 
sional figure: two dimensions are required 
for the two control parameters and one 

more is required for the behavior axis. Ac· 
tually the behavior axis need not represent a 
single behavior variable; in models of brain 
function, for example, it may represent the 
states of billions of neurons, all varying at 
the same time. Nevertheless, catastrophe 
theory shows that it is always possible to 
select a single behavior variable and to plot 

SWALLOWTAIL 

ELLIPTIC UMBILIC 

GRAPHS of five of the elementary catastrophes suggest the nature of 
their geometry. The .fold catastrophe is a transverse section of a fold 
curve of the cusp catastrophe, and its bifurcation set consists of a sin· 
gle point. The cusp is the highest.dimensional catastrophe that can be 

drawn in its entirety. The swallowtail is a four·dimensional catastro· 
phe and the hyperbolic umbilic and the elliptic umbilic catastrophes 
are five·dimensional. For these graphs only the three·dimensional 
bifurcation sets can be drawn; the behavior surfaces are not shown. 
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the behavior surface with respect to that 
axis only, and so to obtain the familiar 
three-dimensional graph. 

If the graph is reduced to two dimen­
sions, an even simpler model results: the 
fold catastrophe. In the fold catastrophe 
there is only one control parameter; the 
control space is a straight line and the bifur­
cation set is a single point on that line. The 
behavior space is a parabola, half of which 
represents stable states, the other half un­
stable. The two regions are separated by 
a fold point directly above the bifurcation 
point. 

The Classification Theorem 

The fold catastrophe can be regarded as a 
transverse section of the fold curve of the 
cusp catastrophe. The cusp in turn can be 
regarded as a stack of many fold catastro­
phes, together with one new singular point 
at the origin. More complicated catastro­
phes of higher dimension can be construct­
ed on the same plan: each consists of all the 
lower-order catastrophes together with one 
new singularity at the origin. 

If the control space is made three-dimen­
sional while the behavior space remains 
one-dimensional, a unique four-dimension­
al catastrophe can be constructed. The be­
havior surface becomes a three-dimensional 
hypersurface, and instead of being folded 
along curves as in the cusp catastrophe it is 
folded along entire surfaces, a configuration 
that cannot easily be visualized. The bifur­
cation set no longer consists of curves with 
cusp points in two dimensions but is made 
up of surfaces in three dimensions that meet 
in cusps at their edges. A new singularity 
appears at the origin, called the swallowtail 
catastrophe. It is impossible to draw the 
complete swallowtail catastrophe because 
we cannot draw four-dimensional pictures. 
We can, however, draw its bifurcation set, 
which is three-dimensional, and from that 
drawing it is possible to derive some geo­
metrical intuition about the swallowtail, 
just as it would be possible to describe the 
cusp catastrophe by drawing its bifurcation 
set (the cusp) in two dimensions and bear­
ing in mind that the behavior surface is bi­
modal over the inside of the cusp. The catas­
trophe is called a swallowtail because the 
bifurcation set looks somewhat like one; 
the name was suggested by Bernard Morin, 
a blind French mathematician. 

If yet another control parameter is add­
ed, a five-dimensional catastrophe is creat­
ed. The fold, the cusp and the swallowtail 
again appear as sections, and a new singu­
larity is associated with a "pocket" formed 
by the interpenetration of several surfaces. 
The shape of this pocket, or of sections of it, 
has suggested the name butterfly catastro­
phe. In the butterfly even the bifurcation set 
is four-dimensional and therefore cannot be 
drawn. It can be illustrated only through 
two- or three-dimensional sections [see il­
lustration on this page) . 

