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 The field projection method of Hong and Kim (2004) to identify the crack-tip cohesive zone 

constitutive relations in an isotropic elastic solid is extended to a nano-scale planar field projection 

of a cohesive crack tip on an interface between two anisotropic solids. This formulation is 

applicable to the elastic field of a cohesive crack tip on an interface or in a homogeneous material 

for any combination of anisotropies. This method is based on a new orthogonal eigenfunction 

expansion of the elastic field around an interfacial cohesive crack, as well as on the effective use of 

interaction J integrals. The nano-scale planar field projection is applied to characterizing a 

crack-tip cohesive zone naturally arising in the fields of atomistics. The atomistic fields analysed 

are obtained from molecular statics simulations of decohesion in a gold single crystal along a 

[1 12]  direction in a  plane, for which the inter-atomic interactions are described by an 

embedded atom method potential. The field projection provides cohesive traction, interface 

separation, and the surface-stress gradient caused by the gradual variation of surface formation 

within the cohesive zone. Therefore, the cohesive traction and surface energy gradient can be 

measured as functions of the cohesive zone displacements. The introduction of an atomistic hybrid 

reference configuration for the deformation analysis has made it possible to complete the field 

projection and to evaluate the energy release rate of decohesion with high precision. The results of 

the hybrid analyses of the atomistics and continuum show that there is a nano-scale mechanism of 

decohesion lattice trapping or hardening caused by the characteristics of non-local atomistic 

deformations near the crack tip. These characteristics are represented by surface relaxation and the 

development of surface stresses in the cohesive zone. 
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1. Introduction 
 

The energetics of nano-scale fracture, adhesion, and slip processes in crystalline solids are typically 

characterised by non-local and nonlinear deformation of the process zone surrounded by a non-uniform field 

of long-range interaction in a low symmetry, i.e. anisotropic, system. Historically, such nano-scale 

processes have often been analysed in the view of cohesive zone models in the context of field theory [1--8]. 

As an illustration, figure 1(a) shows the atomic positions near a crack tip on a Σ 27 grain boundary in gold 

simulated by the Embedded Atom Method (EAM) [9]. Details of such simulations will be discussed later in 

the atomistics section. Such atomic decohesion and/or slip processes in nano-scale are to be analysed from 

the perspective of a continuum cohesive zone model as depicted in figure 1(b). In the cohesive zone model, 

the surrounding elastic fields in equilibrium with the state of cohesive zone separation represent the 

non-uniform deformation characteristics of a long-range interaction with external loading agencies, while 

the cohesive zone constitutive relations epitomise the non-local and nonlinear deformation characteristics 

involved in such inter-atomic separation processes. A major energy flux from the external loading to the 

fracture process zone, upon virtual crack growth, is transmitted through the non-uniform deformation field 

of a long range interaction. Therefore, it is desirable to characterise the deformation field based on the 

energetic interaction integrals, e.g. interaction J integral [10], between the atomistic deformation fields 

(figure 1(a)) and the elastic fields of a cohesive zone model (figure 1(b)). Recently, Hong and Kim [11] 

found that, due to the crack geometry of the near-field boundary, the elastic fields of cohesive zone models 

can be decomposed into sets of eigenfunction fields, mutually orthogonal to each other for interaction J 

integrals. The eigenfunction fields form bases for the interaction integrals to characterise atomic decohesion 

and/or slip processes. Such a characterising scheme of decohesion and/or slip processes through interactions 

with the eigenfunction fields of a cohesive zone model is called a planar field projection method (FPM). A 

formulation of the planar FPM for a crack-tip cohesive zone will be developed in this paper (Part I), while 

another formulation for a dislocation-core cohesive zone will be presented in a sequel paper (Part II). Once 

the atomic decohesion process is characterised by the planar FPM, the field-theoretical aspects of the 

cohesive zone model will be particularly useful in studying the energetic stability of fracture, adhesion, and 

slip processes.  

While, in crystalline solids, the far field lattice deformation surrounding a fracture process zone can be 

analysed by elastic field theories, the discrete and quantum mechanical nature of atomic debonding in the 

process zone has been effectively modelled with atomistic simulations [12--18]. In atomistic simulations, 

fracture-process modelling requires simulation techniques that can handle computationally large numbers of 

atoms with sufficient accuracy. For such reasons, the atomic resolution aspects of fracture processes have 
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been historically modelled by atomic statics, i.e. atomistics, or molecular dynamics simulations with various 

semi-empirical inter-atomic potentials, employing limited ab initio calculations to enhance the accuracy of 

the simulations [19]. The inter-atomic potentials used in the fracture studies include multi-body potentials in 

general [20--22] and EAM potentials for metals [16, 18, 23].  One of the major difficulties in the atomistic 

simulation of nano-scale fracture processes is creating a reduced representation of the decohesion processes 

for various modes of separation from the simulation results. Such difficulty stems from the fact that the 

energetics of atomistic separation processes in the nano-scale is highly non-local and nonlinear. Such 

non-local and nonlinear behaviours are treated as cohesive zone constitutive relations in a cohesive zone 

model [5, 6, 8]. The energetic analysis of fracture processes with a cohesive zone model is particularly 

useful for solving technologically important problems of controlling the various nano-scale mechanisms of 

the toughening or embrittlement of solids, including nano-scale solid solution toughening, hydrogen 

embrittlement, and effects of grain-boundary solute segregation [24]. 

In conventional cohesive zone models, the cohesive zone is typically characterised by the separation of 

two cohesive surfaces and associated tractions, assuming that the tractions are in direct equilibrium with the 

stress state in the surrounding elastic body. In such cohesive zone models, tractions between the surrounding 

elastic body and cohesive zone surfaces are continuous across the cohesive zone. However, in nano-scale 

atomic decohesion processes, the surface stresses in the cohesive surfaces must be included in the cohesive 

zone model, and the tractions between the elastic body and cohesive surfaces become discontinuous across 

the cohesive zone. Thus, the cohesive zone constitutive relations include not only the separations of 

cohesive surfaces and the associated work-conjugate tractions, but also the cohesive-zone centre line (CCL) 

displacements and associated work-conjugate surface stresses. The importance of the surface stresses in 

surface energetics has been well noted by Schiotz and Carlsson [18] and Wu and Wang [25], but it has not 

been well reflected in cohesive zone models. Furthermore, in conventional cohesive zone models, attention 

has been focused mainly on finding the surrounding elastic field for a known state of the cohesive zone, i.e. 

separation or traction distributions used to solve boundary value problems. However, identifying the 

cohesive zone constitutive relations from the state of the surrounding far field is an inverse problem. A 

solution procedure for such inverse problems is called the Field Projection Method (FPM). Recently, Hong 

and Kim [11] have expressed a general form of the elastic fields of a crack tip with a cohesive zone in a 

homogeneous isotropic material in terms of an eigenfunction expansion of complex functions in the 

Muskhelishvili formalism [26]. They also showed an effective use of the eigenfunction expansion in an 

energetically meaningful FPM, providing an inversion method based on interaction J integrals [10]. 

However, a class of eigenfunctions that corresponds to the surface stresses in the cohesive zone was not 

included in their formulation. This class of eigenfunctions is important because surface stresses play 

 3



S. T. Choi and K. –S. Kim 

significant roles in nano-scale fracture processes. The FPM with a complete set of eigenfunctions is 

considered particularly useful for a multi-scale analysis of fracture processes with atomistic simulations and 

for the experimental measurement of nano-scale cohesive zone properties, including surface stresses. 

Another important aspect of nano-scale fracture processes in crystalline materials is that deformation 

develops in a low symmetry system. In other words, the elastic properties are anisotropic and the separation 

or slip processes are concentrated in a limited set of inter-atomic planes. Therefore, the elastic fields 

surrounding a cohesive zone must be analysed with anisotropic elasticity. A brief background on the 

mathematical descriptions of anisotropic elastic crack tip fields follows. Eshelby et al. [27], Stroh [28], and 

Lekhnitskii [29] developed a linear theory of anisotropic elasticity for a generalised two-dimensional 

deformation, known as the Stroh formalism. Using the Stroh formalism, Suo [30] expressed the asymptotic 

elastic field of a sharp crack on the interface in an anisotropic bi-material whose near-tip stress field has 

oscillatory characteristics in general. Suo [30] decomposed the asymptotic crack-tip stress fields in 

accordance with the eigenvector direction of the interfacial crack tip characteristic equation for 

mathematical convenience. Subsequently, Qu and Li [31] obtained another eigenfunction expansion of an 

interfacial crack, of which stress intensity factors degenerate to conventional stress intensity factors as the 

bi-material elastic properties reduce to those of homogeneous anisotropic materials. In doing so, Qu and Li 

[31] introduced a new matrix function that plays an important role in representing the oscillatory 

characteristics of an interfacial crack tip. Later, Beom and Atluri [32] and Ting [33] independently identified 

expressions of the generalised Dundurs parameters of dissimilar anisotropic materials, which degenerate to 

conventional Dundurs parameters [34] as the elastic anisotropy is reduced to isotropy. Beom and Atluri [35] 

later considered the general Hilbert arc problems to obtain a complete eigenfunction expansion of an 

interfacial crack, which includes the admissible regular fields, supplementing the non-regular field of Qu 

and Li [31], at the crack tip.  

