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Stress field and momentum balance.  Imagine the three-dimensional body again.  At time t, the 
material particle ( )zyx ,,  is under a state of stress ( )tzyx

ij
,,,! . Denote the distributed external 

force per unit volume by ( )tzyx ,,,b .  An example is the gravitational force, bz = !"g .  The 
stress and the displacement are time-dependent fields. Each material particle has the acceleration 
vector 22

/ tu
i
!! .  Cut a small differential element, of edges dx, dy and dz.  Let !  be the density.  

The mass of the differential element is dxdydz! . Apply Newton’s second law in the x-direction, 
and we obtain that 
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Divide both sides of the above equation by dxdydz, and we obtain that 
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This is the momentum balance equation in the x-direction.  Similarly, the momentum balance 
equations in the y- and z-direction are 
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When the body is in equilibrium, we drop the acceleration terms from the above equations. 

Using the summation convention, we write the three equations of momentum balance as 
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Hooke's law.  For an isotropic, homogeneous solid, only two independent constants are needed 
to describe its elastic property: Young’s modulus E and Poisson’s ratio ν.  In addition, a thermal 
expansion coefficient α characterizes strains due to temperature change.  When temperature 
changes by T! , thermal expansion causes a strain T!"  in all three directions.  The combination 
of multi-axial stresses and a temperature change causes strains 
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The relations for shear are 
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Recall the notation 2/
xyxy

!" = , and we have 
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Index notation and summation convention.  The six stress-strain relation may be written as 

 !ij =
1+ "

E
# ij $

"

E
# kk% ij . 

The symbol ij
!  stands for 0 when ji !  and for 1 when ji = . We adopt the convention that a 

repeated index implies a summation over 1, 2 and 3.  Thus, 
332211

!!!! ++=
kk
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Homogeneity.  When talking about homogeneity, you should think about at least two length 
scales:  a large (macro) length scale, and a small (micro) length scale.  A material is said to be 
homogeneous if the macro-scale of interest is much larger than the scale of microstructures.  A 
fiber-reinforced material is regarded as homogeneous when used as a component of an airplane, 
but should be thought of as heterogeneous when its fracture mechanism is of interest.  Steel is 
usually thought of as a homogeneous material, but really contains numerous voids, particles and 
grains. 
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Isotropy.  A material is isotropic when response in one direction is the same as in any other 
direction.  Metals and ceramics in polycrystalline form are isotropic at macro-scale, even though 
their constituents—grains of single crystals—are anisotropic.  Wood, single crystals, uniaxial 
fiber reinforced composites are anisotropic materials. 

Example:  a rubber layer pressed between two steel plates.  A very thin elastic layer, of 
Young's modulus E and Poisson's ratio ν, is well bonded between two perfectly rigid plates. A 
thin rubber layer between two thick steel plates is a good approximation of the situation.  The 
thin layer is compressed between the plates by a known normal stress σz. Calculate all the stress 
and strain components in the thin layer. 

Solution.  The stress state at the edges of the elastic layer is complicated.  We will neglect this 
edge effect, and focus on the field away from the edges, where the field is uniform.  This 
emphasis makes sense if we are interested in, for example, the displacement of one plate relative 
to the other.  Of course, this emphasis is misplaced if we are concerned of debonding of the layer 
from the plates, as debonding may initiate from the edges, where stresses are high. 

By symmetry, the field has only the normal components and has no shear components.  Also by 
symmetry, we note that 
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Because the elastic layer is bonded to the rigid plate, the two strain components vanish: 
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Using Hooke’s law, we obtain that 
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Using Hooke’s law again, we obtain that 
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Consequently, the elastic layer is in a state of uniaxial strain, but all three stress components are 
nonzero.  When the elastic layer is incompressible, 5.0=! , it cannot be strained in just one 
direction, and the stress state will be hydrostatic. 
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Summary of Elasticity Concepts 

Players:  Fields 
Stress tensor:  stress state must be represented by 6 components (directional property). 

Strain tensor:  strain state must be represented by 6 components (directional property). 

Stress field:  stress state varies from particle to particle (positional property). 

Stress field is represented by 6 functions, ! xx x, y, z;t( ) , ! xy x, y,z;t( )… 

Displacement field is represented by 3 functions, u x, y, z;t( ),v x, y,z;t( ),w x, y, z;t( ) . 

Strain field is represented by 6 functions, ! xx x, y, z;t( ),! xy x, y, z;t( ),... . 

Rules:  3 elements of solid mechanics 
Momentum balance 

Deformation geometry 

Material law 

Complete equations of elasticity:  
Partial differential equations 
Boundary conditions 

- Prescribe displacement. 

- Prescribe traction. 

Initial conditions: For dynamic problems (e.g., vibration and wave propagation), one also 
need prescribe initial displacement and velocity fields. 

Solving boundary value problems: ODE and PDE 
Idealization, analytical solutions: e.g., S.P. Timoshenko and J.N. Goodier, Theory of 
Elasticity, McGraw-Hill, New York 

Handbook solutions: R.E. Peterson, Stress Concentration Factors, John Wiley, New York, 
1974. 2nd edition by W.D. Pilkey, 1997 

Brute force, numerical methods: finite element methods, boundary element methods 
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3D Elasticity:  Collected Equations 

Momentum balance 
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Strain-displacement relation 
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Hooke's Law 
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Stress-traction relation 
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3D Elasticity:  Equations in other coordinates 

1. Cylindrical Coordinates (r, θ , z) 

Momentum balance 

u, v, w are the displacement components in the radial, circumferential and axial directions, 
respectively. Inertia and body force terms are neglected. 
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Strain-displacement relation 
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2. Spherical Coordinates (r, θ, φ) 

θ is measured from the positive z-axis to a radius;  φ is measured round the z-axis in a right-
handed sense. u, v, w are the displacements components in the r, θ, φ directions, respectively. 
Inertia terms are neglected. 
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Momentum balance 
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Strain-displacement relation 
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