There are two more five-dimensional ca-

BUTTERFLY 

PARABOLIC UMBILIC 

SECTIONS are the only recourse for illustrating the remaining two catastrophes, since even 
their bifurcation sets have more than three dimensions. The four-dimensional bifurcation set of 
the butterfly catastrophe is shown in three-dimensional sections; the fourth dimension is the 
butterfly factor, and if it happens to be time, then one configuration evolves into the other. 
Moving from left to right in each drawing is equivalent to changing the bias factor; two-dimen­
sional "slices" reveal the effect of this factor more clearly. The four-dimensional bifurcation 
set of the parabolic umbilic catastrophe is also shown in a three-dimensional section. It is based 
on a drawing prepared with a computer by A. N. Godwin of Lanchester Polytechnic in England. 

tastrophes, formed when the control space 
has three dimensions and the behavior 
space has two dimensions. They are called 
the hyperbolic umbilic and the elliptic um­
bilic catastrophes. As in the case of the 
swallowtail, their bifurcation sets consist of 
surfaces with cusped edges, and since they 
are three-dimensional they can be drawn. 
Finally, the six-dimensional catastrophe 
generated by a four-dimensional control 
space and a two-dimensional behavior 
space is called the parabolic umbilic. Its 
geometry is complex, and again only sec­
tions of its bifurcation set can be drawn. 

By increasing the dimensions of the con­
trol space and the behavior space an infinite 
list of catastrophes can be constructed. The 
Russian mathematician V. I. Arnold has 

classified them up to at least 25 dimensions. 
For models of phenomena in the real world, 
however, the seven described above are 
probably the most important because they 
are the only ones with a control space hav­
ing no more than four dimensions. One par­
ticularly common class of processes, those 
determined by position in space and by 
time, cannot require a control space with 
more than four dimensions, since our world 
has only three spatial dimensions and one 
time dimension. 

Even the catastrophes that cannot be 
drawn can be employed in modeling phe­
nomena. Their geometry is completely de­
termined, and the movement of a point over 
the behavior surface can be studied analyti­
cally if it cannot be seen graphically. Each 
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catastrophe is defined by a potential func­
tion, and in each case the behavior surface is 
the graph of all the points where the first 
derivatives of that function are zero. 

The power of Thom's theory lies in its 
generality and its completeness. It states 
that if a process is determined by minimiz­
ing or maximizing some function, and if it is 
controlled by no more than four factors, 
then any singularity of the resulting behav­
ior surface must be similar to one of the 
seven catastrophes I have described. If the 
process is governed by only two control fac­
tors, then the behavior surface can have 
only folds and cusps. The theorem states in 
essence that in any process involving two 
causes the cusp catastrophe is the most 
complicated thing that can happen to the 
graph. The proof of the theorem is too tech­
nical and too long to be presented here, but 
its consequences are straightforward: when­
ever a continuously changing force has an 
abruptly changing effect, the process must 
be described by a catastrophe. 

After the cusp, the catastrophe with the 
richest spectrum of applications is the but­
terfly. Just as bimodal behavior determines 
the cusp model, so trimodal behavior de­
termines the butterfly. In the cusp model 
of war policy, for example, where public 
opinion is divided between "doves" and 
"hawks," the butterfly model provides for 

SURRENDER 

the emergence of a compromise opinion fa­
voring negotiation. The new mode of behav­
ior arises as a new sheet of the behavior 
surface, growing smoothly out of the back 
of the pleat [see illustration below]. 

The geometry of the butterfly is con­
trolled by four parameters. Two of them are 
familiar from the cusp models: the normal 
factor and the splitting factor. The remain­
ing two are new: the bias factor and the 
butterfly factor. The effect of the bias factor 
is to alter the position and shape of the cusp; 
it swings the main part of the cusp left or 
right, but the vertex of the cusp bends the 
opposite way. At the same time the bias 
factor moves the behavior surface up and 
down. 

The effect of the butterfly factor is to cre­
ate the third stable mode of behavior. As 
the butterfly factor increases, the cusp on 
the control surface evolves into three cusps, 
which form a triangular "pocket." Above 
the pocket is the new, triangular sheet on 
the behavior surface, between the top and 
bottom sheets. 