In this paper, a complete set of eigenfunctions for an interfacial cohesive crack tip field in an anisotropic 

bi-material is provided and the corresponding FPM is also presented. The complete set includes a subset of 

eigenfunctions corresponding to the elastic fields caused by surface stresses in the cohesive zone. The 

complete set of eigenfunctions is orthogonalised for interaction J integrals between the conjugate 

eigenfunctions within the set. The mathematical structure of the formulation is general and is also applicable 

to cohesive crack tip fields in homogeneous materials, regardless whether the material is anisotropic or 

isotropic. Interaction J integrals between atomistic deformation fields at the nano-scale and the 

eigenfunction fields of the mathematical model build up the nano-scale planar FPM for characterising crack 

tip decohesion and/or slip processes. While the method is applicable to either experimentally measured or 

atomistically simulated deformation fields, the method is tested to characterise the atomic decohesion 
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processes in gold with deformation fields from EAM simulations. The test results show that the FPM 

measures the bounds of the surface energy, as well as the anisotropic surface stress of a solid surface, as a 

function of cohesive zone displacements. In addition, it is found that the field-projection-nominal (FPN) 

peak strength of the atomic decohesion is substantially lower, e.g. approximately 4 GPa, than the 

conventionally estimated rigid-separation-nominal (RSN) strength, e.g. approximately 15 GPa, for gold 

(111) separation. Furthermore, this hybrid method of decohesion analysis revealed that there is a nano-scale 

mechanism of decohesion lattice trapping, caused by surface stresses, prior to the dislocation emission or 

crack growth from a sharp crack tip.  

The structure of this paper is as follows. In section 2, the configurational balance in a nano-scale 

crack-tip cohesive zone model is discussed in terms of conservation integrals, including the surface and 

interface energies and stresses. In section 3, the eigenfunction expansion is carried out to completely 

describe the elastic fields near an interfacial crack-tip cohesive zone. Then, a J-orthogonal representation of 

the eigenfunction expansion is made in section 4 to develop the nano-scale FPM in section 5. Subsequently, 

in section 6, the FPM is applied to the deformation fields near a crack tip on a (111) plane with a prospective 

crack growth direction of [1 12] , generated by EAM simulations. In section 7, the results of the analysis 

carried out in section 6 are discussed. Finally, in section 8, some conclusions are provided. In addition, three 

appendices, A, B, and C, are attached to provide necessary information on the Stroh matrices, a 

complex-function representation of the anisotropic elastic field of a bi-material interface crack tip, and the 

orthogonalisation of the interaction J integral and orthogonal polynomials.  

Throughout this paper, a lower case bold Latin character represents a three-component column matrix 

and an upper case bold Latin character represents a three by three matrix. All italic bold characters indicate 

tensor quantities, while { } applied to a tensor stands for a matrix composed of the Cartesian components of 

the tensor associated with the Cartesian coordinates 1 2 3,   and x x x , for which the base vectors are 

represented by  respectively. The symbol I stands for the identity matrix. It is remarked 

that a summation convention is not employed in this article. Subscript indices in < > refer to upper material 

with 1 and lower material with 2. A prime over a function represents the derivative with respect to the 

associated argument. A tilde over a matrix symbol indicates that the matrix is diagonal; a tilde over a 

variable designates a normalised variable; a hat over a function symbol represents an auxiliary function; and 

bars over any characters denote complex conjugates. 

,  1,2 and 3,j j =e
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2. Configurational Force Balance in a Nano-Scale Crack-Tip Cohesive Zone Model 
 

A schematic of a nano-scale crack-tip cohesive zone model is shown in figure 2, while the coordinates to 

describe the cohesive zone model are depicted in figure 1(b). The cohesive zone model is composed of two 

elements: one for a body region (a) and the other for a surface region (b). For the body region, the 

conventional elastic field description is applicable. Tractions at the boundary between the surface element 

and the body element along the cohesive zone, c x c− ≤ ≤ , are denoted as +t  for the upper part and −t  for 

the lower part of the cohesive zone. The tractions are related to the stress fields at the boundary of the upper 

body region <1>, , as , and at the boundary of the lower body region <2>, ,  as +σ 2
+ += ⋅t σ e −σ 2

− −= ⋅t σ e . 

Since the two elements are regarded in reversible static equilibrium in this model, the proper conservation 

integrals can be applied for the configurational force balances. A relevant conservation integral for this 

geometry is the J integral [36], defined as:  

 

( ) ( ){ }1 1[ ]   [ ( )]J S symϕΓ Γ
= ⋅ ∇ − ⋅∇ ⋅ ⋅∫ e n u e u σ n ds ,                                     (1) 

 
where S symbolises an elastic field collectively representing the elastic displacement field, u , and the 

elastic stress field, ; the vector  denotes the outward unit normal of the integral path, Γ ; and the strain 

energy density, 

σ n

ϕ , is a function of the symmetric part of the displacement gradient, , which is the 

linear strain. The J integral vanishes for a closed contour that encloses a regular region.  

( )∇usym

In cohesive zone models, the J integral along a contour, Γ , that starts from the lower crack face and ends 

at the upper crack face of the body region, has an energy balance relationship defined as 

 

( )1 2 12J γ γ γΓ < > < > < >= + − ,                                                     (2) 

 

where γ  represents the surface energy density of materials <1> or <2> or the interface <12>.  

When the contour  only encloses the cohesive zone boundary in the body region, the J integral can be 

expressed as 

0Γ
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( ) ( )

0 1
1 1

1
1 1 1 1

1
1 1

1 1
2 2

,

c

c

c

c

ac a

c

J dx
x x

dx
x x x x

dx
x x

+ −
+ −
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⎛ ⎞∂ ∂

= ⋅ + ⋅⎜ ⎟∂ ∂⎝ ⎠

∫

∫

∫
δτ

u ut t

u u u ut t t + t

u t

                      (3) 

 
where τ  is the traction jump, ; + −−t t δ  is the displacement jump, + −−u u ;  is the average traction, 

; and  is the average displacement, . The average displacement is the 

cohesive-zone centre line (CCL) displacement. In conventional cohesive zone models, τ  vanishes; 

however, in nano-scale cohesive zone models, the average surface stress, , along the 

cohesive zone can balance the traction jump as 

at

( )+ −t + t / 2

a + −= +Σ Σ Σ

au ( ) / 2+ −+u u

( ( ) / 2)

a∇ ⋅ = 0τ + Σ , neglecting the second order effect of CCL 

curvature. For a one-dimensional cohesive zone as shown in figure 2(b), the net force balance of the surface 

element becomes         

 

1 1 0 1 0 2 0 12

c

c
dxτ Σ Σ Σ< > < > <−

= + −∫ > ,                                                              (4) 

 

where 0 µΣ < > for 1,2 or 12µ = means 11 µΣ < > on a free surface for surface stresses or on a fully bonded 

interface for an interface stress. On a free surface, 0 0 : sγ γ= + Σ ε  with a surface strain of sε  [25].  

When the elastic field is linear, two independent equilibrium fields,  and , can be 

superposed and the interaction J integral, 

[ , ]S σ u ˆ ˆˆ[ , ]S σ u

int ˆ[ , ]J S SΓ  [10], between  and  along the path  is defined as S Ŝ Γ

 

( )( ) ( ) ( )

int

1 1 1

ˆ ˆ ˆ[ , ] [ ] [ ] [ ]

ˆ ˆ ˆ: .

J S S J S S J S J S

ds
Γ Γ Γ Γ

Γ

= + − −

= ⎡ ⋅ ∇ − ⋅∇ ⋅ ⋅ − ⋅∇ ⋅ ⋅ ⎤⎣ ⎦∫ e n σ u e u σ n e u σ n
                             (5) 

 

The [ ]J SΓ  integral, as well as the interaction integral int ˆ[ , ]J S SΓ , are path independent among homologous 

paths that enclose a cohesive zone. Since the interaction J integral provides a way of interrogating an 

unknown field with a known set of fields, a well characterised set of elastic eigenfunction fields of a 

crack-tip cohesive zone is developed in the following sections; these functions can be used for such 

interrogations. 
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3. Eigenfunction Expansion of Interfacial Cohesive Crack-Tip Elastic Fields 
 

A displacement field, u , and the corresponding stress field, σ , of an anisotropic elastic medium in static 

equilibrium without a body force in a two-dimensional 1 2 )( ,x x  plane can be expressed in a compact form as 

[27, 28] 

 

[ ]{ } 2Re ( )z= fAu ,                                                                       (6) 

{ }
{ }

1

2

( )2Re
( )

z
z

⎡ ⋅ ⎤ ⎡ ⎤′−
=⎢ ⎥ ⎢ ⎥⋅ ′⎣ ⎦⎣ ⎦

Bλf
Bf

e σ
e σ

,                                                                (7) 

 

where { }3

1
( ) ( )j j jj
z f z

=
≡ ∑f e  is a column matrix representation of the three analytic functions of the 

respective complex variables ; the Stroh eigenvalue, 1jz x p x= + 2j jp , and the Stroh matrices,  and , 

are defined in appendix A. The matrix  is a diagonal matrix with the components 

A B

λ j jkp δ , where jkδ  is the 

Kronecker delta. The argument  represents z jz  for the corresponding j’th row of the function matrix .  ( )zf

An anisotropic bi-material with its interface on the 1x  axis has a traction-free, semi-infinite interfacial 

crack along 1x c< −  and a cohesive zone on 1c x c− ≤ ≤ , as shown in figure 1. The elastic fields around the 

cohesive zone can be described by the superposition of the non-singular eigenfunctions of sharp-crack-tip 

elastic fields with respect to 1x c= −  and 1x c= , as Hong and Kim [11] did for a cohesive crack tip field in a 

homogeneous isotropic solid. In addition, the elastic field caused by the surface stress along the cohesive 

zone faces must be superposed for nano-scale cohesive crack tip fields; the surface stress appears to be a 

traction jump between the two faces of the cohesive zone. Based on the eigenfunction expression, (B1) in 

appendix B, of a sharp-crack-tip elastic field, the column matrix function ( )z′f of the bi-material cohesive 

crack tip field can be described as 

 

{ }1

1 2 2

1( ) ( 1) ( ) ( ) ( ) ( )
2

( 1) ( ) ( ) ,        
2

i iz i z c z z c z c

i z z c z

µ ε ε
µ µ

µ
µ

− − −
< > < >

−
< >

′ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤+ − − − +⎣ ⎦ ⎣ ⎦

f B I β Y g Y h

B I α q r

z z c−
                   (8) 
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for 1 or 2µ =  referring to materials 1 or 2, respectively. The four analytic matrix functions , , 

, and  can be expressed as a series, , , , and 

, for which , , , and  are real matrix base functions, for example, 

( )zg ( )zh

( )zq ( )zr
0

( )n nn
z∞

=∑ G g
0

( )n nn
z∞

=∑ H h
0

( )nn
z∞

=∑ Q qn

n0
( )nn
z∞

=∑ R r ( )n zG ( )n zH ( )n zQ ( )n zR

( ) ( )n nz z=G G , and , , , and  are column matrices of real coefficients. The generalised Dundurs 

parameter real matrices , the bi-material oscillatory index 

ng nh nq nr

 and α β ε , and the bi-material real function 

matrix  for an arbitrary function [ ( )zηY ] ( )zη  are defined in appendix B for anisotropic bi-materials. It is 

worth noting that the oscillatory fields near the two ends of the cohesive zone resulting from the 

eigenfunction expansion given in equation (3) do not give physically unacceptable phenomena because it 

does not include a term of diverging stress in the eigenfunction expansion.  

The decomposition of the function ( )zµ< >′f  into , , , and  in equation (8) is 

analogous to that made by Hong and Kim [11] for a cohesive crack tip field in a homogeneous isotropic 

solid. The function  is responsible for the traction distribution at the cohesive zone, while the function 

 is responsible for the separation variations along the cohesive zone. To take into account the elastic 

field of the surface energy gradient along the cohesive zone, which was ignored by Hong and Kim [11], the 

 function is introduced here. The term  is important for nano-scale fracture problems; however, it 

is negligible for large-scale fracture problems in general. Including a regular field near the cohesive zone 

represented by the function , for which the corresponding traction along 

( )zg ( )zh ( )zq ( )zr

( )zg

( )zh

( )zq ( )zq

( )zr 1x  axis vanishes, the 

holomorphic function  in equation (8) constructs a complete set of eigenfunction expansions near a 

cohesive crack tip on an interface between two anisotropic solids. In the following section, the 

eigenfunctions are orthogonalised to the orthogonal base functions, , , , and  with 

respect to the interaction J integral [10]. The eigenfunction expansion based on such base functions is called 

the J-orthogonal representation. 

( )zµ< >′f

( )o
n zG ( )o

n zH ( )o
n zQ ( )o

n zR

 

4. J-Orthogonal Representation of the Cohesive Zone Eigenfunction Expansion 

 

In this section, a set of well characterised eigenfunction fields for a cohesive zone is developed and these 

eigenfunction fields can also be conveniently used to interrogate other elastic fields with interaction J 

integrals. In particular, the interaction will be between configurational-work-conjugate sets of 

eigenfunctions. When the interaction J integral, equation (5), is applied to the contour  along the faces of 

the cohesive zone, the traction and displacement gradient along the cohesive zone are required to evaluate 

0Γ
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the interaction J integral. The traction along the cohesive zone, equation (7), is expressed explicitly with the 

eigenfunction expansion in equation (8) as 

 

{ } 2
2 1 1 1 1 1( ) ( ) ( ) ( 1) ( 1) ( )i 2

1x c x x c x x c xε µ µ
µ

−
< >

⎡ ⎤ ⎡ ⎤⋅ = + + + − − −⎣ ⎦ ⎣ ⎦Y g I α qe σ − ,                         (9) 

 

for 1 or 2µ =  referring to materials 1 or 2, respectively; while the displacement gradient along the cohesive 

zone is given by  

 

{ } { }1
1 1 1 1 1

1
1 1 1

2 2 1
1 1

( ) Im ( 1) ( ) ( )

( 1) ( 1) ( ) ( )

( 1) ( 1) ( ) ( 1) ( ),

i

i

x i c x x c x

i c x e x c x

1x c x x

µ ε
µµ

µ µ ε πε
µ

µ µ µ
µ µ

− −
< >< >

− −
< >

−
< > < >

⎡ ⎤ ⎡ ⎤⋅∇ = − − + +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− − − − − + − −⎣ ⎦ ⎣ ⎦

M I β Y g

L I β Y h

W I α q L I α r

e u

                 (10) 

 

for 1 or 2µ =  referring to materials 1 or 2, respectively. Definitions of the elastic property matrices , , 

and  used in equation (10) are given in appendices A and B.  

M L

W

Then, by inserting equations (9) and (10) into equation (5), the expression of the interaction J integral is 

reduced to 

 

{ } { } { } { }

[ ] [ ]{ }
( ) ( )

o

int
2 1 1 1 2 1 1 1 1

2 2 1 1
1 1 1 1 1 1 1 1

1 12 2
1 1 1 2 1 1 1 2 1

ˆ ˆ ˆ[ , ] ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ4 ( ) ( ) ( ) (

c T T

c

c T T
c cc

c T T

c

J S S x x x x dx

c x x x x x x x dx

c x x x x x dx

η η

Γ −

− −

−

− −
< > < > < > < >−

= − ⋅ ⋅∇ + ⋅ ⋅∇

= − +

⎡ ⎤+ − + + +⎣ ⎦

∫

∫
∫

g U Y h g U Y h

q L L r q L L r

e σ e u e σ e u

1) ,

              (11) 

 

where the double bracket  indicates a jump across the cohesive zone; the elastic property matrix , 1−U , 

is defined as ( )( )1 1 1 2
1 2

− − −
< > < >= + +U L L I β ; and the function [ ]1 1 1( ) ( ) /( ) coshi

c x c x c x εη πε−= − + . In 

deriving the second equality of equation (11), various identity relationships of equation (B5) in appendix B 

were used, and only four terms survived among the sixteen interaction pairs between { , , , 

} and { , , , }. The result shows the distinct configurational-work-conjugate pairs 

of { , } and { , }. Equation (11) can be further reduced by constructing orthogonal base 

functions of , , , and  as , 

( )zg ( )zh ( )zq

( )zr ˆ ( )zg ˆ ( )zh ˆ ( )zq ˆ( )zr

( )zg ( )zh ( )zq ( )zr

( )zg ( )zh ( )zq ( )zr ( ) ( )o T T
n z z−=G V VPn ( ) ( )o T T

n z z−=H V VPn

I

, 

, and , where z  denotes ;  denotes a Hermitian matrix defined in ( ) ( )o
n nz U z=Q I ( ) ( )o

n nz U z=R /z c V
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appendix C;  denotes the diagonal matrix functions of normalised Jacobi polynomials with the 

components 

( )zPn
( , ) ( , )( )j j j ja a a a

jk n nP zδ θ ; (1 2,1 2) (1 2,1 2)( ) ( )n n nU z P z θ=  denotes the Chebyshev polynomials of the 

second kind; and  denotes the normalisation factors of the Jacobi polynomial . The explicit 

expression of  and the details of the orthogonalisation with Jacobi polynomials for interaction J 

integrals are provided in appendix C.  

( , )a b
nθ ( , ) ( )a b

nP z

( , )a b
nθ

With the orthogonal eigenfunctions, the stress function ( )zµ< >′f  is then expressed as 

 

{ }
0

( ) ( ) ( ) ( ) ( )
N

o o o o
n n n n n n n

n
z z z zµ µ µ µ µ< > < > < > < > < >

=

′ = + + +∑f g h qG H Q R nz r ,                              (12) 

 

where , , , and  are column matrices of real coefficients, and ng nh nq nr

 

[ ]

1

1 1

2 1

1

1( ) 1 ( 1) ( 1) ( ),
2

1( ) 1 ( 1) ( 1) cosh ( ),
2

( ) 1 ( 1) ( ),
2

( ) ( 1)
2

o i
n n

o i o
n n

o o
n n

o
n

z z i z z

z z i z

iz z z

iz

µ ε
µ µ

µ ε
µ µ

µ
µ µ

µ
µ µ

πε

− −
< > < >

− − −
< > < >

−
< > < >

−
< > < >

⎡ ⎤ ⎡ ⎤= + − − +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − −⎣

B I β Y G

B I β Y Y H

B I α Q

B I α

G

H

Q

R ( ).o
n z⎦ R

o

z
                        (13) 

 

Expressing the auxiliary field, as well as the actual field of interest, in the same form of eigenfunction 

expansion, equation (12), and substituting the eigenfunctions into equation (11), the interaction integral, 

o

int ˆ[ , ]J S SΓ , is obtained in terms of the coefficients of the eigenfunctions: 

 

( ) ( )
o

1 1int
1 2 1 2

0

ˆ ˆ ˆ ˆ ˆ[ , ] 4 4
2

N
T T T T
n n n n n n n n

n

cJ S S π − −−1 −1
Γ < > < >

=

⎡ ⎤= + + + + +⎣ ⎦∑ g U h g U h q L L r q L L r< > < > .           (14) 

 

When the auxiliary field is chosen to be the actual field, the interaction integral becomes twice the value of 

the J integral. As shown in equation (14), the eigenfunction fields selectively interact with other fields in the 

interaction J integral. Therefore, the interaction J integrals with the eigenfunctions can be used as filters for 

the fields to be interrogated. In addition, the interaction J integral is path independent so that the integral can 

be evaluated at some distance from the cohesive zone. In other words, the cohesive zone characteristics can 
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be assessed using far-field data. The method of assessing local properties with far-field data with an FPM is 

discussed in the following section.  