In order to draw the butterfly catastro­
phe two of the four parameters must be 
suppressed, and ordinarily the bias and but­
terfly factors are chosen. Their influence on 
the graph cannot be ignored, however. One 
effect of the bias factor is to reduce one side 
of the pocket until it disappears in a swal-

BUTIERFLY CATASTROPHE provides for the emergence of compromise opinion in a model 
of the development of war policy. In the butterfly four controlling parameters are required, but 
here only two are shown (threat and cost) and the other two are assumed to remain constant. 
The bifurcation set is one of the sections on the preceding page; it is a complex curve with three 
cusps and a "pocket" in the middle. On the behavior surface above the pocket is a new sheet that 
provides for a new intermediate mode of behavior. If both the threat and the cost of war are 
high, the cusp model would allow for only the extreme positions advocating attack or surrender. 
The new sheet in the butterfly model represents a compromise opinion, advocating negotiation. 
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lowtail catastrophe; the bias factor there­
fore tends to destroy a compromise. Since 
the butterfly factor controls the growth of 
the intermediate behavior sheet it enhances 
the stability of a compromise. 

Anorexia Nervosa 

A second application of the butterfly ca­
tastrophe, and an exceptionally fertile one, 
is to anorexia nervosa, a nervous disorder 
suffered mainly by adolescent girls and 
young women in whom dieting has degener­
ated into obsessive fasting. The model was 
developed by me in collaboration with J. 
Hevesi, a British psychotherapist who has 
introduced trance therapy in the treatment 
of anorexia. In a recent survey of 1 ,000 ano­
rexic patients his were the only ones to state 
they had been completely cured. 

In the initial phase of anorexia the ob­
sessive fasting can lead to starvation, and 
sometimes to death. With the passage of 
time the patient's attitudes toward food and 
her behavior become progressively more 
abnormal. After about two years a second 
phase, called bulimia, usually develops, in 
which the victim alternately fasts and 
gorges herself. The bimodal behavior of ihis 
second phase immediately suggests a cusp 
catastrophe. The anorexic is caught in a 
hysteresis cycle, jumping catastrophically 
between two extremes, and she is denied 
access to the normal behavior in between. 
Catastrophe theory also suggests a theoret­
ical cure: if a further bifurcation could be 
induced according to the butterfly catas­
trophe, a new pathway back to normality 
might be created. 

The behavior surface in this model rep­
resents the overt behavior of the patient, 
ranging from uncontrolled gorging through 
normal eating to satiety and obsessive fast­
ing. It also provides some indication of the 
underlying states of the brain; as in the 
models of aggression, we are concerned 
with emotional states that probably origi­
nate in the limbic system. Psychological evi­
dence suggests that the behavior variable 
may actually be a measure of the relative 
weight given by the limbic system to inputs 
from the body as opposed to inputs from the 
cerebral cortex. In a normal person these 
inputs may be in some sense balanced, but 
in the anorexic one or the other may tend to 
dominate. 

Among the control parameters the nor­
mal factor is hunger, which in normal peo­
ple governs the rhythmic cycle between eat­
ing and satiety. The splitting factor is the 
degree of abnormality of the anorexic's atti­
tudes toward food; the abnormality steadily 
increases as her condition deteriorates. 
Diets become more severe, entire classes of 
foods are eliminated; carbohydrates are at 
first avoided and later actively feared. 

The bias factor in the butterfly graph is 
loss of self-control, which can be measured 
by loss of weight. In the first phase of the 
disorder the anorexic's attitudes are already 
abnormal, but she has control of herself. As 
a result she is trapped on the bottom sheet 
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of the behavior surface; all the time she is 
awake the limbic system remains in states 
corresponding to a fasting frame of mind, 
even when she is eating her minimal meals. 