 

5. Field Projection Method for a J-Equivalent Crack-Tip Cohesive Zone 

 
In the previous section it was shown that, with the base eigenfunctions, an infinite series of four real column 

matrices, , , , and , completely determine the field surrounding the cohesive zone in the cohesive 

zone model. In this section, formulas to determine the four real column matrices with interaction J integrals 

are provided. The four real column matrices, , , , and , are responsible for cohesive zone 

tractions, separations, surface stresses, and cohesive-zone centre line (CCL) displacements, respectively. If 

an auxiliary field of  for which 

ng nh nq nr

ng nh nq nr

( )ˆ
n

kSh { }ˆ
n k=h e  (k=1,2,3) and ˆ ˆ ˆn n n= = =g q r 0 , i.e. { }ˆ ( ) ( )o

n kz zµ µ< > < >′ =f eH , 

is used in equation (14), the interaction J integral is simply expressed as . 

Subsequently, this relationship can be easily inverted to become 

o

int ( )ˆ[ , ] / 2) { }
n

k T
n kJ S S cπ −1

Γ =h ( g U e

 

int (1) int (2) int (3)2 ˆ ˆ ˆ[ , ], [ , ], [ , ] ,    1,2, ,
n n n

T

n J S S J S S J S S n N
cπ Γ Γ Γ

⎡ ⎤= =⎣ ⎦h h hg U .                            (15a) 

 

Similarly, with an auxiliary field, , of ( )ˆ
n

kSg { }ˆ ( ) ( )o
nz zµ µ< > < >′ =f eG k  for  k=1,2,3,  

 

int (1) int (2) int (3)2 ˆ ˆ ˆ[ , ], [ , ], [ , ] ,   1,2, ,
n n n

T

n J S S J S S J S S n N
cπ Γ Γ Γ

⎡ ⎤= =⎣ ⎦g g gh U                            (15b) 

 

is obtained; with an auxiliary field, , of ( )ˆ
n

kSr { }ˆ ( ) ( )o
nz zµ µ< > < >′ =f eR k  for  k=1,2,3, 

 

( ) int (1) int (2) int (3)
1 2

1 ˆ ˆ ˆ[ , ], [ , ], [ , ] ,   1,2, ,
2 n n n

T

n J S S J S S J S S n N
cπ < > < > Γ Γ Γ

⎡ ⎤= + =⎣ ⎦r r rq L L ;                (15c) 

 

and finally with an auxiliary field, , of ( )ˆ
n

kSq { }ˆ ( ) ( )o
nz zµ µ< > < >′ =f eQ k  for  k=1,2,3, 

 

( ) int (1) int (2) int (3)
1 2

1 ˆ ˆ ˆ[ , ], [ , ], [ , ] ,   1,2, ,
2 n n n

T

n J S S J S S J S S n N
cπ < > < > Γ Γ Γ

⎡ ⎤= + =⎣ ⎦q q qr L L .                  (15d) 
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As shown in equations (15a-d), for an arbitrary elastic field of a cohesive zone model, the field near the 

cohesive zone determined by , , , and  can be assessed by interaction J integrals along a contour 

 at a distance away from the cohesive zone. This is an attractive feature of the FPM for experimental 

measurements or atomistic simulations of the cohesive zone characteristics. As long as the elastic-field data 

in a region that encloses the cohesive zone at some distance is available, cohesive zone characteristics can be 

evaluated. When the FPM is applied to an elastic field that is linearly elastic all the way close to a planar 

cohesive zone, as shown in figure 1(b) or figure 2, the assessment can achieve an arbitrary accuracy with a 

large number, N, in equations (15a-d).  However, when the method is applied to an elastic field that 

embraces not only a planar cohesive zone but also a non-local and/or nonlinear bulk deformation region near 

the cohesive zone, the results of the FPM with a finite number N must be interpreted as J-equivalent 

cohesive zone behaviour. In other words, the FPM is regarded as a mechanical test in which the region 

enclosed by the elastic field is energetically stimulated by the J-interaction integral operations with 

appropriate eigenfunction fields, and the , , , and  values determined by the interaction J 

integrals are considered as responses to such mechanical stimuli. The responses of the J-evaluated  are 

interpreted as cohesive zone tractions of a J-equivalent cohesive zone, while those of the J-evaluated  are 

understood as cohesive zone separation gradients of the J-equivalent cohesive zone. Similarly, the responses 

of the J-evaluated  are taken as the surface stress gradient of the J-equivalent cohesive zone, and the 

responses of the J-evaluated  are taken as the CCL displacement gradient of the J-equivalent cohesive 

zone.  

ng nh nq nr

Γ

ng nh nq nr

ng

nh

nq

nr

In the following section, the FPM is utilised to probe the J-equivalent cohesive zone characteristics of 

atomic decohesion in a [1 12]  direction on a  plane of a gold single crystal, with crack tip deformation 

fields from EAM simulations. In the analysis, it is found that N=3 with an optimum cohesive zone size is 

enough to describe the J-equivalent cohesive zone characteristics, since the self-equilibrium fields of the 

high spatial frequency traction distribution at the cohesive zone rapidly decay away from the cohesive zone. 

Even though the field projection scheme described so far is formulated for general anisotropic bi-materials, 

degenerate cases in which one or both of the constituent materials are isotropic can be dealt with in the same 

framework, as discussed by Choi et al. [37], for a sharp crack tip field. Also, it is worth mentioning that for 

special combinations of anisotropic bi-materials, e.g. symmetric tilt grains, of which the bi-material matrix, 

(111)

1
1

− −
< > < >+M M 1

2 , is a real symmetric matrix, the oscillatory stress fields disappear and many of the 

mathematical expressions involved in the field projection can be reduced to very simple forms with the 

relations  (=β 0 0ε = ), [ ( )]zη =Y I , 1
1

T − −1
2< > <= +VV L L > , and . ( ) ( )n nz U z=P I
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6. EAM Simulation and Field Projection of Atomic Decohesion in Gold 

 

6.1 Atomistic deformation analysis with EAM simulations 

In a cohesive zone framework, the constitutive relations of the cohesive zone are regarded as 

phenomenological material characteristics that can be evaluated by the FPM described in the previous 

section. The FPM is applicable to the decohesion processes in homogeneous elastic solids, as well as to 

those of interfaces in anisotropic elastic bi-materials. The application of the method is also valid for any 

elastic deformation fields of cohesive crack-tips obtained either by experimental measurements or by 

computational simulations. In this section, the FPM is applied to analysing nano-scale decohesion processes 

and their associated deformation fields in a face-centeredcentred cubic gold crystal, obtained by atomistic 

simulations. The EAM potential of Foiles et al. [9] is employed for the atomistic simulations since the 

potential is known to be quite reliable for atomistic simulations of atoms with nearly-filled d-orbital 

electronic configurations such as gold. Foiles et al. [9] provided the potential tuned to fit various empirical 

material parameters including the lattice constant of gold, 4.08a =  Å, the three elastic constants of 

, , and 11 183.0 GPaC = 12 159.0 GPaC = 44 45.0 GPaC = , the sublimation energy of 3.93 eV, and the 

vacancy formation energy of 1.03 eV. They also reported that the potential gives a (111) surface energy of 

0.79  and a surface relaxation of 0.1 Å contraction in the first layer of a (111) free surface. 2Jm−

In this study, the crack geometry of a (111) plane decohesion is considered. A semi-infinite crack is on 

a (111) plane with its crack tip lying along a [110]  direction and its prospective propagation direction in 

[1 12] . A Cartesian coordinate system is assigned with the 1x′  axis along [1 12] , the 2x′  axis along [ , 

and the 

111]

3x′  axis along [110]  for the deformation analysis.  

In the atomistic field of an embedded atom method potential, the deformation is nonlocal and it can be 

induced by nearby density gradients; for example, the surface relaxation is evident near a free surface in the 

atomistics. Therefore, a local deformation associated with a stress field must be delineated from such 

atomistic nonlocal deformations near a free surface[9]. Here, “local” constitutive relation signifies that the 

stress is only a function of the stress-inducing strain at a local point. However, it is quite difficult to find the 

stress-inducing deformation from the final equilibrium positions of the atoms for a crack tip geometry, 

because the stress-free reference configuration is not well defined near the crack tip for the nonlocal 

atomistics. In the following, a construction of an approximate stress-free reference configuration is 

introduced. The approximate reference configuration is close to a stress-free state away from the crack tip. 

Since the field projection method utilizes the far-field information, it is sufficient to use the approximate 

reference configuration, in extracting the crack tip cohesive zone constitutive relations with the field 
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projection method. Derivation of the stress-inducing deformation from the approximate stress-free reference 

configuration involves four atomistic configurations.   

Figure 3 shows the four configurations of the atomistic states. The black and white atoms in figure 3 

represent atoms in different (110)  atomic planes, e.g. the A and B atomic planes, respectively, which are 

considered to be the planes of the generalised two-dimensional deformation. The top half of figure 3(a) 

shows a perfect lattice configuration and the bottom bright region depicts a continuum representation of the 

perfect lattice. Figure 3(b) exhibits an atomistic equilibrium state of a deformed configuration. The top half 

of figure 3(c) demonstrates an atomistic configuration relaxed near a free surface along the 1x′  axis and the 

bottom dark region illustrates a continuum representation of the relaxed configuration. Figure 3(d) shows a 

hybrid configuration of the perfect lattice configuration (a) and the relaxed free- surface configuration (c).  

The deformed configuration in equilibrium, shown in figure 3(b), was generated by relaxing the atomic 

positions from an imposed initial configuration, while the atomic positions at an outer boundary layer were 

held fixed. The initial configuration corresponds to a linear elastic crack-tip displacement field of a mixed 

mode with 0.38 MPa mIK =  and 0.10 MPa mIIK = − . The initial condition was imposed on 98,496 

gold atoms in the region of three dimensions: 54 6 76 3 2a a× × a . Then, a conjugate gradient method of 

minimising the total energy of the system was used to relax the atomic positions in the bulk region, while the 

atoms at the outer boundary layer, with a thickness of , were held fixed and periodic boundary conditions 

were applied in a 

2a

[110]  direction. The total energy of the system at each stage of the relaxation was 

evaluated using the EAM potential of Foiles et al. [9]. The mode mixity of the initial condition was chosen to 

suppress the localised deformation along the  direction on a [112] (111) plane, which could have emitted a 

dislocation during the relaxation if the mode mixity had not been applied. In the following section, the 

decohesion process zone ahead of the crack tip in figure 3(b) is analysed with the FPM developed in the 

previous sections.  

In the following deformation analysis, the atomic positions on only one atomic plane, e.g. plane A in 

figure 3, are used for the planar field projection analysis. Here, the ’th atomic position in a perfect lattice 

(figure 3(a)) is denoted as 

j

[P]
j′x , in the cracked configuration (figure 3(b)) as [C]

j′x , in a free surface relaxed 

configuration (figure 3(c))  as [F]
j′x , and in a hybrid reference configuration (figure 3(d)) as [R ]

j′x . The hybrid 

reference position is defined as 

 

[R] [F] [P]1j jθ θ
π π

⎛ ⎞
′ ′≡ + −⎜ ⎟

⎝ ⎠
x x j′x ,                                                              (16) 
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where the angle θ  is measured from the prospective crack propagation direction to the line segment 

between [P]
j′x  and the crack tip. We also define the deformation gradient from  to  as [P]d ′x [C]d ′x [C]F , from 

 to  as [P]d ′x [R ]d ′x [R]F , and from  to [R ]d ′x [C]d ′x  as [H]F . Every deformation gradient of a configuration 

relative to a perfect lattice configuration, such as [C]F  or [R]F , can be defined in the Voronoi cell [38] of the 

’th atom in the perfect lattice configuration as j

 
( )

0
10

1
2

j k jN
j k

k
L

A =

⎡ ⎤′ ′⎛ ⎞−
≡ ⎢⎜ ⎟

⎝ ⎠⎣ ⎦
∑ x xF k⊗ ∆⎥n ,                                                  (17) 

 

where  and  are the outward unit normal vector and the length of the ’th side of the Voronoi cell, 

respectively; 

kn 0
kL∆ k

( )j k′x  is the position of the nearest atom in the  direction; and  is the area of the Voronoi 

cell. Equation (17) is for a two-dimensional case with 

kn 0A

4N = .  Then, the deformation gradient [H]
jF  of the 

cracked configuration (b) with respect to the hybrid reference configuration (d) is given by 1
[H] [C] [R]

−=F F F . 

Defining the deformation gradient at a surface atomic site, the relative displacement at the free-surface-side 

face of the Voronoi cell, with respect to the displacement at the atomic site, is chosen to be equal to the 

negative of the displacement at the opposite face of the Voronoi cell. When the hybrid reference 

configuration is used to evaluate the deformation gradient, the deformation gradient near the free surface is 

scarcely sensitive to the choice of the relative displacement. 

When an atomistic deformation field is analysed with a local elasticity theory, we must consider two 

major effects of the high atomic density gradients near a free surface. One is the surface stress effect and the 

other is the surface relaxation effect. The surface stress effect is taken into consideration in the 

configurational force balance, as shown in figure 2. The surface relaxation effect is dealt with by the proper 

choice of an effective reference configuration for assessing the deformation that induces bulk stress. The 

hybrid reference configuration, [R ]
j′x  of figure 3(d), is used in this paper as the effective reference 

configuration. Since the FPM uses an elastic field at a distance away from the crack tip, the hybrid reference 

configuration is a satisfactory choice. Figure 4(a) shows a vector plot of the displacement gradient in the 2x′  

direction, , with respect to the perfect lattice reference configuration. The plot exhibits a 

very large displacement gradient of the surface relaxation, which cannot be used for evaluating the bulk 

stress induced by elastic deformation. Figure 4(b) shows 

12[P] 22[P]( ,  1F F − )

1)12[H] 22[H]( ,  F F −  with respect to the hybrid 
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reference configuration. The figure shows the elimination of the artefact of the displacement gradients 

caused by the surface relaxation. Therefore, the hybrid deformation gradient was used for the linear strain 

tensor, , to evaluate the bulk stress, , at a region of small strain, where the 

interaction J integrals of the FPM were carried out. For the integration, the deformation gradient was linearly 

interpolated between the atomic positions. For numerical accuracy the interaction integrals, 

[H] [H]( ) / 2T= + −ε F F I :=σ C ε

o

int ˆ[ , ]J S SΓ  in 

equation (5) were evaluated with domain integrals [39]. The width of the integration domain, D  in figure 2, 

was set to be 20 Å, while the rectangular inner boundary of the domain surrounded the cohesive zone at a 

distance d, having a dimension of 2d by 2(c+d) with d=10 Å. 

 

6.2 Field projection of the atomistic deformation field 

The interaction domain integrals int ˆ[ , ]DJ S S  between the atomistic deformation field , e.g. figure 

3(b), obtained from the EAM analysis and the auxiliary eigenfunction fields 

[ ,S σ u]

[ ]ˆ ,S σ u  developed in section 5 

are calculated for the FPM to evaluate the cohesive zone characteristics. The cohesive zone characteristics 

are described by , , , and  (  of the equations (15a-d) and the cohesive zone end 

locations. In the following analysis, n up to 2 is used so that the cohesive zone characteristics are effectively 

described with 38 parameters: three components of the twelve coefficient vectors and the two end positions 

of the cohesive zone. The two end positions of the cohesive zone were chosen as  Å and  

Å (  Å) by trial and error so that at the left end position, 

ng nh nq nr )N0,1,2, ,n =

1 14ax = − 1 109bx =

61.5c = 1
ax , and the cohesive zone normal 

separation, 2δ , obtained from the FPM is as close as possible to that of the applied linear elastic -field, 

and at the right end position, 

K

1
bx , the cohesive zone normal traction, , has the same value as that of the 

applied -stress field. The location of the left end position, 

2t

K 1 14ax = −  Å, estimated by the FPM is 

approximately one lattice distance, 4 Å, from the location, 1 10.0x′ ≅ −  Å, where the distance between the 

nearest atoms in the upper and lower surfaces is approximately equal to the cut off radius of inter-atomic 

interaction in gold, 5.55  Å. The difference is believed to be caused by the surface stress employed in the 

cohesive zone model and by the choice of the criterion to match the normal separation, 2δ , obtained from 

the FPM to that of the applied linear elastic -field. K

Figures 5(a) and (b) respectively show the cohesive zone tractions and separations determined by the 

FPM for the atomistic deformation field simulated with the displacement boundary conditions of the applied 

linear elastic -field. The cohesive zone shear traction, , shown in figure 5(a) deviates from that of the 

applied linear elastic -field near the right end of the cohesive zone. In this crystallographic orientation of 

K 1t

K
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a face-centred cubic crystal, the opening and shearing modes are coupled together from the linear elastic 

point of view. In other words, the tangential separation is related not only to the shear traction, but also to the 

normal traction and similarly for the normal separation; thus, the opening and the shearing modes should be 

considered together. The mixed mode dependence is approximately 3 % of the primary mode dependence in 

this orientation. If the mixed mode dependence is ignored, the two modes can be separated and the cohesive 

zone shear traction, , at the right end position, 1t 1
bx , can be matched to that of the applied -stress field by 

adjusting  Å (  Å), as shown with the dash-dot curve in figure 5(a). However, since the 

cohesive zone shear tractions for the two different cohesive zone sizes give similar results for the surface 

stress and surface energy distributions in the cohesive zone, the two end positions of the shear cohesive zone 

are set to be the same as those of the normal cohesive zone. The shear separations shown in figure 5(b) for 

the two different cohesive zone sizes are very close to each other. The normal separation, shown as a dark 

solid curve in the figure, exhibits a zone of negative separation between 

K

1 160bx = 87.0c =

1 18x′ ≅  Å and  Å. This is a 

sub-region of the negative normal separation modulus in the cohesive zone, which may reflect the tendency 

of phase transformation such as twinning or unstable shear localisation in a certain slip plane near the crack 

tip.  

1 62x′ ≅

Figures 6(a) and (b) show the surface stress gradients and centre line displacements of the cohesive 

zone, respectively. A careful observation of the equilibrium atomic positions near the crack tip reveals that 

the inter-atomic crack plane is not flat: it is curved. Therefore, the surface stress and the curvature can 

sustain the normal traction jump, i.e. the normal surface stress gradient. T -stress is believed to cause 

significant variations of the curvature to change the normal surface stress gradient. The relationships 

between the cohesive zone tractions and separations are plotted in figure 6(c). The maximum normal 

traction in the cohesive zone is 4.06 G  when Pa 2 0.29δ =  Å. The cohesive zone surface stress is plotted 

against the normal separation along the cohesive zone in figure 6(d). The surface stress is a monotonically 

increasing function of the normal separations, 2δ , except for the small 2δ . The surface stress of the (111) 

free surface in the [112] orientation is 2.06 1Nm−   

 

7. Discussions  

 

Before the results of the field projection for atomistic decohesion in gold are discussed, three major 

approximations employed in this analysis are explained briefly. One is for deformation non-locality, another 

for deformation nonlinearity, and the other for the numerical integration employed in the FPM. Firstly, the 

deformation field analysed by the EAM is inherently non-local. The non-locality is projected onto a planar 
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region while the material behaviour at the atomistic scale in the remainder of the bulk region is treated with 

a local theory of linear elasticity. Secondly, there is some nonlinear deformation outside the cohesive zone. 

The nonlinearity is also projected onto the cohesive zone in this field projection scheme. Finally, since the 

deformation gradients are linearly interpolated between atomic positions, the lattice constant of gold, 

 Å, acts as a fundamental length scale and the integration becomes inaccurate along a contour close 

to the cohesive zone for a small 

4.08a =

c a . As Hong and Kim [11] noted, the interaction integral turns out to be 

subtracting a large number from another large number to obtain a small value of the integral for a large c/a 

and a large number of series terms, n. Therefore, the integration is performed at an optimum distance from 

the cohesive zone with a finite n. The truncation of the series of eigenfunctions for the field projection 

implies a low spatial frequency representation of the distribution of the cohesive zone characteristics. It is 

also worth noting that the linear strain tensor is used in the interaction integral to guarantee path 

independence, and thus, the domain of the integral avoids a region of large rotation.  