As the anorexic loses weight she also los­
es control, and the bias factor gradually in­
creases. As a result the cusp swings to the 
left on the graph [see illustration at right]; if 
it moves far enough, the right-hand side 
of the cusp intersects the anorexic cycle, 
bringing the sudden onset of the second 
phase. Now the anorexic is no longer 
trapped in a cycle of constant fasting but is 
caught in a hysteresis cycle, jumping from 
the bottom sheet to the top one and back 
again. In the words of a typical anorexic, 
the catastrophic jump from fasting to gorg­
ing takes place when she "lets go" and 
watches helplessly as the "monster within 
her" devours food for several hours, some­
times vomiting as well. The catastrophic 
return to fasting comes when exhaustion, 
disgust and humiliation sweep over her, an 
experience that many anorexics call the 
"knockout." 

The period of fasting that follows the 
"knockout" in the hysteresis cycle is differ­
ent from the constant fasting of the first 
phase. It lies at a different position on the 
behavior axis and might better be called 
purging. The limbic state associated with 
the earlier fasting is dominated by inputs 
from the cerebral cortex and is directed 
toward forbidding food to enter. During 
gorging the limbic system is dominated by 
inputs from the body. The limbic state un­
derlying purging is again dominated by ce­
rebral inputs, but it has a bodily compo­
nent directed toward ridding the body of 
contamination. 

The trance therapy employed by Hevesi 
reassures the patient, reduces her insecurity 
and thereby enables her to regain access to 
normal behavior. Anorexics tend to sleep 
fitfully, and when they are awake, they ex­
perience naturally occurring trancelike pe­
riods; it is on these periods that the thera­
pist builds. The trance may represent a 
third state of the limbic system, in the oth­
erwise inaccessible zone between the gorg­
ing and the purging states. When the pa­
tient is fasting she views the outer world 
with anxiety and when she is gorging she is 
overwhelmed by that world, but during the 
trance she is isolated, her mind free both of 
food and of scheming to avoid food. It is 
only then that reassurance is possible. 

Reassurance becomes the butterfly factor 
in the model. It creates the new sheet of the 
behavior surface, which lies between the 
other two sheets and which eventually gives 
access to the stable, normal region behind 
the cusp. Because therapy usually takes 
place during the fasting part of the cycle, 
entering the trance is a catastrophic jump 
from the bottom sheet onto the intermedi­
ate sheet. Coming out of the trance is anoth­
er catastrophe, which can take the patient 
either to the bottom sheet or to the top one. 

After about two weeks of therapy and 
in about the seventh session of trance the 
patient's abnormal attitudes usually break 
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ANOREXIA NERVOSA, a nervous disorder of adolescent girls and young women that in­
volves obsessive fasting, can be described as a butterfly catastrophe. Two of the controlling fac­
tors are hunger and the abnormality of attitudes toward food. In normal people hunger leads to 
a cycle of behavior that oscillates between eating and satiety; in the anorexic person, with ab­
normal attitudes, the same hunger cycle leads to quite different behavior. In the first phase of 
the disease (top) the cycle is trapped on the bottom sheet of the behavior surface, and the ano­
rexic remains constantly in a .fasting frame of mind. The second phase (bottom) is induced by a 
change in a third controlling factor, self-control. As the patient loses control of herself over a 
period of two years or more, the bifurcation set is gradually skewed to the left until the hunger 
cycle crosses the right-hand side of the cusp. She then enters a hysteresis cycle: she fasts until 
hunger causes her to catastrophically "let go," then she gorges herself until, after a "knockout" 
catastrophe, she reverts to fasting and purges herself of what she perceives as contamination. 
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down catastrophically and the personality 
is fused into a complete whole again. When 
the patient awakens from this trance, she 
may speak of it as a "moment of rebirth," 
and she finds that she can eat again without 
fear of gorging. The trance has seemingly 
opened a pathway in the brain back to the 
more balanced limbic states, so that the 
patient regains access to normal behavior. 
Subsequent trance sessions reinforce the ex­
perience. 

The model of anorexia presented here is 
incomplete in several respects. I have omit­
ted an additional control factor, drowsi­
ness, which governs the behavioral distinc­
tion between waking and sleeping and the 
associated catastrophes of falling asleep and 
waking up. As a consequence the path from 
trance to normality in the model is mislead­
ing in that it omits the catastrophe of awak­
ening. I have also not discussed the other 
half of the model, which concerns personal­
ity as opposed to behavior and which ex­
plains the escalation of the disorder, its 
rigidity, the stability of the abnormal atti­
tudes and the breakdown of that stability at 
the moment of cure. 

One of the strengths of the catastrophe­
theory model of anorexia is that it explains 
the patient's own description of herself. The 
seemingly incomprehensible terms in which 
some anorexics describe their illness turn 
out to be quite logical when viewed in the 
framework of the catastrophe surfaces. The 

HUNGER 

advantage of a mathematical language in 
such applications is that it is psychological­
ly neutral. It allows a coherent synthesis of 
observations that would otherwise appear 
to be disconnected. 

The Future of Catastrophe Theory 

Catastrophe theory is a young science: 
Thorn published the first paper on it in 
1 968.  So far its greatest impact has been on 
mathematics itself; in particular it has 
stimulated developments in other branches 
of mathematics that were required for the 
proofs of its theorems. The most important 
outstanding problems in the development 
of the theory concern the understanding 
and classification of generalized catastro­
phes and the more subtle catastrophes that 
arise when symmetry conditions are im­
posed. In addition there ·are problems asso­
ciated with how catastrophe theory can be 
employed in conjunction with other math­
ematical methods and concepts, such as 
differential equations, feedback, noise, sta­
tistics and diffusion. 

New applications of the theory are being 
explored in many fields. In physics and en­
gineering, models have been developed for 
the propagation of shock waves, the mini­
mum area of surfaces, nonlinear oscilla­
tions, scattering and elasticity. Michael V. 
Berry of the University of Bristol has re­
cently employed the umbilic catastrophes 

TREATMENT OF ANOREXIA relies on creating a third, intermediate mode of behavior. The 
new behavior is made possible by increasing the fourth control parameter of the butterfly ca­
tastrophe: reassurance. The effect of this fourth parameter is to create the pocket in the bifur­
cation set and thus to create the intermediate sheet in the behavior surface. In a system of ther­
apy developed by J. Hevesi, a British psychotherapist, reassurance is encouraged by putting 
the patient in a trance. Initially the patient enters and leaves the trance through catastrophic 
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to predict new results in the physics of caus­
tics and fluid flow, and he has confirmed 
those results by experiment. 

Thorn's own Structural Stability and 
Morphogenesis, inspired by the work of 
D'Arcy Wentworth Thompson and C. H. 
Waddington, was largely concerned with 
embryology, but as yet few biologists have 
pursued his ideas in the laboratory. I have 
constructed catastrophe models of the 
heartbeat, the propagation of nerve impul­
ses and the formation of the gastrula and of 
somites in the embryo. Recent experiments 
conducted by J. Cooke of the Medical Re­
search Council laboratories in London and 
by T. Elsdale of the Medical Research 
Council laboratories in Edinburgh appear 
to confirm some of my predictions. 

Most of my own work, however, has been 
in the human sciences, as is suggested by the 
models described in this article. An increas­
ing number of investigators are now sug­
gesting models derived from catastrophe 
theory, and in the coming decade I look 
forward to seeing those models tested by 
experiment. Only then can we judge the 
true worth of the method. 

Thorn has employed the theory in an en­
deavor to understand how language is gen­
erated. It is an intriguing thought that the 
same mathematics may underlie not only 
the way the genetic code causes the embryo 
to unfold but also the way the printed word 
causes our imagination to unfold. 
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jumps from the intermediate sheet to the top 
and bottom sheets, as in the section at right_ 
When the course of therapy has been suc­
cessful, however, the patient makes a smooth 
transition from the intermediate sheet to the 
normal modes of behavior behind the pocket. 
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