The results of the field projection presented in the previous section show various cohesive zone 

characteristics that can be interpreted in a continuum point of view for atomistic decohesion in a discrete 

lattice system of a gold crystal. Comparisons between the characteristics in the view of a continuum and 

those derived somewhat directly from the atomic positions are discussed here. In figure 7(a), the field 

projected normal and shear separations shown in figure 5(a)  are compared with the atomic site separations 

between adjacent atomic planes across the cohesive zone. The atomic site separations stand for the 

difference between the displacement at an atomic site on one of the two separating atomic planes and the 

displacement at the conjugate counter point on the opposite atomic plane of separation. The conjugate 

counter point is a Lagrangian point where a vector normal to the separating atomic plane at an atomic site 

intersects with the opposite separating atomic plane in the reference configuration. The atomic site normal 

separations, shown as solid circles in figure 7(a), display a sharp transition at the crack tip, while the atomic 

site shear separations, shown as open circles, demonstrate a smooth transition. The distribution of the atomic 

site shear separations is far more spread in the cohesive zone than that of the normal separations because the 

inter-atomic plane of decohesion is an easy-glide slip plane. On the other hand, the field projected normal 

separation oscillates smoothly along the atomic site separation distribution. The field projected shear 

separation closely follows the distribution of the atomic site shear separation. The field projected separation 

distributions resemble low frequency approximations of the atomic site separations in the cohesive zone. It 

is also worth noting that the atomic site separations are evaluated with the displacements on two separating 

atomic planes, while the continuum separations are determined by the displacements extrapolated to the 

mid-plane of the two separating atomic planes. 
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Once the separations in a cohesive zone are known, the tractions in the cohesive zone have traditionally 

been estimated with rigid separation potentials, e.g. Rose et al. [40], or with generalised stacking fault 

energy, e.g. Vitek [41]. For a combined normal and shear separation of two atomic planes, two simple 

processes of separation can be considered. One is the rigid separation for which the relative atomic positions 

are held rigid, respectively, in each volume of the two separating parts; the other is the affine separation for 

which all atomic inter-planes parallel to the decohesion plane of interest experience the same separations. If 

the inter-atomic potential were local, the energy per unit area required for a rigid separation, i.e. the rigid 

separation potential, would be identical to that for a corresponding affine separation. In figure 7(b), the rigid 

separation potential corresponding to every atomic site separation in the cohesive zone is plotted with a dark 

solid circle, while the affine potential at every matching site is mapped out with an open circle. The two 

separation processes are substantially different with respect to each other indicating that the inter-atomic 

potential is non-local, particularly for large deformations. The non-locality in the EAM potential occurs for 

two major reasons. One is that an atom interacts with atoms beyond the nearest neighbours, with a cut off 

radius of 5.55 Å in gold, and the inter-atomic potential is anharmonic; the other is that the embedding term in 

the EAM potential is a nonlinear function of electron density and the background electron density is a 

superposition of the atomic electron densities of atoms hosting the embedding. The latter reason is solely 

responsible for the difference between the complete separation energy of the rigid and affine separations, 

while both reasons are accountable for the non-local elastic behaviour of the solid when the strain gradient is 

large. This fact signifies that the fracture energy of nano-scale decohesion depends on the history of the 

deformations adjacent to the decohesion process zone, even without a dislocation motion. In fracture 

mechanics terms, the critical stress intensity factors for a nano-scale decohesion process depend on various 

non-singular stress terms, including the T -stress; the fracture toughness depends on external loading. In 

addition, the non-local effects, together with the discreteness of the lattice, determine the lattice trapping 

toughness variation of the crack tip at the nano-scale.  

Figure 7(b) also shows the field-projected decohesion potential ( )x′Π , with a dark solid curve, as a 

function of the position 1x′  along the cohesive zone:  

 

( ) 1 12 1 2 1
1 2 1 1 2 1

1 1 1 1

a ax xa a

c c

d d du du
1x t t dx

dx dx dx dx
δ δ τ τ

′ ′⎛ ⎞ ⎛
′Π = + + +⎜ ⎟ ⎜

⎝ ⎠ ⎝
∫ ∫ dx

⎞
⎟
⎠

.                                (18) 

 

The decohesion potential is composed of the separation potentials expressed as the first integral in equation 

(18) and also contributions from the surface stress articulated in the second integral. The separation potential 

can be decomposed into a normal separation potential (the thin dashed line in figure 7(b)) and a shear 
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separation potential (the thin dash-dot curve in figure 7(b)). The contribution from the surface stress is so 

small that it cannot be seen in the plot of figure 7(b). The complete decohesion potential at the left end of the 

cohesive zone is 1.407 , which is approximately 2 % smaller than the J integral value around the 

cohesive zone. This difference is believed to be a truncation error of the eigenfunction series in the FPM. 

The potential shows that the major decohesion process occurs in the range of −14 Å

2Jm−

1x′< <  18 Å, and a 

region of negative potential appears at approximately 18 Å 1x′< <  65 Å. Twice the surface stress, 2Σ , 

distributed in the cohesive zone is plotted in the thick dashed line in figure 7(b). The surface stress mostly 

develops in the range of −14 Å 1x′< <  50 Å. These region sizes represent the effects of the atomistic 

deformation non-locality reflected on the cohesive zone model through a low-spatial-frequency field 

projection. The fully developed surface stress in the [1 12]  direction on the (111) face is estimated to be 1.05 

 in this analysis. 1Nm−

Regarding the distribution of potentials in the cohesive zone, the sizes of the cohesive zone and the 

sub-zone of the negative potential are surprisingly large. Although the cut off spatial frequency involved in 

the field projection was low for the given cohesive zone size, the cohesive zone size was an optimisation 

parameter for the field projections shown in figure 7(b). Therefore, the large optimum size of the cohesive 

zone, 12.3 nm, and the existence of a relatively large sub-zone of negative potential appear to indicate the 

tendency for unstable phase transformations, such as twining or dislocation emission, near the crack tip. 

Indeed, localised twinning was observed ahead of the crack tip when the magnitude of the applied  was 

increased, keeping the sign of the mode mixity. When the sign of the mode mixity was reversed, a 

dislocation was emitted on a 

IIK

(11 1)  plane in a  direction, as shown in figure 3(b). The tendency of the 

non-local elastic field to drive such unstable deformations near the crack tip is believed to be projected on 

the cohesive zone as a zone of negative decohesion potential or negative modulus. 

[112]

The energy release rate of the crack was also evaluated by the J integral and interaction J integrals, 

based on various deformation gradients that were defined differently for the atomistic deformation field. 

The inner contours of the domain integral were squares made of 1x c′ ′=  and 2x c′ = ′  with a constant c′  

ranging from 5 to 200 . The results are shown in figure 8. Regarding the field without an applied -stress 

shown in figure 8(a), the energy release rates, as evaluated by the J integral with the hybrid deformation 

gradient 

Å T

[H]F , are shown with open circles and they are path independent for a c′  larger than approximately 

60 . Even in the range 5 Å  60 Å, the J integral values are nearly path independent. The J values are 

approximately 1.5 – 2 % lower than the applied nominal J value, 1.475 

Å c′≤ ≤
2Jm− , of the displacement field at the 

outer boundary layer of the modelling region. The differences are believed to be mainly due to the relaxation 
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from the initial field to an equilibrium field within a finite modelling volume. The results of the evaluation of 

the J integrals with the deformation gradient, [C]F , relative to a perfect lattice configuration are plotted with 

solid circles and underestimate the energy release rate by approximately 10 %. The energy release rate was 

also evaluated by interaction J integrals with both the hybrid deformation gradient, [H]F , and the 

deformation gradient, [C]F , relative to a perfect lattice configuration; the former is plotted with open squares 

and the latter with solid squares. For the auxiliary field of the interaction J integrals, the singular -field of 

a crack tip in an anisotropic elastic solid with the same orientation was employed. Then, the complex stress 

intensity factor K was converted to the energy release rate. The energy release rates evaluated by the 

interaction J integrals were almost identical to the J values computed with the hybrid deformation gradient. 

The interaction J integral evaluations were insensitive to the choice of reference configurations between the 

perfect and hybrid configurations. The energy release rates estimated with the low spatial frequency field 

projection are also outlined in figure 8. The energy release rate assessed by the complete decohesion energy 

is the same as that assessed by the complete separation energy; the contributions from the surface stress are 

negligible for this field. In order to see the path dependence of the field projection, one-eighth of the 

perimeter size of the rectangular contour was used as the average contour size in this plot. The energy 

release rates estimated by the field projection were independent of the contour size. 

K

As shown in figure 8, the low spatial frequency field projection with an n  up to 2 in equation (15) 

imparts an approximately 2 % truncation error in the energy release rate estimation. If the Griffith criterion 

[42] were satisfied for an equilibrium crack-tip field in the nano-scale, the energy release rates evaluated by 

the J integral would be identical to 02γ  for a field without T -stress and 0 02 2 Tγ ε+ Σ  for a field with 

-stress. On the contrary, the near-crack-tip non-local deformation field allows variation of the atomistic 

configuration to induce an apparent lattice trapping barrier for crack growth. Considering that the critical 

energy release rate, G , for a crack growth rate, l , should satisfy the dissipation condition, 

T

( )2 0lγ− ≥G , 

there is an admissible range of surface energy at rec adv2γ≤ ≤GG , where  and  denote the critical 

energy release rates for crack recession (or healing) and advancement, respectively.  

recG advG

In order to see the lattice trapping effect, the applied mode I stress intensity factor was varied in the 

range of 0.375 MPa m 0.385 MPa mIK≤ ≤ , while the mode II stress intensity factor was maintained at 

0.10 MPa mIIK = − .  Neither crack propagation nor healing was observed in the range of 

0.376 MPa m 0.384 MPa mIK≤ ≤ . However, when 0.375 MPa mIK =  or 0.385 MPa mIK =  was 

applied, a dislocation was emitted from the crack tip on the (11 1) plane along the [  direction. It is an 

interesting result that a crack does not advance or heal. Therefore, it can be known that 

112]

2
rec 1.38 Jm−≤G  and 
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2
adv1.44 Jm− ≤G . Considering that the 02γ  of the (111) free surface is approximately 21.58 Jm−  for the 

EAM potential [9], the lattice trapping magnitude of the energy release rate for crack healing is more than 

14 % of 02γ . Although a full study of the critical conditions of lattice trapping and dislocation emission is 

beyond the scope of this paper, it has been demonstrated that a proper choice of hybrid reference 

configuration makes it possible to evaluate the J integral values accurately and thus, to study such critical 

crack tip conditions. While conventional J integral evaluations with a proper hybrid configuration can 

provide accurate energy release rates, the FPM offers a means of studying the cohesive zone characteristics, 

in particular the sizes of the non-local and nonlinear deformation zones and definitions of tractions, at the 

atomistic length scale in the cohesive zone. 

Figure 9 shows the states of the nominal normal separations and tractions in the cohesive zone 

measured by the rigid separation potential (RSP) method and by the FPM. In figure 9(a), the solid circles 

indicate the states determined by the RSP method at the atomic sites in the cohesive zone. The states of the 

RSP of the normal separations with various constant shear separations are also illustrated with various 

curves. The nominal normal peak stress is approximately 14 – 15 GPa; although it can be reduced by a 

certain amount with a superimposed shear separation, it is larger than 10 GPa for shear separations less than 

80 % of the unstable stacking shear separation. However, the field projected states of the normal separations 

are quite different from those of the RSP and are plotted with a thick line in the figure. The FPM gives a 

normal peak stress of only 4 GPa. Figure 9(b) exhibits the atomic positions near the decohesion process 

zone. The fifth atom is at the RSP state of 12 GPa nominal normal peak stress; however, the FPM measures 

the peak stress of 4 GPa at the tenth atom in the numbering sequence. The RSP measurements indicate that 

the inter-atomic forces are transmitted through the atomic bonds of the second atom and beyond; however, 

the FPM shows that the forces are transmitted through those of the first atom and beyond. In the RSP 

measurements, only one isolated atom, number 5, experiences a nominal normal stress above 4 GPa; the 

nominal traction at such an isolated site cannot be assessed reliably by the RSP. The FPM provides an 

estimation of the traction from extrapolations of the adjacent inter-atomic states. The field projection shows 

that the cohesive zone tractions are more broadly spread than the distribution measured by the RSP method. 

  

8. Conclusions 

 

A general formulation of a planar elastic field projection has been derived for identifying the cohesive zone 

constitutive relations from the static or steady state dynamic elastic fields of a cohesive crack tip on an 

interface between two anisotropic solids. The formulation is also applicable to the elastic field of a cohesive 

crack tip in a homogeneous solid whether it is isotropic or anisotropic. A new framework of cohesive zone 
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models, including the surface stress effects, has been introduced to develop the nano-scale FPM. A new 

eigenfunction expansion of the elastic field surrounding a crack-tip cohesive zone made it possible to 

develop the FPM. The eigenfunctions were orthoginalised for interaction J integrals based on the Jacobi 

polynomials. The field projection using the interaction J integrals provides J-equivalent cohesive tractions, 

interface displacements and separations, as well as the surface energy gradients caused by the gradual 

variation of the surface formation within the cohesive zone. In particular, the FPM can define tractions and 

stresses within and near a cohesive zone more objectively than the conventional rigid separation potential 

method. In addition, the field projection measurement can identify the energetic states of decohesion in the 

cohesive zone and it provides a means to compare the experimental measurements and computational 

simulations of atomistic decohesion or slip processes on the same grounds.  
The efficacy of the FPM has been demonstrated with nano-scale deformation fields of EAM atomistic simulations 

for crystal decohesion along a [1 12]  direction in a gold (1  plane. It has been noticed that two major free surface 

effects, i.e. surface relaxation and surface stress, play significant roles in the atomistic elastic field analysis near a crack 

tip. The surface stress has been correctly incorporated into the relationship of the configurational force balance in the 

cohesive zone model and a hybrid reference configuration has been introduced to deal with the surface relaxation 

effect. These two new treatments have made it possible to study lattice trapping in crack growth and the validity of the 

Griffith criterion with conservation integrals. It has been found that the lattice trapping potential is larger than 14 % of 

11)

02γ  for the healing process of a gold (111) plane in a [112] direction. The low spatial frequency field projections have 

revealed that the decohesion potential along the cohesive zone is quite different from the prediction based on the rigid 

separation potential. The peak normal traction, approximately 4 GPa, in the cohesive zone has been found to be much 

lower than the 15 GPa expected from the rigid separation potential. This result clearly shows that the rigid separation 

potential overestimates the peak stress of separation in the crack tip region of highly nonlocal deformation. It has been 

also noticed that the critical energy release rates for various crack tip processes, such as crack growth and dislocation 

emission, depend heavily on the modes, such as  and the T -stress, of external loading on the crack tip at the 

nano-scale. The field projection also showed that a sub-zone of negative potential exists within the cohesive zone, 

reflecting the tendency of some unstable deformations near the crack tip and that the effective cohesive zone size varies 

depending on the mode of external loading. Half of the effective zone size, which is presumably close to the radius of 

II I/K K

the non-local deformation zone, was measured to be approximately 40  in an applied singular field. The FPM, 

together with the various analysis techniques developed in this paper, will be useful in studying decohesion, dislocation 

emission, single asperity friction, and grain boundary sliding and separations in crystalline solids in the nano-scale. 

Å
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Appendix A:  Stroh matrices , , and A B 1−M  
 

Among the expressions of the displacement and stress fields of an anisotropic elastic medium presented in 

equations (1) and (2) of the main text, the terms entering the expressions of the boundary conditions along 

the entire 1x  axis are 

 

{ } [ ]1 2Re ( )z′⋅∇ = Afe u ,                                                         (A1a) 

{ } [ ]2 2Re ( )z′⋅ = Bfe σ ,                                                          (A1b) 

 

where  and  represent the base vector of the 1e 2e 1 2( , )x x  Cartesian coordinate. The symbol  represents a 

complex matrix that satisfies the Stroh [28] characteristic equations 

A

 

{ } { } { }T
a b b c⎡ T⎤+ + + =⎣ AT T T T 2λ λ ⎦ 0

,  ,  a b c= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅T e C e T e C e T e C e

                                                 (A2) 

 
with , C  denotes the elastic moduli tensor of the solid, and 1 1 1 2 2 2 λ  is 

the diagonal Stroh eigenvalue matrix with the components of j jkp δ . The matrix  is given by B

 

{ } { }T
b c= +B AT T Aλ .                                                           (A3) 

 

Stroh [28] showed that  and B  are non-singular for three distinct complex pairs of A jp  and the matrix  

 
1 i 1− −≡M AB                                                                   (A4) 

 

is a positive definite Hermitian matrix. Here, 1i = −  and 1( )−  stands for the inverse of the matrix. The 

explicit expressions of A , , and  in terms of elastic constants are given in Suo [30] [Suo used the 

symbols  and  in his paper for  and 

B 1−M

L B B 1−M  in this paper, respectively.] and Ting [43].  
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Appendix B: A complex function representation of the anisotropic elastic field of a 

bi-material interface crack tip 
 

The eigenfunction expansion around a sharp interfacial crack tip lying on the negative 1x  axis in an 

anisotropic bi-material is given by Beom and Atluri [32] as 

 

1 ( )( ) ( 1) ( 1) ( )
2 2

i zz i z i
z

µ ε µ
µ µ π

− −
< > < >

⎧ ⎫′ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + − −⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

kf B I β Y I α m z ,                        (B1) 

 

for 1 or 2µ =  referring to materials 1 or 2, respectively, and where  and  are real analytic 

functions that satisfy 

( )zk ( )zm

( ) ( )z =k k z and ( ) ( )z z=m m , respectively. The generalised Dundurs parameter 

matrices  for dissimilar anisotropic materials are defined as follows [32, 33]:  and α β

 

( )( ) ( ) (11 1 1
1 2 1 2 1 2 1 2, ,

−− − −
< > < > < > < > < > < > < > < >= − + = + −α L L L L β L L W W )                        (B2) 

 

where ( )1 Re− =L M 1−  is a symmetric real matrix and ( )1Im −= −W M  an anti-symmetric real matrix and, 

thus,  are also real matrices. The bi-material parameter  and α β ε  that appears in the argument of the 

function [ ]iz ε−Y  is an oscillatory index which is related to β  by 

 

1 1ln
2 1

βε
π β

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

,   ( )
1 2

21
2

trβ ⎡ ⎤= −⎢ ⎥⎣ ⎦
β .                                                  (B3) 

 

The real matrix function [ ( )]zηY  is explicitly defined in terms of  by Qu and Li [31] as β

 

[ ] [ ] [ 2
2

1 1( ) ( ) ( ) 1 ( ) ( )
2 2
iz z z zη η η η η
β β

]z⎧ ⎫≡ + − + − +⎨ ⎬
⎩ ⎭

Y I β β ,                                 (B4) 

 

where ( )zη  is an arbitrary function of z . The matrix function [ ( )]zηY  plays an important role in 

representing the oscillatory fields near the crack tip. Certain properties of the matrix function [ ( )]zηY  are 

used for various derivations in this paper, and they are summarised as follows [31, 35]: 
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[ ] [ ] [ ]1 2 1 2( ) ( ) ( ) ( )z z zη η η η=Y Y Y z ,                                                   (B5a) 

[ ] [ ]( ) ( )zη η=Y Y z ,                                                                (B5b) 

[ ] [ ]1( ) ( )T zη − =UY U Y zη ,                                                         (B5c) 

( ) 1
1 1( ) coshi ix e i xπ εξ πε−⎡ ⎤ ⎡+ =⎣ ⎦ ⎣Y I β Y ⎤⎦ ,                                               (B5d) 

( ) ( )1( ) ( )ii x e i x eπξ −⎡ ⎤ ⎡+ = −⎣ ⎦ ⎣I β Y I β Y 1
iπξ ⎤⎦ ,                                            (B5e) 

 

where η  denotes an arbitrary function while ξ  indicates the function ( ) iz z εξ −= . 
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Appendix C: Orthogonalisation of the interaction J  integral and orthogonal polynomials 
 

In order to orthogonalise the interaction J integral of equation (8), the matrix function [ ( )]zξY  for 

( ) iz z εξ −=  should be diagonalised. From the definition of [ ( )]zξY  in equation (B4) and the property of a 

Hermitian matrix, as prepared by Beom and Atluri [35], the matrix function [ ( )]zξY  can be diagonalised as: 

 

[ ] [ ] [ ] [ ]1( ) ( ) or ( ) ( )T Tz z zξ ξ ξ ξ− −=Y V Λ V U Y VΛ VTz= ,                               (C1) 

 

in which [ ]( ) ( ), ( ),1z diag z zξ ξ ξ⎡ ⎤= ⎣ ⎦Λ  and ( )1 2 3, ,≡V v v v , where , 1v 2 1( )=v v , and 3 3( )=v v  are 

eigenvectors corresponding to the eigenpairs ( )1,ε− v , ( )2,ε v , and ( )30, v  of  

( )( ) 11 1 1 1 2
1 2 1 2 e πε−− − − −

< > < > < > < >+ + =M M M M v v . Therefore, by using the relation (C1), the interaction integral in 

equation (8) is rewritten as: 

 

[ ] [ ]{ }
( ) ( )

int 2 2
1 0 1 1 0 1 0 1 1 0 1 1

1 12 2
1 1 1 2 1 1 1 2 1

1

0 0 0 01

2

ˆ ˆ ˆ[ , ] ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ4 ( ) ( ) ( ) (

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

4 1 (

c T T
c cc

c T T

c

T T

T

J S S c x x x x x x x dx

c x x x x x

c cs s cs cs s cs ds

c s cs

ε
ξ ξΓ −

− −
< > < > < > < >−

−

= − +

⎡ ⎤+ − + + +⎣ ⎦

⎡ ⎤= +⎣ ⎦

+ −

∫
∫

∫

g Λ h g Λ h

q L L r q L L r

g ω h g ω h

q ( ) ( )
1 1 1

1 2 1 21
ˆ ˆ) ( ) ( ) (Tcs cs cs ds− −

< > < > < > < >−
⎡ ⎤+ + +⎣ ⎦∫ L L r q L L r

1) dx

) ,

            (C2) 

 

where 0 1 1( ) ( )Tx x=g V g , [ ]1 1 1( ) ( ) /( ) i
c x c x c x εξ −= − + , [ ]0 1 1( ) cosh ( )Tx xπε=h V Y h , and 1s x c= . The 

weight function ( )sω  is a diagonal matrix with the components of ( )j jksω δ  and  

 

( )( ) (1 ) (1 ) 1,2,3j ja a
j s s s jω = − + = ,                                                     (C3) 

 

in which the exponents are written in terms of ε  as 1 1 2a iε= − , 2 1 2a iε= + , and 3 1 2a = . Then, the 

analytic functions  and  can be expanded in terms of Jacobi polynomials, denoted as 

, which are orthogonal at the interval [

0 ( )csg 0 ( )csh

( ), ( )a b
nP s 1,1]−  with a weight function of ( )sω  as 
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( )

( )

( )

( )

, ,
1

, ,1

( ) ( ) ( )
2

a b a b
m n

mna b a b
m n

P s P s s ds πω δ
θ θ−

=∫ ,                                                (C4) 

 

where ( ) [ ], 22 ( 1) ( 1) (2 1) ( 1) ( 1a b a b
n n a n b n a b n n a bθ π+ += Γ + + Γ + + + + + Γ + Γ + + + )  and  is a 

gamma function. The first two terms and the recurrence relations of the Jacobi polynomials are given by 

( )zΓ

 
( )

( )

( )( )
( )( )

( )

( )
( )( )

( ) ( )( )
( )( )

( )

,
0

,
1

,
1

2 2
, ,

1

( ) 1,

( ) 1 ,
2 2

2 1 1
( )

2 1 2 2

2
          ( ) ( ).

2 2 2 2 2 1

a b

a b

a b
n

a b a b
n n

P s
a b a bP s s

n n a b
P s

n a b n a b

a b n a n b
s P s P s

n a b n a b n a b n a b

+

−

=

− +⎛ ⎞= + +⎜ ⎟
⎝ ⎠

+ + + +
+ + + + + +

⎡ ⎤− + +
⎢ ⎥= + −

+ + + + + + + + + +⎢ ⎥⎣ ⎦

          (C5) 

 

On the other hand,  and  may be expanded in terms of the Chebyshev polynomials of the second 

kind, denoted by , which are a special case of the Jacobi polynomials 

( )csq ( )csr

( )nU s ( ), ( )a b
nP s  with 1 2a b= = .  
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Figure 1. Deformation field near a crack with a cohesive zone size of 2c on an interface between two 

anisotropic solids: (a) an atomistic deformation field of decohesion along the  grain boundary 

simulated using the EAM, and (b) a mathematical field model of decohesion interaction with atomistic 

deformation field. The black and white circles in (a) represent atoms in two alternating 

27Σ

(110)  atomic 

planes. 
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Figure 2. Schematics of the configurational force balance in a nano-scale crack-tip cohesive zone model:          

(a) a diagram of the bulk region, illustrating the domain of the interaction J integrals encompassing a 

cohesive crack tip, and (b) a diagram of the surface-interface region showing the configurational force 

balance in the region. 
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Figure 3. The kinematics of an atomistic deformation near a crack tip, expressed with combinations of the 

deformation gradients [C]F  and [ ]RF . Three nominal stress-free reference configurations are shown for (a) 

bulk deformation, (c) deformation near a free surface, and (d) deformation near a crack tip, while an  

equilibrium configuration is shown in (b) for an atomistic deformation field near a crack tip opening along a 

[1 12]  direction in a (111) plane in gold. The lower halves of (a), (c), and (d) depict continuum 

representations. 
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(a) 

 

 
(b) 

 

Figure 4. Vector plots of the displacement gradient in 2x′  direction, ( 1 2 2 2,u x u x′∂ ∂ ∂ ∂ )′ , at each atomic site 

for the atomistic deformation of figure 3(b). Displacements are measured with respect to (a) a perfect 

configuration and (b) the hybrid configuration of figure 3(d).  
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Figure 5(a). Cohesive zone traction distributions of the near-crack-tip field.  The end positions of the 

cohesive zone are chosen as  Å and  Å (1 14ax = − 1 109bx = 61.5c =  Å), for which traction  matches well 

with the applied K -field. Traction  matches better with the applied -field for an independent choice, 

for only, of   Å and  Å  (

2t

1t K

1t 1 14ax = − 1 160bx = 87.0c =  Å) (dash-dot line). The atomic positions near the 

crack tip simulated by the EAM, the same as those in figure 3(b), are also shown for comparison. 
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Figure 5(b). Cohesive zone separations for 1 14ax = −  Å and  Å (1 109bx = 61.5c =  Å). Another measure 

(dash-dot line) of the shear separation is also plotted for the choice of 1 14ax = −  Å and  Å (1 160bx = 87.0c =  

Å). The atomic positions near the crack tip simulated by the EAM, the same as those in figure 3(b), are also 

shown for comparison.  
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Figure 6(a). Surface stress gradients along the cohesive zone. 
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Figure 6(b). Cohesive-zone centre line (CCL) displacements at the cohesive zone. 
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Figure 6(c). Cohesive zone traction-separation relations. 
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Figure 6(d). Cohesive zone surface stresses. 
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Figure 7(a). Cohesive zone separations. The solid lines represent the separation profiles obtained by the 

FPM along the crack plane. The open and solid circles indicate shear and normal atomic-site separations, 

respectively, between adjacent atomic planes across the cohesive zone.  

 

 

-20 0 20 40 60 80 100 120
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Po
te

nt
ia

ls
 a

nd
 su

rf
ac

e 
st

re
ss

s  
(J

m
−2

)

x1'  (Angstrom)

  Decohesion potential obtained from FPM
  Contribution from surface stress
  Normal separation potential of FPM
  Shear separation potential of FPM
  Rigid separation potential of EAM
  Affine separation potential of EAM
  2Σ (x1'); Σ (x1') = surface stress

 
Figure 7(b). Field-projected separation potentials and surface stress are plotted with the rigid and affine 

separation potentials of EAM, shown as solid and open circles, respectively. 
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Figure 8. Energy release rates evaluated by various conservation integrals with different integral domains. 

The thick solid line is the applied nominal energy release rate, 1.475 2Jm− . The evaluation of J integrals 

with [H]F  is shown by open circles; J integrals with [C]F  by solid circles; interaction J integrals with [H]F  by 

‘+’ marks; and interaction J integrals with [C]F  by ’×’ marks. 
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Figure 9. (a) Comparison between two nominal states of cohesive zone separation measured by the RSP 

method (solid circles) and the FPM (open circles) at cohesive zone atomic sites. (b) Atomistic deformation 

configuration near the crack tip and the cohesive zone atomic sites. 
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